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Provably Convergent Plug-and-Play Quasi-Newton Methods1

Hong Ye Tan∗ , Subhadip Mukherjee∗ † , Junqi Tang∗ ‡ , and Carola-Bibiane Schönlieb∗2

3

Abstract. Plug-and-Play (PnP) methods are a class of efficient iterative methods that aim to combine data4
fidelity terms and deep denoisers using classical optimization algorithms, such as ISTA or ADMM,5
with applications in inverse problems and imaging. Provable PnP methods are a subclass of PnP6
methods with convergence guarantees, such as fixed point convergence or convergence to critical7
points of some energy function. Many existing provable PnP methods impose heavy restrictions on8
the denoiser or fidelity function, such as nonexpansiveness or strict convexity, respectively. In this9
work, we propose a novel algorithmic approach incorporating quasi-Newton steps into a provable PnP10
framework based on proximal denoisers, resulting in greatly accelerated convergence while retaining11
light assumptions on the denoiser. By characterizing the denoiser as the proximal operator of a12
weakly convex function, we show that the fixed points of the proposed quasi-Newton PnP algorithm13
are critical points of a weakly convex function. Numerical experiments on image deblurring and14
super-resolution demonstrate 2–8x faster convergence as compared to other provable PnP methods15
with similar reconstruction quality.16

Key words. Plug-and-Play, inverse problems, quasi-Newton methods, image reconstruction17

MSC codes. 49M15, 49J52, 65K1518

1. Introduction. Many image restoration problems can be formulated as reconstructing19

data x ∈ Rn from a noisy measurement y = Ax + ε ∈ Rm, where A is a linear forward20

operator, and ε is some measurement noise. One common way to solve this is the variational21

formulation22

(1.1) arg min
x∈Rn

φ(x) = f(x) + g(x),23

where f : Rn → R is typically a continuously differentiable data fidelity term, and g : Rn → R24

is a regularization term that controls the prior. In many cases, the fidelity term incorporates25

a forward operator A : Rn → Rm, which may correspond to physical operators such as26

blurring operators or Radon transforms [28]. For a noisy measurement y = Ax + ε with27

additive white noise ε ∼ N (0, σ2I), the fidelity term takes the form of the negative log28

likelihood f(x) = ∥Ax− y∥2/(2σ2). For many physical forward operators, such as blurring or29

down-sampling, the optimization problem minx f(x) is ill-posed, thus a regularization term30

is needed [36]. Classical examples for regularization include using Fourier spectra (spectral31

regularization) or total variation (TV) regularization on natural images [62, 63], whereas32

recent works aim to learn a neural network regularizer [44, 49].33

Fully data-driven approaches have been shown to outperform explicitly defined regularizers34

[77, 76, 49]. However, the outputs of these learned schemes often do not correspond to35
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2 H. Y. TAN, S. MUKHERJEE, J. TANG, AND C.-B. SCHÖNLIEB

closed-form minimization problems of the form (1.1). This is particularly limiting in sensitive36

applications such as medical imaging, where interpretability is necessary [73, 72]. Recent37

lines of work consider combining iterative algorithms with generic denoisers, with notable38

examples including regularization by denoising (RED) [17, 58], consensus equilibrium [12],39

and deep mean-shift priors [2]. In this work, we will focus on the line of Plug-and-Play (PnP)40

methods, which arise from replacing proximal steps with denoisers. Under certain conditions41

on the fidelity and denoisers as detailed in Section 1.2, fixed point convergence of certain PnP42

methods can be established, characterized by critical points of a corresponding functional.43

The PnP framework of replacing the regularization proximal step with a denoiser is flexible44

in the choice of denoiser. In particular, it allows for the use of both classical denoisers such as45

NLM or BM3D [11, 18], as well as data-driven denoisers [78, 77, 64]. This allows for extending46

the use of Gaussian denoisers to other image reconstruction tasks, such as super-resolution or47

image deblocking. Recently, PnP methods based on the half-quadratic splitting were able to48

achieve state-of-the-art performance for image reconstruction using a variable-strength Gauss-49

ian denoiser called DRUNet [78]. Named the deep Plug-and-Play image restoration (DPIR)50

method, DPIR outperforms or is competitive with fully learned methods for applications such51

as image deblurring, super-resolution, and demosaicing while using only a single denoiser prior52

[77]. This work demonstrates the flexibility of PnP, using one prior for multiple reconstruction53

tasks.54

While PnP methods can be used to achieve excellent performance, empirical convergence55

does not equate to traditional notions of convergence. Indeed, while DPIR is able to achieve56

state-of-the-art results in as few as eight PnP iterations, there are no associated theoretical57

results. Moreover, DPIR can diverge when more PnP iterations are applied [32]. This can58

be empirically alleviated using various stopping criteria, but this raises an additional issue59

for defining a notion of “best reconstruction”. In this work, we sidestep this by considering60

provable PnP methods. We use the term “provable PnP” to refer to PnP methods equipped61

with some notion of convergence, such as fixed-point convergence, or the stronger notion of62

convergence to critical points of a function.63

Various approaches for accelerating PnP methods have been proposed, including using64

classical accelerated optimization algorithms, block-coordinate methods, parallelization, and65

dimensionality reduction [38, 23, 71, 37, 68]. In the context of convergence to fixed points66

of a functional, theoretical results for PnP based on accelerated classical methods such as67

FISTA have not arisen in the literature. This work proposes to extend the work on provable68

PnP methods by introducing a quasi-Newton step to accelerate convergence, while retaining69

a corresponding closed-form minimization problem with relatively weak constraints.70

1.1. Definitions and Notations. We begin with some definitions and notation. Let R =71

R∪{+∞} be the extended real line. Recall that a function g : Rn → R is proper if the effective72

domain dom g = {x ∈ Rn | g(x) < +∞} is nonempty, and closed (or lower-semicontinuous) if73

for every sequence xk → x in Rn, we have g(x) ≤ lim infk g(xk).74

Definition 1.1. For a scalar γ > 0 and a proper closed convex function g : Rn → R, the75

proximal map is76

(1.2) proxγg(x) = arg min
u∈Rn

{
g(u) +

1

2γ
∥u− x∥2

}
.77
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PLUG-AND-PLAY QUASI-NEWTON METHODS 3

The Moreau envelope is the value function of the proximal map, defined as78

(1.3) gγ(x) = min
u∈Rn

{
g(u) +

1

2γ
∥u− x∥2

}
.79

Properties of the Moreau envelope and proximal operators are well documented in classical80

literature [59, 7, 48, 27]. In particular, for proper closed convex g, the proximal operator is81

single-valued and nonexpansive, and the envelope function gγ is convex and C1 with derivative82

∇gγ(x) = γ−1(x− proxγg(x)).83

1.2. Plug-and-Play Methods. The Plug-and-Play (PnP) framework was first introduced84

by Venkatakrishnan et al. in 2013 for model-based image reconstruction [74]. PnP meth-85

ods arise from composite convex optimization algorithms, wherein a prior regularization step86

is associated with a denoising step. The first composite optimization algorithm considered87

was Alternating Directions Method of Multipliers (ADMM), a classical proximal splitting88

algorithm used for minimizing composite functions. In the case of image reconstruction, a89

maximum likelihood estimation model can be decomposed into a composite problem. For a90

noisy measurement y and unknown data x, let p(y|x) be the conditional likelihood, and p(x)91

the prior of the unknown x. The maximum a-posteriori (MAP) estimate x̂ is given as follows:92

x̂ = arg max
x

{p(y|x) + p(x)}93

= arg min
x

{f(x; y) + g(x)} ,94
95

where f is the likelihood/fidelity term, and g is the prior/regularization term. A classical96

example would be TV regularization for additive Gaussian noise, where the fidelity term is97

f(x; y) = ∥Ax−y∥22/2σ2, and the prior term is g(x) = λ∥∇x∥1 [63]. To solve the minimization98

problem for general convex f, g, proximal splitting algorithms such as ADMM consider alter-99

nating applications of the individual proximal operators proxf ,proxg or subgradients ∂f, ∂g.100

The key observation of PnP is that the prior regularization step can also be interpreted as a101

denoising operation [64].102

More generally, the PnP framework can be applied to monotone operator splitting meth-103

ods. Under light conditions, the composite convex optimization problem of minimizing f + g104

can be reformulated as the monotone inclusion problem 0 ∈ ∂f(x) +∂g(x) [59, 7]. For convex105

f and g, the operators ∂f and ∂g are monotone operators. Monotone operator splitting meth-106

ods aim to solve the inclusion 0 ∈ ∂f(x) + ∂g(x), using only the resolvents of the individual107

operators ∂f, ∂g, and/or the individual operators ∂f, ∂g themselves [7]. In convex analysis108

terms, this corresponds to splitting the proximal operator proxf+g in terms of the simpler109

proximals proxf and proxg or gradients ∇f and ∇g. Two common splitting algorithms are110

the forward-backward splitting (FBS) and the Douglas-Rachford splitting (DRS), given as111

follows [7, 21]:112

(FBS) xk+1 = proxg(I −∇f)(xk);113
114

(DRS)

{
xk+1 = proxf (yk),

yk+1 = yk + proxg(2xk+1 − yk)− xk+1.
115

This manuscript is for review purposes only.



4 H. Y. TAN, S. MUKHERJEE, J. TANG, AND C.-B. SCHÖNLIEB

One classical application of a splitting algorithm is the iterative thresholding and shrinkage116

algorithm (ISTA) for LASSO problems, where the fidelity f is quadratic, and the prior term is117

the ℓ1 norm g(x) = ∥x∥1 [19, 9]. Applying the PnP framework to FBS and DRS, by replacing118

the prior proximal terms proxg with a denoiserDσ, gives the PnP-FBS and PnP-DRS methods.119

(PnP-FBS) xk+1 = Dσ(I −∇f)(xk);120

121

(PnP-DRS)

{
xk+1 = proxf (yk),

yk+1 = yk +Dσ(2xk+1 − yk)− xk+1.
122

Provable PnP results first arose by Chan et al. for the PnP-ADMM scheme, demonstrating123

fixed-point convergence under a bounded denoiser assumption ∥Dσ(x)− x∥ ≤ Cσ2 [15]. Ryu124

et al. demonstrate convergence of the PnP-FBS algorithm when f is strongly convex and the125

denoiser residual Dσ − I is Lipschitz with sufficiently small Lipschitz constant, as well as for126

PnP-DRS and PnP-ADMM in the case where Dσ− I is Lipschitz with Lipschitz constant less127

than 1 [64]. Various works show fixed-point convergence of PnP-ADMM and PnP-FBS when128

f has Lipschitz gradient under an “averaged denoiser” assumption, where (1 − θ)I + θDσ is129

nonexpansive for some θ ∈ (0, 1), mainly using monotone operator theory [69, 70, 29]. Cohen130

et al. show fixed-point convergence of a relaxed PnP-FBS scheme when f has Lipschitz131

gradient under a demicontractive denoiser assumption, which is a strictly weaker condition132

than nonexpansiveness [17]. Sreehari et al. show convergence of PnP-ADMM to an implicitly133

defined convex function when the denoiser is nonexpansive and has symmetric gradient, by134

utilizing Moreau’s theorem to characterize the denoiser as a proximal map of a convex function135

[66, 48]. In the case of nonexpansive linear denoisers, PnP-FBS and PnP-ADMM converge to136

fixed points of a closed-form convex optimization problem [51].137

While plentiful, many of these convergence results impose restrictive or difficult-to-verify138

conditions on the denoisers Dσ. Instead of replacing the regularizing proximal operator proxg139

with a denoiser, Hurault et al. and Cohen et al. instead consider applying FBS with the140

proximal operator on the fidelity term and a gradient step on the regularization, xk+1 =141

proxf (I −∇g)(xk) [32, 16]. Replacing the regularization step with a denoiser Dσ = I −∇gσ142

results in the Gradient Step PnP (GS-PnP) algorithm xk+1 = (proxf ◦Dσ)(xk). Using this143

parameterization, they show further that the fixed points of GS-PnP are stationary points of144

a particular (non-convex) function. Moreover, a follow-up work shows that a gradient-step145

denoiser of the form Dσ = I − ∇gσ can be interpreted as a proximal step Dσ = proxϕσ
146

[33]. Using this, they are able to achieve iterate convergence under KL-type conditions to a147

stationary point of a (non-convex) closed-form functional of the form (1.1).148

The GS-PnP style schemes require that the gradient of the potential ∇gσ is Lipschitz with149

Lipschitz constant L < 1. Methods of training neural networks with Lipschitz constraints150

include spectral regularization, adversarial training against Lipschitz bounds during training,151

or spline based architectures [64, 46, 22, 52]. Hurault et al. consider fine-tuning the DRUNet152

denoiser by using spectral regularization to enforce the Lipschitz gradient condition [33]. While153

it can be shown empirically that the Lipschitz constant is less than one locally, there is no154

theoretical guarantee, which can lead to occasional divergence. One possible way of remedying155
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this is by averaging the denoiser with the identity operator, as remarked in [33]. This consists156

of replacing the denoiser Dσ = I −∇gσ with the relaxed Dα
σ := (1− α)I + αDσ = I − α∇gσ157

for some α ∈ (0, 1). We can rewrite the relaxed denoiser as Dα
σ = I −∇gασ , where gασ = αgσ158

has αL-Lipschitz gradient. Taking α < 1/L gives the appropriate contraction condition on gασ159

and thus convergence of the associated PnP schemes [33, 31].160

1.3. Quasi-Newton Methods. For minimizing a twice continuously differentiable function161

f : Rn → R, a classical second-order method is Newton’s method [54]:162

(1.4) xk+1 = xk − (∇2f)−1∇f(xk),163

where ∇2f is the Hessian of f . This can be interpreted as minimizing a local quadratic164

approximation165

f̂k(y) = f(xk) +∇f(xk)⊤(y − xk) +
1

2
(y − xk)⊤∇2f(xk)(y − xk),(1.5a)166

xk+1 = arg min
y

f̂k(y).(1.5b)167

168

Newton’s method is able to achieve quadratic convergence rates with appropriate initialization169

and step-sizes [54]. However, the inverse of the Hessian may be computationally demanding,170

especially in high-dimensional applications such as image processing. Quasi-Newton (qN)171

methods propose to replace the inverse Hessian (∇2f)−1 with (low-rank) approximations to172

the inverse Hessian, with notable examples including the Broyden-Goldfarb-Fletcher-Shanno173

(BFGS) algorithm, the David-Fletcher-Powell (DFP) formula, and the symmetric rank one174

method (SR1) [54].175

Like Newton’s method, quasi-Newton methods utilize the curvature information from the176

Hessian approximation to accelerate convergence, with applications in non-convex stochastic177

optimization, neural network training, and Riemannian optimization [13, 30, 75]. Classi-178

cal theory gives asymptotic superlinear convergence under the Dennis-Moré condition, which179

states that the Hessian approximation converges to the Hessian at the minimum [20]. Non-180

asymptotic convergence of quasi-Newton methods is still an active area of research. BFGS and181

DFP have only recently been shown to have non-asymptotic superlinear convergence rates of182

O((1/k)k/2) when the objective function is strongly convex with Lipschitz continuous gradi-183

ent, has Lipschitz continuous Hessian at the minimum, and satisfies a concordance condition184

[35, 61]. However, BFGS sees empirical success even when these conditions are not explic-185

itly verified, including in the non-convex setting [41, 42]. Interestingly, certain accelerated186

proximal gradient methods can be interpreted as a proximal quasi-Newton method [55].187

Variants of BFGS include limited memory BFGS (L-BFGS), stochastic BFGS, greedy188

BFGS, and sharpened BFGS [43, 34, 47, 65, 60]. Of these variants, the limited memory189

version is most suited to repeated iteration. Standard quasi-Newton methods continually190

update the Hessian approximation using all the previous iterates, leading to a linear per-191

iteration computational cost increase. L-BFGS instead utilizes only the last m iterates, where192

m > 1 is a user-specified parameter, typically chosen to be less than 50. Moreover, the193

Hessian need not be stored and/or computed at each iteration, as the method only relies on194

Hessian-vector products, which can be computed efficiently with two loop recursions [54].195
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6 H. Y. TAN, S. MUKHERJEE, J. TANG, AND C.-B. SCHÖNLIEB

To relate quasi-Newton methods to the PnP framework described previously, we would like196

to consider applying Newton-type methods for convex composite optimization, by replacing197

a proximal operator with a denoiser. Lee et al. consider the problem of minimizing198

(1.6) φ(x) = f(x) + g(x),199

where f(x) is a convex C1 function, and g is a possibly non-smooth convex regularizer [39].200

For a symmetric positive definite matrix Bk ≈ ∇2f(xk), the proximal Newton-type search201

direction ∆xk, satisfying xk+1 = xk + tk∆xk, is given as the minimizer of a local quadratic202

approximation on the smooth component f̂k(y):203

f̂k(y) = f(xk) +∇f(xk)⊤(y − xk) +
1

2
(y − xk)⊤Bk(y − xk),(1.7a)204

∆xk = arg min
d

φ̂k(xk + d) := f̂k(xk + d) + g(xk + d).(1.7b)205
206

Define the scaled proximal map for a positive definite matrix B as in [39]:207

(1.8) proxB
g (x) := arg min

y∈Rn
g(y) +

1

2
∥y − x∥2B,208

where the B-norm is defined as ∥z∥2B = z⊤Bz. For example, taking B to be the identity209

matrix results in the standard proximal map as defined in (1.2). The search direction (1.7b)210

has a closed form in terms of the scaled proximal map:211

(1.9) ∆xk = proxBk
g (x−B−1

k ∇f(xk))− xk.212

With this search direction, appropriate step sizes and Bk, the proximal Newton-type methods213

are able to achieve similar convergence rates to Newton-type methods, achieving global con-214

vergence and local superlinear convergence. While the scaled proximal map allows for such215

analysis, it is not amenable to the PnP framework. For example, if we compute the Hessian216

approximation Bk using a BFGS-type approach, a naive approach of replacing proxBk
g with217

a denoiser would require a careful analysis of the interaction of Bk on the resulting regu-218

larization, and possibly require the denoiser to depend on Bk. Instead, we seek a proximal219

Newton-type method that utilizes only the unscaled proximal map, with possibly a scalar con-220

stant which can be easily interpreted as a regularization parameter controlling the strength221

of regularization.222

In Section 2, we will detail a classical composite minimization algorithm that uses only223

the unscaled proximal map proxg, as well as arbitrary descent steps that allow for Newton-224

type steps. We further extend the classical analysis from convex to weakly convex functions,225

inspired by the GS-PnP characterization of denoisers as proximal maps of weakly convex226

functions. In Section 3, we use this extension to propose the PnP-quasi-Newton (PnP-qN)227

method, further convergence and characterizing cluster points of the algorithm. In Section 4,228

we evaluate the proposed PnP-qN method with the quasi-Newton method given by L-BFGS,229

and compare it with other provable and non-provable PnP methods with comparable recon-230

struction quality.231
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2. Proximal Quasi-Newton. In this section, we will first describe a classical algorithm for232

optimizing composite sums of a (possibly non-convex) smooth function and a (possibly non-233

smooth) convex function. We will then extend the analysis to allow for weak convexity instead234

of convexity. By replacing proximal terms with deep denoisers corresponding to proximal235

operators of weakly convex maps, we construct a Plug-and-Play scheme with convergence236

properties of the classical algorithm.237

Let us work on the Euclidean domain Rn. Let C1,1Lf
denote the class of C1 functions238

f : Rn → R with Lf -Lipschitz gradient, and Γ0 the class of proper, closed, and convex239

functions g : Rn → R. Consider a variational objective having the following form:240

(2.1) φ = f + g, f ∈ C1,1Lf
, g ∈ Γ0.241

We can consider f as the fidelity term and g as a regularization term. A prominent example242

from inverse problems is the quadratic fidelity loss f(x; y) = 1
2∥Ax − y∥2 for some linear243

forward operator A : Rn → Rm and observation y ∈ Rm, where the norm is taken as the244

Euclidean norm.245

2.1. MINFBE: Minimizing Forward-Backward Envelope. We first detail a classical com-246

posite optimization algorithm for minimizing (2.1), which will serve as the base of our proposed247

PnP scheme. Moreover, we describe some of its convergence properties that transfer to the248

PnP framework. By constructing a smooth convex envelope function around the original ob-249

jective φ, this envelope can be shown to have desirable properties such as sharing minimizers,250

smoothness, and being minorized and majorized by convex functions. By applying descent251

steps and proximal mappings in a particular fashion, the classical algorithm is able to obtain252

global objective convergence to critical points at a rate of O(1/k), local linear convergence if253

the function is locally strongly convex, and superlinear convergence when the descent steps254

are taken to be quasi-Newton with suitable assumptions [67].255

For the problem (2.1), define the following expressions [67]:256

lφ(u, x) = f(x) + ⟨∇f(x), u− x⟩+ g(u),(2.2a)257

Tγ(x) = arg min
u

{
lφ(u, x) +

1

2γ
∥u− x∥2

}
= proxγg(x− γ∇f(x)),(2.2b)258

Rγ(x) = γ−1(x− Tγ(x)),(2.2c)259

φγ(x) = min
u

{
lφ(u, x) +

1

2γ
∥u− x∥2

}
.(2.2d)260

261

Here, lφ is a local linearized decoupling of φ, Tγ can be interpreted as an FBS step (with262

step-size γ for f + g) and Rγ is a scaled residual or “gradient direction”. Note that x =263

Tγ(x)⇔ x ∈ zer ∂φ, i.e. fixed points of Tγ correspond to critical points of φ. φγ is defined as264

the forward-backward envelope of φ. We further explicitly write the Moreau envelope for g:265

gγ(x) = min
u

{
g(u) +

1

2γ
∥u− x∥2

}
(2.3a)266

= g
(
proxγg(x)

)
+

1

2γ
∥ proxγg(x)− x∥2.(2.3b)267

268
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8 H. Y. TAN, S. MUKHERJEE, J. TANG, AND C.-B. SCHÖNLIEB

With the above definitions, we have the following closed-form expressions for the forward-269

backward envelope:270

φγ = f(x) + g(Tγ(x))− γ⟨∇f(x), Rγ(x)⟩+
γ

2
∥Rγ(x)∥2(2.4a)271

= f(x)− γ

2
∥∇f(x)∥2 + gγ(x− γ∇f(x)).(2.4b)272

273

In fact, φγ has many desirable properties, such as sharing minimizers with φ, and having an274

easily computable derivative in terms of the Hessian of f .275

Proposition 2.1 ([67, Sec 2]). The following holds:276

i. φ(z) = φγ(z) for all γ > 0, z ∈ zer ∂φ;277

ii. inf φ = inf φγ and arg minφ ⊆ arg minφγ for γ ∈ (0, 1/Lf ];278

iii. arg minφ = arg minφγ for all γ ∈ (0, 1/Lf ).279

Suppose additionally that f is C2. Then φγ is C1 and the gradient of φγ can be written as280

(2.5) ∇φγ(x) =
(
I − γ∇2f(x)

)
Rγ(x).281

Moreover, if γ ∈ (0, 1/Lf ), the set of stationary points of φγ equals zer ∂φ.282

Assuming that we are able to compute both φγ and φ, Proposition 2.1(i) allows us to283

check whether we have converged to a stationary point of φ. Algorithm 2.1 is a classical284

forward-backward algorithm for optimizing the nonsmooth composite objective (2.1).

Algorithm 2.1 MINFBE [67]

Require: x0, γ0 > 0, ξ ∈ (0, 1), β ∈ [0, 1), k ← 0
1: if Rγk(xk) = 0 then
2: stop
3: end if
4: Choose dk s.t. ⟨dk, ∇φγk(xk)⟩ ≤ 0
5: Choose τk ≥ 0 and wk = xk + τkd

k s.t. φγk(wk) ≤ φγk(xk)

6: if f(Tγk(wk)) > f(wk)− γk⟨∇f(wk), Rγk(wk)⟩+ (1−β)γk
2 ∥Rγk(wk)∥2 then

7: γk ← ξγk, goto 1
8: end if
9: xk+1 ← Tγk(wk)

10: γk+1 ← γk
11: k ← k + 1, goto 1

285
In Algorithm 2.1, ξ is an Armijo backtracking parameter, while β is used to control the286

strictness of the descent condition in Step 6. For appropriately chosen γ, the condition in Step287

6 never holds, as stated in the next lemma. Moreover, the step-sizes γk are bounded below288

by a constant in terms of σ, β and Lf . This guarantees that a step is always possible.289

Lemma 2.2 ([67, Lem 3.1]). Let (γk)k∈N be the sequence of step-size parameters in Algo-290

rithm 2.1, and let γ∞ = mini∈N γi. Then for all k ≥ 0,291

γk ≥ γ∞ ≥ min{γ0, ξ(1− β)/Lf}.292
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The MINFBE algorithm can be interpreted as a descent step (Step 5) followed by a FBS293

step (Step 9). In particular, note that the descent direction dk does not have to be the294

direction of steepest descent, which allows for more flexibility in the algorithm. By combining295

the two of these steps together, the algorithm achieves global convergence as well as local296

linear convergence. This algorithm enjoys the following convergence guarantees.297

Definition 2.3 (Linear and Superlinear Convergence). We say a sequence (xk)k∈N converges298

to x∗;299

i. Q-linearly with factor ω ∈ [0, 1) if ∥xk+1 − x∗∥ ≤ ω∥xk − x∗∥ for all k ≥ 0;300

ii. Q-superlinearly if ∥xk+1 − x∗∥/∥xk − x∗∥ → 0.301

The convergence is R-linear (R-superlinear) if ∥xk − x∗∥ ≤ ak for some sequence (ak)k∈N s.t.302

ak → 0 Q-linearly (Q-superlinearly).303

Theorem 2.4 ([67, Thm 3.6, 3.7]). Suppose that f is convex and that φ is coercive. In304

particular, suppose that the level set {x ∈ Rn | φ(x) ≤ φ(x0)} has diameter R, 0 < R < ∞.305

Then for the sequences generated by Algorithm 2.1, either φ(x0)− inf φ ≥ R2/γ0 and306

(2.6) φ(x1)− inf φ ≤ R2

2γ0
,307

or for any k ∈ N, it holds that308

(2.7) φ(xk)− inf φ ≤ 2R2

kmin{γ0, ξ(1− β)/Lf}
.309

Suppose in addition that x∗ is a strong minimizer of φ, i.e. there exists a neighborhood N310

of x∗ and c > 0 such that for any x ∈ N ,311

φ(x)− φ(x∗) ≥
c

2
∥x− x∗∥2.312

Then for sufficiently large k, (φ(xk))k∈N and (φγk(wk))k∈N converge Q-linearly to φ(x∗) with313

factor ω, where314

ω ≤ max

{
1

2
, 1− c

4
min{γ0, ξ(1− β)/Lf}

}
∈ [1/2, 1) ,315

and (xk)k∈N converges R-linearly to x∗. If x∗ is also a strong minimizer of φγ∞ where γ∞ is316

defined as in Lemma 2.2, then (φ(wk))k∈N also converges R-linearly to x∗.317

In MINFBE, the initial descent step wk can be chosen arbitrarily as long as the objective318

function decreases. Suppose now that the descent direction is chosen using a quasi-Newton319

method:320

dk = −B−1
k ∇φγ(xk).321

If Bk are positive definite, then dk are valid search directions. Assuming that Bk satisfy the322

Dennis-Moré condition [54, 20], we can get superlinear convergence of the iterates.323
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Theorem 2.5 ([67, Thm 4.1]). Fix γ > 0. Suppose that ∇φγ is strictly differentiable at a324

stationary point x∗ ∈ zer ∂φ, and that ∇2φγ(x∗) is nonsingular. Let (Bk)k∈N be a sequence of325

nonsingular Rn×n matrices, and suppose the sequences326

(2.8) wk = xk −B−1
k ∇φγ(xk), xk+1 = Tγ(wk)327

converge to x∗. If xk, wk /∈ zer ∂φ for all k ≥ 0 and the Dennis-Moré condition328

(2.9) lim
k→∞

∥(Bk −∇2φγ(xk))(wk − xk)∥
∥wk − xk∥

= 0329

holds, then (xk)k∈N and (wk)k∈N converge Q-superlinearly to x∗.330

If Bk are updated accordingly to the BFGS update step, then the updates as given in the331

previous theorem converge superlinearly to the minimum, under some additional assumptions332

on φ such as being convex with strong local minimum x∗, or satisfying a stronger Kurdyka-333

 Lojasiewicz property at cluster points ω(x0) [67, Thm 4.3]. Moreover, it can be shown that334

τk = 1 is a valid step-size for sufficiently large k. For completeness, the BFGS update steps335

are given as below. Note that it is usually more practical to update the inverse Hessian336

approximation Hk = B−1
k [54].337

sk = wk − xk, yk = ∇φγ(wk)−∇φγ(xk),(2.10a)338

Bk+1 =

{
Bk + ykyk⊤

yk⊤sk
− Bks

k(Bks
k)⊤

sk⊤Bksk
if ⟨sk, yk⟩ > 0,

Bk otherwise
.(2.10b)339

Hk+1 =

{(
I − skyk⊤

yk⊤sk

)
Hk

(
I − yksk⊤

yk⊤sk

)
+ sksk⊤

yk⊤sk
if ⟨sk, yk⟩ > 0,

Hk otherwise
.(2.10c)340

341

2.2. Weakly-Convex Extension. Suppose now that g is not convex, but instead is M -342

weakly convex. Recall that a function g(x) is M -weakly convex if g + M∥x∥2/2 is convex.343

For a M -weakly convex function g, we have for all x, y and z ∈ ∂g(y) (where ∂g denotes the344

Clarke subdifferential of g),345

g(x) ≥ g(y) + ⟨z, x− y⟩ − M

2
∥x− y∥2,(2.11a)346

g(tx+ (1− t)y) ≤ tg(x) + (1− t)g(y) +
M

2
t(1− t)∥x− y∥2.(2.11b)347

348

In the following Section 3, we will model the proposed denoiser Dσ = proxg as the proximal349

operator of a weakly convex function. In particular, a gradient step denoiser Dσ = I −∇gσ350

with contractive ∇gσ is the proximal operator of a weakly convex function [31]. We can extend351

the classical convex analysis to this case as well, albeit with a smaller allowed γ.352

To transfer the results from the previous section to the case where g is weakly convex, we353

are required to check that the function values at the MINFBE iterates are non-increasing. As354

we will show in the following proposition, this is still the case for sufficiently small γ. Many355

properties of the forward-backward envelope still hold, and we are still able to attain global356

convergence and superlinear local convergence, subject to the Dennis-Moré condition (2.9).357
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Proposition 2.6. For all x ∈ Rn, γ > 0,358

i. φγ(x) ≤ φ(x)− γ−Mγ2

2 ∥Rγ(x)∥2;359

ii. φ(Tγ(x)) ≤ φγ(x)− γ
2 (1− γLf )∥Rγ(x)∥2 for all γ > 0;360

iii. φ(Tγ(x)) ≤ φγ(x) for all γ ∈ (0, 1/Lf ].361

Proof. (i). By the optimality condition in (2.2b), we have362

Rγ(x)−∇f(x) ∈ ∂g(Tγ(x)).363

By (2.11a), we have364

g(x) ≥ g(Tγ(x)) + ⟨Rγ(x)−∇f(x), x− Tγ(x)⟩ − M

2
∥x− Tγ(x)∥2365

= g(Tγ(x))− γ⟨∇f(x), Rγ(x)⟩+ γ∥Rγ(x)∥2 − Mγ2

2
∥Rγ(x)∥2.366

367

Adding f(x) to both sides and applying (2.4a) gives the result.368

(ii), (iii). The proof is identical to that in [67, Prop 2.2], requiring only the Lipschitz369

convexity of ∇f .370

Proposition 2.7. Suppose γ −Mγ2 ≥ 0, or equivalently γ ∈ [0, 1/M ]. Then the following371

hold:372

i. φγ(z) = φ(z) for all z ∈ zer ∂φ;373

ii. inf φ = inf φγ and arg minφ ⊆ arg minφγ for γ ∈ (0, 1/Lf ];374

iii. arg minφ = arg minφγ for γ ∈ (0, 1/Lf ).375

Proof. (i). Proposition 2.6(i) combined with the condition γ −Mγ2 ≥ 0 shows φγ(x) ≤376

φ(x). If z ∈ zer ∂φ, then z = Tγ(z), and Proposition 2.6(ii) reads φ(z) ≤ φγ(z).377

(ii), (iii). Identical to [67, Prop 2.3].378

With weakly convex functions, we are still able to provide a lower bound on the γ such379

that the condition in Step 6 of Algorithm 2.1 does not hold, removing the need to reduce step-380

sizes. The proof relies only on the Lipschitz constant of ∇f and does not require convexity of381

g. However, we require that γ −Mγ2 ≥ 0. In practice, the denoisers we use have M < 1/2,382

which allows for any γ ∈ (0, 1).383

Lemma 2.8. Suppose g is weakly convex. If 0 < γ < min{(1 − β)/Lf , 1/M}, then the384

condition in Step 6 in Algorithm 2.1 never holds. Moreover, this implies MINFBE iterations385

satisfy γk ≥ γ∞ ≥ min{γ0, ξ(1− β)/Lf , 1/M} > 0 for all k.386

Proof. Suppose 0 < γ < min{(1− β)/Lf , 1/M}, and for contradiction that the condition387

in Step 6 holds. Then there exists some w such that388

f(Tγ(w)) > f(w)− γ⟨∇f(w), Rγ(w)⟩+
(1− β)γ

2
∥Rγ(wk)∥2.389

Adding g(Tγ(w)) to both sides and considering (2.4a), this becomes390

φ(Tγ(w)) > φγ(w)− βγ

2
∥Rγ(w)∥2.391
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But from Proposition 2.6(ii), we also have392

φ(Tγ(w)) ≤ φγ(w)− γ

2
(1− γLf )∥Rγ(w)∥2393

≤ φγ(w)− βγ

2
∥Rγ(w)∥2,394

395

where the second inequality follows from γ < (1− β)/Lf , giving a contradiction. The second396

part holds since (γk)k∈N is a non-increasing sequence.397

Remark 2.9. While γ < 1/M is not strictly needed for the proof of the above lemma, this398

requirement is needed for convergence in future results.399

The following theorem characterizes the convergence of the functional φ, which relies on400

the non-increasing condition of Step 5 in Algorithm 2.1. This is an analogue of [67, Prop 3.4].401

Theorem 2.10. Suppose 0 < γ0 < 1/M . Then the MINFBE iterations satisfy the following:402

i. φ(xk+1) ≤ φ(xk)− βγk
2 ∥Rγk(wk)∥2 − γk−Mγ2

k
2 ∥Rγk(xk)∥2;403

ii. Either the sequence ∥Rγk(xk)∥ is square-summable, or φ(xk) → inf φ = −∞ and the404

set ω(x0) of cluster points of the sequence (xk)k∈N is empty.405

iii. ω(x0) ⊆ zer ∂φ;406

iv. If β > 0, then either the sequence ∥Rγk(wk)∥ is square-summable and every cluster407

point of (wk)k∈N is critical, or φγk(wk) → inf φ = −∞ and (wk)k∈N has no cluster408

points.409

Proof. (i). Recalling xk+1 = Tγk(wk),410

φ(xk+1) ≤ φγk(wk)− βγk
2
∥Rγk(wk)∥2411

≤ φγk(xk)− βγk
2
∥Rγk(wk)∥2(2.12)412

≤ φ(xk)− βγk
2
∥Rγk(wk)∥2 −

γk −Mγ2k
2

∥Rγk(xk)∥2,(2.13)413
414

where the first and second inequalities come from Step 6 and 5 in Algorithm 2.1 respectively,415

and the final inequality is Proposition 2.6(i).416

(ii)-(iv). We follow [67] with minor modifications. Let φ∗ = limk→∞ φ(xk), which exists417

as (φ(xk))k∈N is monotone by (i) and γk −Mγ2k ≥ 0. If φ∗ = −∞, then inf φ = −∞. By418

properness and lower semi-continuity of φ, as well as the monotonicity of φ(xk), no cluster419

points of (xk)k∈N exist. If instead φ∗ > −∞, by telescoping (2.13),420

(2.14)
1

2

k∑
i=0

γi
(
β∥Rγi(w

i)∥2 + (1− γiM)∥Rγi(x
i)∥2

)
≤ φ(x0)− φ(xk+1) ≤ φ(x0)− φ∗.421

Since γk is uniformly bounded below by Lemma 2.8, we have square summability of ∥Rγk(xk)∥,422

showing (ii).423

By square summability, Rγk(xk)→ 0. Moreover, the functions Rγk = Rγ∞ are constant for424

sufficiently large k, and Rγ∞ is continuous by continuity of the proximal operator and of ∇f .425
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Therefore, any cluster point z ∈ ω(xk) has Rγ∞(xkj ) → Rγ∞(z) = 0 for some subsequence426

xkj → z. Thus z = Tγ∞(z)⇒ z ∈ zer ∂φ, showing (iii).427

If β > 0, for sufficiently large k such that γk = γ∞, the following chain of inequalities428

holds:429

(2.15) φγk(wk+1) ≤ φγk(xk+1) = φγk(Tk(wk)) ≤ φγk(wk).430

The first inequality comes from Step 5, the equality from Step 9, and the final inequality431

from Proposition 2.6. The monotonicity of φγk(wk) for sufficiently large k allows for a similar432

argument to hold for the wk sequence, giving (iv).433

Convergence results can also be extended to the weakly convex case. In particular, the fol-434

lowing theorem shows the convergence of the residuals between each step.435

Theorem 2.11 (Global Residual Convergence). Suppose 0 < γ0 ≤ 1/(2M), and let c =436

min{γ0, ξ(1− β)/Lf , 1/M} > 0 be the lower bound for γ∞. The MINFBE iterations satisfy437

(2.16) min
i≤k
∥Rγi(x

i)∥2 ≤ 2

k + 1

φ(x0)− inf φ

c−Mc2
.438

If in addition β > 0, then we also have439

(2.17) min
i≤k
∥Rγi(w

i)∥2 ≤ 2

k + 1

φ(x0)− inf φ

βc
.440

Proof. As in [67, Thm 3.5]. If inf φ = −∞, there is nothing to prove, so suppose otherwise441

that inf φ > −∞. Considering (2.14) along with (γk)k∈N being nonincreasing implies442

(2.18)
(k + 1)(γk −Mγ2k)

2
min
i≤k
∥Rγi(x

i)∥2 +
(k + 1)βγk

2
min
i≤k
∥Rγi(w

i)∥2 ≤ φ(x0)− inf φ.443

Now note that γ − Mγ2 is increasing for γ < 1/(2M), so γk − Mγ2k is lower bounded by444

c−Mc2 > 0. Rearranging yields both inequalities.445

To obtain convergence of the objective similar to Theorem 2.4, it is insufficient for g446

to be weakly convex. We can alternatively utilize the KL property, which is a useful and447

general property satisfied by a large class of functions, including semialgebraic functions [4].448

Moreover, it can be used to show convergence in the absence of other regularity conditions449

such as convexity [5, 10, 33].450

Definition 2.12 (KL Property [5, 10]). Suppose φ : Rn → R is proper and lower semi-451

continuous. φ satisfies the Kurdyka- Lojasiewicz (KL) property at a point x∗ in dom ∂φ if452

there exists η ∈ (0,+∞], a neighborhood U of x∗ and a continuous concave function Ψ :453

[0, η)→ [0,+∞) such that:454

1. Ψ(0) = 0;455

2. Ψ is C1 on (0, η);456

3. Ψ′(s) > 0 for s ∈ (0, η);457

4. For all u ∈ U ∩ {φ(x∗) < φ(u) < φ(x∗) + η}, we have458

φ′(φ(u)− φ(x∗)) dist(0, ∂φ(u)) ≥ 1.459
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We say that φ is a KL function if the KL property is satisfied at every point of dom ∂φ.460

Utilizing the KL property, we are able to show that the iterates generated by MINFBE are461

sufficiently well-behaved, and hence converge. Moreover, from Theorem 2.10, we have that the462

iterates converge to critical points of the non-convex objective φ. Under the PnP scheme, this463

will correspond to convergence to critical points of some function determined by the denoiser.464

Theorem 2.13. Suppose that f satisfies the KL condition and g is semialgebraic, and both465

f and g are bounded from below. Suppose further that there exist constants τ̄ , c > 0 such that466

τk < τ̄ and ∥dk∥ ≤ c∥Rγk(xk)∥, β > 0, and that φ is coercive or has compact level sets. Then467

the sequence of iterates (xk)k∈N is either finite and ends with Rγk(xk) = 0, or converges to a468

critical point of φ.469

Proof. Deferred to the supplementary material. The proof is very similar to that in [67,470

Thm 3.9, Appendix 4].471

The crux of using the MINFBE method is that we are able to incorporate Newton-type472

steps into the iterations. Since we are able to get convergence to a critical point from the pre-473

vious theorem, we are in a position to apply the next theorem to show superlinear convergence474

in a neighborhood of a minimizer.475

Theorem 2.14. Suppose that f is continuously differentiable with Lf -Lipschitz gradient and476

g is M -weakly convex. Let γ = γ∞ as in Lemma 2.8. Suppose the search directions are chosen477

as478

dk = −B−1
k ∇φγ(xk),479

the step-sizes in Step 5 are chosen with τk = 1 tried first, and Bk satisfy the Dennis-Moré480

condition (2.8). Suppose further that the iterates (xk)k∈N, (wk)k∈N converge to a critical point481

x∗ at which ∇φγ is continuously differentiable with ∇2φγ(x∗) ≻ 0. Then (xk)k∈N and (wk)k∈N482

converge Q-superlinearly to x∗.483

Proof. The proof is nearly identical to [67, Thm 4.1]. If γg is M -weakly convex, then for484

γ < 1/M , u 7→
(
g(u) + 1

2γ ∥u− x∥
2
)

is strongly convex. Thus proxγg is 1-Lipschitz [59]. The485

rest of the proofs of Thm 4.1 and 4.2 of [67] follows as usual.486

This shows superlinear convergence instead of linear convergence in the case where the critical487

point is a strong local minimum, i.e. it is locally strongly convex. Note the differentiability488

condition in the second part can be dropped if f and g are both C2. Moreover, assuming489

either φ is convex and x∗ is a strong local minimum, or φ satisfies a stronger KL inequality,490

these conditions indeed hold if Bk is updated according to the BFGS scheme [67, Thm 4.3].491

3. PnP-qN: Deep Denoiser Extension. To convert Algorithm 2.1 to the PnP framework,492

we consider replacing the proximal step in (2.2b) with a denoiser. In particular, we consider493

the gradient-step denoiser setup in [33]. Let the denoiser Dσ be given by494

Dσ = I −∇gσ,(3.1a)495

gσ =
1

2
∥x−Nσ(x)∥2,(3.1b)496

497
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where gσ is a C2 function with L-Lipschitz gradient with L < 1. Note the subscript in gσ498

represents a denoising strength, as opposed to the forward-backward envelope of g as we will499

define for our problem later. The mapping Nσ(x) takes the form of a C2 neural network,500

allowing for the computation of gσ explicitly. Under these assumptions, the denoiser Dσ takes501

the form of a proximal mapping of a weakly convex function, as stated in the next proposition.502

Proposition 3.1 ([31, Prop 1]). Dσ(x) = proxϕσ
(x), where ϕσ is defined by503

(3.2) ϕσ(x) = gσ(D−1
σ (x))− 1

2
∥D−1

σ (x)− x∥2504

if x ∈ Im(Dσ), and ϕσ(x) = +∞ otherwise. Moreover, ϕσ is L
L+1 -weakly convex.505

This proposition allows us to take the weak convexity constant required in the previous section506

as M = L/(L + 1). Since L < 1, we have M < 1/2. This result can be thought of a slight507

extension of the fact that a function f is a proximal operator of some proper convex l.s.c.508

function φ, if and only if it is a subgradient of a convex l.s.c. function ψ and f is nonexpansive509

[27, 48].510

Suppose that γk = γ > 0 is fixed in the MINFBE iterations, satisfying the conditions in511

Lemma 2.8. Consider making the substitution with ϕσ defined as in Proposition 3.1, targeting512

φ = f + g:513

(3.3) γg = ϕσ.514

The FBS step Tγ(x) = proxγg(x− γ∇f(x)) thus becomes, using Dσ = proxϕσ
,515

(3.4) Tγ(x) = Dσ(x− γ∇f(x)).516

This will target the objective function φ(x) = f(x) + g(x) = f(x) + ϕσ(x)/γ. To iterate517

Algorithm 2.1 with this substitution, we need to evaluate φγ . Recalling (2.4b), we can instead518

evaluate the Moreau envelope gγ . By definition (2.3b) and the substitution (3.3), we have:519

gγ(y)
(2.3b)

= g(proxγg(y)) +
1

2γ
∥proxγg(y)− y∥2520

(3.3)
=

1

γ
ϕσ(Dσ(y)) +

1

2γ
∥Dσ(y)− y∥2521

(3.2)
=

1

γ
gσ(D−1

σ (Dσ(y)))− 1

2γ
∥D−1

σ (Dσ(y))−Dσ(y)∥2 +
1

2γ
∥Dσ(y)− y∥2522

=
1

γ
gσ(y).523

524

Using this substitution, we obtain the Plug-and-Play scheme PnP-MINFBE, detailed in Al-525

gorithm 3.1. We have a closed form for the forward-backward envelope of φ, as well as some526
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other expressions essential for iterating MINFBE, given by:527

φ(x) = f(x) +
1

γ
ϕσ(x),(3.5a)528

φγ(x) = f(x)− γ

2
∥∇f(x)∥2 +

1

γ
gσ(x− γ∇f(x)),(3.5b)529

∇φγ(x) = (I − γ∇2f)Rγ(x),(3.5c)530

φ(xk+1) = f(xk+1) +
1

γ

(
gσ(wk − γ∇f(wk))− ∥wk − γ∇f(wk)− Tγ(wk)∥2/2

)
.(3.5d)531

532

Algorithm 3.1 PnP-MINFBE

Require: x0, γ < min{γ0, (1− β)/Lf , 1/M}, β ∈ [0, 1), k ← 0
1: if Rγk(xk) = 0 then
2: stop
3: end if
4: Choose dk s.t. ⟨dk, ∇φγ(xk)⟩ ≤ 0
5: Choose τk ≥ 0 and wk = xk + τkd

k s.t. φγ(wk) ≤ φγ(xk)
6: xk+1 ← Dσ(wk − γ∇f(wk))
7: k ← k + 1, goto 1

To compute the search direction dk at each step, we can use a quasi-Newton method533

to approximate the inverse Hessian of φγ . While a closed form exists for ∇2φγ , such as in534

[67, Thm 2.10], it requires the Jacobian of the denoiser Dσ, rendering methods requiring the535

Hessian computationally intractable due to the dimensionality of our problems. Therefore,536

we resort to a BFGS-like algorithm using the differences and secants537

sk = wk − xk, yk = ∇φγ(wk)−∇φγ(xk).538

In particular, we will use the L-BFGS method due to the memory restrictions imposed by using539

images for our experiments. This can be implemented using a two-loop recursion, using only540

the last m secants computed [54]. We additionally impose a safeguard to reject updating the541

Hessian approximation if the secant condition ⟨sk, yk⟩ > 0 is not satisfied. For completeness,542

we write the two-loop recursion for L-BFGS in Algorithm 3.2. The initial (inverse) Hessian543

approximations are chosen as Hk
0 = ckI as in [54], given by544

ck =
⟨sk−1, yk−1⟩
⟨yk−1, yk−1⟩

.545

Utilizing the results from the previous section, we can show the following convergence546

results for PnP-MINFBE (Algorithm 3.1) and PnP-LBFGS (Algorithm 3.3).547

Corollary 3.2. Suppose that f is C1 and KL with Lf -Lipschitz gradient, gσ is C2 and semi-548

algebraic with Lg-Lipschitz gradient with Lg < 1. Assume further that γ < 1/(2M) is chosen549

as in Lemma 2.8 such that γ = γ∞, and there exist τ̄ , c > 0 such that τk ≤ τ̄ and ∥dk∥ ≤550

c∥Rγ(xk)∥. Then the PnP-MINFBE iterations of Algorithm 3.1 satisfy the following:551
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Algorithm 3.2 L-BFGS [54]

Require: m > 0, secants (si)k−1
i=k−m, differences (yi)k−1

i=k−m, initial Hessian guesses (Hk
0 )k∈N

1: q ← ∇φγ(xk)
2: ρi ← 1/⟨yi, si⟩ for i = k − 1, k − 2, ..., k −m
3: for i = k − 1, k − 2, ..., k −m do
4: αi ← ρi⟨si, q⟩
5: q ← q − αiy

i

6: end for
7: r ← Hk

0 q
8: for i = k −m, k −m+ 1, ...., k − 1 do
9: β ← ρi⟨yi, r⟩

10: r ← r + (αi − β)si

11: end for
12: stop with B−1

k ∇φγ(xk) = Hk∇φγ(xk) = r

Algorithm 3.3 PnP-LBFGS

Require: x0, γ < min{(1− β)/Lf , 1/M}, β ∈ [0, 1), k ← 0
1: if Rγk(xk) = 0 then
2: stop
3: end if
4: Compute dk ← −B−1

k ∇φγ(xk) using L-BFGS (c.f. Algorithm 3.2) with differences and

secants (si, yi)k−1
i=k−m.

5: Choose τk ∈ [0, 1] and wk = xk + τkd
k s.t. φγ(wk) ≤ φγ(xk)

6: xk+1 ← Dσ(wk − γ∇f(wk))
7: sk ← wk − xk, yk ← ∇φγ(wk)−∇φγ(xk)
8: k ← k + 1, goto 1

i. φ(xk) decreases monotonically;552

ii. The residuals Rγ(xk) converge to zero at a rate O(1/
√
k);553

iii. If the iterates are bounded, then the iterates are either finite or converge to a critical554

point of φ = f + 1
γϕσ. Moreover, φ = φγ at these critical points.555

iv. If furthermore dk = −B−1
k ∇φγ(xk) and the Bk satisfy the Dennis-Moré condition556

(2.8), then the xk and wk converge superlinearly to x∗.557

Proof. (i), (ii). Follows from Theorems 2.10 and 2.11. (iii). By the Tarski-Siedenberg558

theorem [5], compositions and inverses of semi-algebraic mappings are semi-algebraic. There-559

fore Dσ and D−1
σ are semi-algebraic (on their domain), and hence so is ϕσ. Therefore,560

φ = f +
1

γ
ϕσ561

is a KL function. Moreover, φγ is also a KL function. So we have convergence by Theorem 2.13.562

The final part follows from Proposition 2.7. (iv). Follows from Theorem 2.14.563
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Table 1: Hyperparameters for PnP-LBFGS.

Deblur SR

σ 2.55 7.65 12.75 2.55 7.65 12.75

α 0.5 0.5 0.7 0.5 0.5 0.5
γ 1
β 0.01
λ 1 1 1 4 1.5 1

σd/σ 1 0.75 0.75 2 1 0.75

Table 2: Hyperparameters for PnP-α̂PGD.

Deblur SR

σ 2.55 7.65 12.75 2.55 7.65 12.75

α 0.6 0.8 0.85 1 1 1
Lf 1 0.25
λ (α+ 1)/(αLf )
α̂ 1/(λLf )

σd/σ 1.5 1 1 2 2 2

Remark 3.3. An essential part of the classical proof relies on the fact that τ = 1 will564

eventually always be accepted in MINFBE, under a Newton-type descent direction choice.565

During numerical testing, we observed that the Armijo search for τ was only occasionally566

necessary when the image is being optimized, with at most 10 line searches required before567

converging.568

In our case, f will be a quadratic fidelity term of the form f(x) = ∥Ax−y∥2/2 for some linear569

operator A and measurement y. This is semi-algebraic and hence KL, and moreover trivially570

bounded below. From (3.1b), we additionally have that gσ is bounded below. Since Nσ will571

take the form of a neural network which is a composition of semi-algebraic operations and572

arithmetic operations, gσ will also be semi-algebraic. Therefore, we can apply Corollary 3.2573

and get convergence to critical points of the associated function φ = f + 1
γϕσ.574

4. Experiments. In this section, we consider the application of the proposed PnP-LBFGS575

method, given by Algorithm 3.3, with a pre-trained denoiser to image deblurring and super-576

resolution. We use the pretrained Lipschitz-constrained proximal denoiser given in [33]. The577

(gradient-step) denoiser takes the form (3.1), where Nσ is a neural network based on the578

DRUNet architecture [77]. The Lipschitz constraint on ∇gσ is enforced by applying a penalty579

on the spectral norm of ∇2gσ during training. While this spectral constraint affects the580

performance of the end-to-end denoiser, it provides sufficient conditions for convergence in581

the context of PnP, in particular, convergence to a critical point of a closed-form functional.582
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The datasets we consider for image reconstruction are the CBSD68, CBSD10 and set3c583

datasets1, containing images of size 256 × 256 with three color channels and pixel intensity584

values in [0, 255] [45]. The forward operators corresponding to the considered reconstruction585

problems of deblurring and super-resolution are linear, and we can write the fidelity term as586

f(x) = λ∥Ax− y∥2/2, where A is the degradation operator, y is the degraded image, and λ is587

a regularization parameter. For reconstruction, y will be taken as y = Axtrue + ε, where xtrue588

is the ground-truth image and the noise ε is pixel-wise Gaussian with standard deviations589

σ ∈ {2.55, 7.65, 12.75} corresponding to 1%, 3%, and 5% noise (relative to the maximum pixel590

intensity value), respectively. The underlying optimization problems corresponding to fixed591

points of PnP-MINFBE thus take the form (as in (3.5a)):592

(4.1) min
x
φ(x) =

λ

2
∥Ax− y∥2 +

1

γ
ϕσ,593

where γ ≤ min{(1− β)/Lf , 1/2M} as in Lemma 2.8 and Theorem 2.11. In this case, f is C2,594

and we can easily compute the derivative of the forward-backward envelope using (3.5c).595

The methods we compare against are PnP methods with similar convergence guarantees,596

namely O(1/
√
k) residual convergence and a KL-type iterate convergence [33]. Our analysis597

additionally shows superlinear convergence to minima with positive-definite Hessian using598

Newton’s directions. Although we can not verify whether the Hessian approximation Bk599

obtained via L-BFGS satisfies the Dennis-Moré condition for superlinear convergence, we600

will empirically demonstrate faster convergence in terms of both time and iteration count601

compared to the competing methods.602

The PnP methods that we will compare against are the PnP-PGD, PnP-DRS, PnP-603

DRSdiff and PnP-α̂PGD methods [33, 31]. Here PGD stands for proximal gradient descent,604

DRS for Douglas-Rachford splitting, DRSdiff for DRS with differentiable fidelity terms, and605

α̂PGD for α̂-relaxed PGD. The update rules corresponding to the chosen PnP methods for606

comparison are as follows:607

{
zk+1 = xk − λ∇f(xk)
xk+1 = Dσ(zk+1)

(PnP-PGD)608 
yk+1 = proxλf (xk)

zk+1 = Dσ(2yk+1 − xk)
xk+1 = xk + (zk+1 − yk+1)

(PnP-DRSdiff)609


yk+1 = Dσ(xk)
zk+1 = proxλf (2yk+1 − xk)

xk+1 = xk + (zk+1 − yk+1)
(PnP-DRS)610


qk+1 = (1− α̂)yk + α̂xk

xk+1 = Dσ(xk − λ∇f(qk+1))
yk+1 = (1− α̂)yk + α̂xk+1

(PnP-α̂PGD)611

612

613

1https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
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(a) Residual DPIR1, σ = 7.65
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(b) Residual DPIR2, σ = 7.65
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(c) Residual DPIR1, σ = 2.55
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(d) PSNR DPIR1, σ = 7.65
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(e) PSNR DPIR2, σ = 7.65
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(f) PSNR DPIR1, σ = 2.55

Figure 1: Performance of DPIR measured in terms of residual ∥xk+1−xk∥2/∥x0∥2 and PSNR
for deblurring with noise levels σ = 2.55, 7.65, applied with two different denoiser strength
regimes. Each curve corresponds to one of the 10 images from the CBSD10 dataset. DPIR1

has denoiser strength decreased from 49 to σ over 8 iterations for deblurring, and extended
with σd = σ for following iterations. DPIR2 has denoiser strength decreased from 49 to σ over
1000 iterations. We observe that both methods have decreasing PSNR at later iterations and
non-converging residual, and further that DPIR diverges for small noise levels.

4.1. Hyperparameter and Denoiser Choices. The hyperparameters for the proposed614

PnP-LBFGS and the existing PnP-α̂PGD methods are as in Tables 1 and 2, respectively,615

chosen via grid search to maximize the PSNR over the set3c dataset for the respective image616

reconstruction problems. The hyperparameter grid for PnP-LBFGS is given in the subsequent617

subsections, while the grid for PnP-α̂PGD is given below. For the denoiser in our experiment,618

we use the pre-trained network Nσ as in [33].619

The convergence conditions for PnP-PGD and PnP-DRSdiff are that gσ has L-Lipschitz620

gradient for some L < 1, and directly using the denoiser Dσ maintains theoretical convergence.621

For PnP-DRS, the condition needs to be strengthened to L < 1/2. In this case, the denoiser is622

replaced with an averaged denoiser of the form (I+Dσ)/2 = I− 1
2∇gσ, which gives convergence623

results but changes the underlying optimization problem. For PnP-LBFGS and PnP-α̂PGD,624

we use an averaged denoiser Dα
σ = I −α∇gσ which appears to have better performance, with625

the relaxation parameter α chosen as in Tables 1 and 2. As remarked in the introduction,626

adding the relaxation parameter α means that the effective Lipschitz constant of the potential627
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(a) Residual PnP-FISTA
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(b) PSNR PnP-FISTA (c) Failure example

Figure 2: Residual ∥xk+1−xk∥2/∥x0∥2 and PSNR for PnP-FISTA applied to super-resolution
with noise level σ = 7.65. Each curve corresponds to one of the 10 images from the CBSD10
dataset. Using the parameters of PnP-LBFGS, which should resolve any Lipschitz constraint
issues, has the same divergence issue. PnP-FISTA sometimes fails, leading to images with
artifacts as seen in subfigure (c).

gradient α∇gσ is αL, which alleviates divergence issues when L > 1. In this case, Dα
σ = proxϕα

σ
628

for some weakly convex ϕασ , and the previous computations hold with gσ replaced with αgσ.629

For the parameters of the relaxed PnP-α̂PGD algorithm, we perform a grid search as in630

[31]. To obtain the values of the denoiser averaging parameter α and the denoiser strength631

σd, we do a grid search for the set3c dataset with α ∈ {0.6, 0.7, 0.8, 0.85, 0.9, 1.0} and σd/σ ∈632

{0.5, 0.75, 1.0, 1.5, 2.0}, where the noise level is σ = 7.65. The main difficulty in finding these633

hyperparameters is the dependence between α and σd, leading to poor reconstructions for634

many of these values. Given the denoiser averaging parameter α, the other hyperparameters635

of PnP-α̂PGD are given by λ = α+1
αLf

, α̂ = 1
λLf

.636

For the Lipschitz constant, we take Lf = 1 for deblurring and Lf = 1/4 for super-637

resolution with ssr = 2, 3, as in Subsections 4.3 and 4.4. It appears approximating Lf = 1 for638

super-resolution or Lf = 1/9 = 1/s2sr for ssr = 3 results in divergence, indicating sensitivity to639

their hyperparameters. We find the best values to be as in Table 2, with the grid search taken640

to maximize the PSNR over the set3c dataset. We additionally employ a stopping criterion641

based on the Lyapunov functional that PnP-α̂PGD minimizes, with the same sensitivity as642

PnP-DRS and PnP-DRSdiff [31].643

The regularization parameter λ for the underlying optimization problem is restricted for644

PnP-LBFGS in a manner similar to PnP-PGD and PnP-DRS (but not PnP-DRSdiff). For645

PnP-PGD and PnP-DRS, one condition for convergence is that λLf < 1 [33]. However, for646

PnP-LBFGS, Lemma 2.8 gives the condition that γ < (1 − β)/(λLf ), targeting stationary647

points of648

φ(x) =
λ

2
∥Ax− y∥2 +

1

γ
ϕσ.649

We note that as λ increases, the allowed γ decreases, which correspondingly increases the650

smallest allowed coefficient 1/γ of the prior ϕσ at the same rate as λ. This puts an upper651
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(a) PnP-LBFGS1 (28.75dB)
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(b) PnP-LBFGS2 (28.75dB)
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(c) DPIR (28.49dB)
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(d) PnP-PGD (28.60dB)
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(e) PnP-α̂PGD (29.05dB)
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(f) PnP-FISTA (28.75dB)

0 150 300 450 600 750 900 1050
Iter

17.5

20.0

22.5

25.0

27.5

30.0

32.5

35.0

37.5

40.0

PS
NR

(g) PnP-DRSdiff (28.61dB)
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(h) PnP-DRS (28.80dB)

Figure 3: Convergence of the PSNRs for deblurring, with the average dB in brackets. Each
curve corresponds to one of the 10 images from the CBSD10 dataset. Note that the scale of
(a) is 10 times smaller than the other curves, terminating at 100 instead of 1000. PnP-LBFGS
and PnP-DRS have generally more stable convergence, which can be attributed to the smaller
Lipschitz constant of I −Dσ. PnP-LBFGS1 also converges in much fewer iterations than the
compared methods. The average PSNR between PnP-LBFGS with the two stopping criteria
differ by only 0.0013dB.

bound on the ratio between the fidelity term and the regularization term, which may be652

restrictive for low-noise applications.653

The memory length for LBFGS was chosen to be m = 20, with a maximum of 100654

iterations per image. The denoiser Dα
σ is chosen with denoising strength σd similar to that655

used for PnP-DRS as in [33]. By using different denoising strengths, we are able to further656
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(a) PnP-LBFGS1
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(b) PnP-LBFGS2
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(c) DPIR
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(d) PnP-PGD
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(e) PnP-α̂PGD (f) PnP-FISTA
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(g) PnP-DRSdiff
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(h) PnP-DRS

Figure 4: Convergence of the residuals mini≤k ∥xi+1 − xi∥2/∥x0∥2 of the various methods
for deblurring. Each curve corresponds to one of the 10 images from the CBSD10 dataset,
evaluated with the first blur kernel and σ = 7.65. Note that the x-axis scale of (a) is 10 times
smaller than the other curves, terminating at 100 instead of 1000.

control regularization along with the scaling parameter λ. The step-sizes τk are chosen using657

an Armijo line search starting from τk = 1, and multiplying by 0.5 if the φγ decrease condition658

in Step 5 of Algorithm 3.3 is not met [3, 8].659

We additionally introduce a stopping criterion based on the differences between consecu-660

tive iterates of the envelope φγ(xk+1)− φγ(xk) < 10−5, as well as the envelope and objective661

φ(xk) − φγ(xk) < 5 × 10−5, where we stop if at least one criterion is met for 5 iterations662

in a row. We note that while the criteria can be strengthened, there is minimal change in663

the optimization result. We label PnP-LBFGS with the envelope-based stopping criterion as664
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Figure 5: Evolution of the objective φ, forward-backward envelope φγ , and their difference
φ − φγ for deblurring with PnP-LBFGS1. These values are equal at the true minima, i.e.,
φγ(x∗) = φ(x∗). Each curve corresponds to one of the 10 images from the CBSD10 dataset,
evaluated with the first blur kernel and σ = 7.65.

PnP-LBFGS1. For completeness, we also consider the stopping criterion when the relative dif-665

ference between consecutive function values of φ is less than 10−8. We label PnP-LBFGS with666

the objective change stopping criterion as PnP-LBFGS2. The PnP-LBFGS algorithms with667

the two stopping criteria are labeled with superscripts, as PnP-LBFGS1 and PnP-LBFGS2,668

respectively. We further use PnP-LBFGS without superscripts to refer to both methods to-669

gether, which share their parameters.670

All implementations were done in PyTorch, and the experiments were performed on an671

AMD EPYC 7352 CPU and a Quadro RTX 6000 GPU with 24GB of memory [56]. The code672

for our experiments are publicly available2.673

4.2. PnP Methods Without Convergence Guarantees. For further comparison, we ad-674

ditionally consider two non-provable PnP methods, namely DPIR [77] and PnP-FISTA [38].675

DPIR is based on the half-quadratic splitting, which splits proxf+g into alternating proxf676

and proxg steps, and further replaces proxg with a denoising step Dσk
in the spirit of PnP.677

PnP-FISTA is based on the fast iterative shrinkage-thresholding algorithm, which arises by678

applying a Nesterov-style acceleration to the forward-backward splitting [38, 37]. We note that679

neither of these methods correspond to critical points of functions in the existing literature.680


αk = λ̂σ2/σ2k,
xk+1 = proxf/2αk

(zk),

zk+1 = Dσk
(xk).

(DPIR)681


xk = Dσ(yk − λ∇f(yk)),

tk+1 =
1+
√

1+4t2k
2 ,

yk+1 = xk + tk−1
tk+1

(xk − xk−1).

(PnP-FISTA)682

683

2https://github.com/hyt35/Prox-qN
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4.2.1. DPIR. To improve the performance, DPIR uses a decreasing noise regime as well684

as image transformations during iteration [77, Sec. 4.2]. To extend past eight iterations, we685

consider using the log-scale noise from σd = 49 to σd = σ over 8 and 24 iterations for deblurring686

and super-resolution respectively, as recommended in the DPIR paper [77, Sec. 5.1.1, 5.2].687

The scaling for the proximal term is determined by a scaling parameter λ̂, which was chosen688

to be λ̂ = 0.23 in the original work. Figure 1 shows that while DPIR achieves state-of-the-art689

performance in the low iteration regime, the PSNR begins to drop when HQS is extended690

past the number of iterations used in the original DPIR paper [32]. Moreover, DPIR appears691

to have poor performance in the low noise regime for the following image reconstruction692

experiments. In the following experiments, we consider DPIR with the suggested 8 and 24693

iterations for deblurring and super-resolution respectively, as well as extending up to 1000694

iterations to check the convergence behavior.695

4.2.2. PnP-FISTA. The denoiser parameters for PnP-FISTA are considered to be either696

the parameters for PnP-LBFGS or PnP-PGD. Proofs for PnP schemes such as PnP-PGD697

or PnP-DRS generally rely on classical monotone operator theory, and showing that the698

denoiser satisfies the necessary assumptions. However, proofs of convergence of FISTA depend699

heavily on the convexity of the problem [9, 14], and non-convex proofs additionally require700

techniques or conditions such as adaptive backtracking [24, 55] or quadratic growth conditions701

[6]. These techniques and conditions are difficult to convert and verify in the PnP regime,702

which translates to difficulties in showing convergence of the associated PnP-FISTA schemes.703

In the following experiments, we run the DPIR and PnP-FISTA methods for 1000 itera-704

tions unless stated otherwise to verify the convergence behavior. Figures 1 and 2 additionally705

demonstrate some common modes of divergence for DPIR and PnP-FISTA, with DPIR failing706

for low noise levels and PnP-FISTA failing with artifacts.707

4.3. Deblurring. For deblurring, 10 blur kernels were used, including eight camera shake708

kernels, a 9×9 uniform kernel, and a 25×25 Gaussian kernel with standard deviation σblur =709

1.6 [40, 33]. Visualizations of the kernels can be found in the supplementary material. The710

blurring operator A corresponds to convolution with circular boundary conditions. In this711

case, the transpose A⊤ can be easily implemented using a transposed convolution with circular712

boundary conditions. The blurring operator was previously scaled to have ∥A⊤A∥op ≈ 0.96,713

which was verified using a power iteration. Thus, ∇f is approximately 0.96λ-Lipschitz.714

We chose hyperparameters of PnP-LBFGS following a grid search maximizing the PSNR715

on the set3c dataset. The parameter grids are α ∈ {0.5, 0.7, 0.9, 1.0}, λ ∈ {0.8, 0.9, 1.0}, γ ∈716

{0.8, 0.85, 0.9, 1.0}, and σd/σ ∈ {0.5, 0.75, 1.0, 1.5, 2.0}. Note that this choice obeys γ <717

min{(1 − β)/Lf , 1/(2M)}, since φσ is at most 1/2-weakly convex. We observe empirically718

that the step-size τ = 1 is also a valid descent almost all of the time, verifying the claim that719

is required to prove the superlinear convergence as remarked in Remark 3.3. The underlying720

optimization problems are slightly different for PnP-LBFGS and PnP-PGD: for PnP-PGD,721

the fidelity regularization is chosen to be λ = 0.99, and the iterates converge to cluster points722

of φPnP-PGD:723

φPnP-LBFGS =
1

2
∥Ax− y∥2 + ϕασ , φPnP-PGD =

0.99

2
∥Ax− y∥2 + ϕσ.724

We observe in Table 3 that the PnP-PGD and PnP-DRSdiff converge to very similar results725
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Table 3: Table of average PSNR (dB) comparing existing provable and non-provable PnP
methods evaluated on the CBSD68 dataset compared to the proposed PnP-LBFGS methods.
The time shown is the average reconstruction time per image. The PnP-LBFGS1 method is
significantly faster per image due to the faster convergence compared to the other provable
PnP methods.

σ 2.55 7.65 12.75 Time (s)

PnP-LBFGS1 31.19 27.95 26.61 5.80
PnP-LBFGS2 31.17 27.78 26.61 9.55
PnP-PGD 30.57 27.80 26.61 25.93
PnP-DRSdiff 30.57 27.78 26.61 22.72
PnP-DRS 31.54 28.07 26.60 19.26
PnP-α̂PGD 31.52 28.15 26.74 15.66

PnP-FISTA 30.24 27.15 26.60 24.32
DPIR (iter 103) 27.40 27.58 26.46 19.62
DPIR (iter 8) 32.01 28.34 26.86 0.55

since they both minimize the same underlying functional. However, the PnP iterations some-726

times do not converge, as demonstrated by the steadily decreasing PSNR in subfigures (d)727

and (g) of Figure 3. This can be attributed to the Lipschitz constant of gσ being greater728

than 1 at these iterates. The use of the averaged denoiser Dα
σ in PnP-DRS and PnP-LBFGS729

reduces divergence, where we see convergence for these images as well. We generally observe730

that PnP-α̂PGD has the best performance in terms of PSNR, which can be attributed to731

the larger allowed value of λ. Nonetheless, we observe significantly faster convergence for732

PnP-LBFGS compared to the other methods to comparable PSNR values for each test image.733

Comparing with the non-provable PnP methods, we observe in Figure 3 that PnP-FISTA734

converges to the same PSNR as PnP-LBFGS on CBSD10, but has a worse performance when735

averaged over all CBSD68 images in Table 3. This can be attributed to divergence of the736

method for denoisers where the Lipschitz constant of ∇gσ is greater than 1. DPIR instead737

reaches its peak in the first couple of iterations, before decreasing to the fixed point as iterated738

by the denoiser with the final denoising strength σd = σ. This results in worse performance739

of DPIR at iteration 103 as compared to iteration 8, demonstrating the non-convergence and740

the current gap in performance between provable PnP and non-provable PnP.741

Figure 3 and Figure 4 additionally demonstrate the difference between the stopping cri-742

teria. The stopping criteria of PnP-LBFGS1 is sufficient for convergence to a reasonable743

PSNR, and allows for much earlier stopping. PnP-LBFGS2 stops after more iterates and744

demonstrates the significantly faster convergence of the residuals compared to the other con-745

sidered PnP methods. Moreover, Figure 5 shows the convergence curves of the objective746

φ and forward-backward envelope φγ , which rapidly converge to the same value, verifying747

Proposition 2.1.748

4.4. Super-resolution. For super-resolution, we consider the forward operator with scale749

ssr ∈ {2, 3} as A = SK : Rn×n → R⌊n/ssr⌋×⌊n/ssr⌋, which is a composition of a downsam-750
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(a) Ground Truth (b) PnP-LBFGS1

(29.78dB)
(c) DPIR iter 100

(29.31dB)
(d) DPIR iter 8

(30.13dB)
(e) PnP-α̂PGD

(30.00dB)

(f) Corrupted (g) PnP-PGD
(28.68dB)

(h) PnP-FISTA
(29.58dB)

(i) PnP-DRSdiff
(28.66dB)

(j) PnP-DRS
(29.39dB)

Figure 6: Deblurring visualization using starfish image, with each method limited to a max-
imum of 100 iterations. Experiments are run with additive Gaussian noise σ = 7.65. PnP-
LBFGS1 converges within the first 100 iterations, while the other PnP algorithms take longer
to converge. Since the result of PnP-LBFGS1 and PnP-LBFGS2 are nearly identical, we show
only PnP-LBFGS1. DPIR starts to decrease in PSNR after 8 iterations, leading to slightly
worse performance.

pling operator S : Rn×n → R⌊n/ssr⌋×⌊n/ssr⌋ and a circular convolution K : Rn×n → Rn×n.751

The convolutions K are Gaussian blur kernels with blur strength given by standard devia-752

tions σblur = {0.7, 1.2, 1.6, 2.0} as in [77, 33]. For the PnP-LBFGS parameters, we chose753

hyperparameters maximizing the PSNR using a grid search on the set3c dataset over the fol-754

lowing ranges: α ∈ {0.5, 0.7, 0.9, 1.0}, λ ∈ {1.0, 2.0, 3.0, 4.0}, γ ∈ {0.8, 0.85, 0.9, 1.0}, and755

σd/σ ∈ {0.5, 0.75, 1.0, 1.5, 2.0}.756

The Hessian ∇2f = λA⊤A = λK⊤S⊤SK is easily available, as S⊤S : Rn×n → Rn×n is757

a mask operator comprised of setting pixels with index not in (ssrZ)2 to zero, and K⊤ is a758

transposed convolution with circular boundary conditions. Note that on the image manifold,759

S⊤S is approximately 1/s2sr-Lipschitz, as we set (s2sr − 1)/s2sr of the pixels to zero. With K760

being approximately 1-Lipschitz, we have that A⊤A is approximately 1/s2sr-Lipschitz.761

The PnP-LBFGS parameters are β = 0.01, γ = 1, and λ = 2, 1.5, 1 for noise levels762

σ = 2.55, 7.65, 12.75 respectively. We can take these values of λ since Lf ≈ 1/s2sr ≤ 1/4 and763

γ = 1 still obeys γ < min{(1− β)/Lf , 1/(2M)}. The underlying functionals are as follows:764

φPnP-LBFGS =
λLBFGS

2
∥Ax− y∥2 + ϕασ , φPnP-PGD =

0.99

2
∥Ax− y∥2 + ϕσ.765
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Table 4: Table of averaged PSNR (dB) corresponding to the competing PnP methods evalu-
ated on the CBSD68 dataset for super-resolution, as compared with the proposed PnP-LBFGS
method. The time is the average reconstruction time per image for σ = 7.65. The performance
of PnP-LBFGS is almost identical to the compared provable PnP methods due to minimizing
the same variational form, but with faster convergence.

Scale s = 2 s = 3
σ 2.55 7.65 12.75 Time (s) 2.55 7.65 12.75 Time (s)

PnP-LBFGS1 27.89 26.62 25.80 3.19 26.12 25.32 24.68 4.80
PnP-LBFGS2 27.89 26.62 25.80 9.81 26.12 25.30 24.68 13.15
PnP-PGD 27.44 26.57 25.82 25.99 25.60 25.20 24.63 37.33
PnP-DRSdiff 27.44 26.58 25.82 18.24 25.60 25.19 24.63 32.83
PnP-DRS 27.93 26.61 25.79 15.74 26.13 25.29 24.67 27.00
PnP-α̂PGD 27.94 26.62 25.72 4.24 26.11 25.32 24.69 8.78

PnP-FISTA 26.38 26.44 25.79 24.61 24.96 25.15 24.63 33.13
DPIR (iter 103) 18.58 26.36 25.74 19.58 17.53 24.96 24.55 19.67
DPIR (iter 24) 27.82 26.60 25.85 0.98 26.06 25.29 24.67 0.97

We observe in Table 4 that the results for PnP-LBFGS are comparable to the other766

provable PnP methods, with overall faster wall-clock times. In Figure 7 and Figure 8, we767

are again able to see the difference between the stopping criteria. For the CBSD10 dataset,768

PnP-LBFGS1 converges on all images in under 40 iterations, while PnP-LBFGS2 sometimes769

requires all 100 iterations, and the other PnP methods take anywhere from 100 to 103 iterations770

to converge. Figure 8 shows again that the convergence of the residuals is significantly faster771

than the compared PnP methods per iteration. Note that for PnP-LBFGS, PnP-DRS and772

PnP-α̂PGD, we are allowed to choose larger values of the fidelity regularization term λ, leading773

to better reconstructions in the low noise regime compared to PnP-PGD and PnP-DRSdiff.774

As seen in Figure 8c, DPIR does not converge for super-resolution, and we observe an775

oscillating behavior of the residuals and PSNR. In contrast, PnP-FISTA is able to converge776

slightly faster than PnP-PGD, but does not converge for some images as seen by the decreasing777

PSNR for one curve in Figure 7. Both PnP-FISTA and DPIR are able to perform reasonably778

for higher noise levels of σ = 12.75, but have more divergence issues for lower noise levels,779

leading to reduced performance as seen in Table 4. We again observe the gap in performance780

between DPIR at iteration 103 and at iteration 24 as suggested in the original DPIR work.781

The performance gap between DPIR and provable PnP methods is less apparent for super-782

resolution as opposed to deblurring, as observed in [32].783

4.5. Computational Complexity. While each iteration of PnP-LBFGS has increased com-784

plexity, we observed convergence in much fewer iterations. In this section, we outline the785

computational requirements for the number of neural network Nσ evaluations, denoising steps786

Dσ, as well as computations of ∇f and ∇2f required per iteration. Note that if a closed form787

for ∇2f is intractable, computations of (3.5c) can be replaced with Hessian-vector products,788

available in many deep learning libraries.789
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(a) PnP-LBFGS1 (27.87dB)
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(b) PnP-LBFGS2 (27.87dB)
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(c) DPIR (27.58dB)
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(d) PnP-PGD (27.82dB)
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(e) PnP-α̂PGD (27.86dB)
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(f) PnP-FISTA (27.71dB)
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(g) PnP-DRSdiff (27.69dB)
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(h) PnP-DRS (27.78dB)

Figure 7: Convergence of the PSNR (dB) of the various curves for super-resolution, with the
average dB in brackets. Each curve corresponds to one of the 10 images from the CBSD10
dataset, evaluated with the Gaussian blur kernel with standard deviation σblur = 1.2 and
additive noise σ = 7.65, with scale ssr = 2. We observe the convergence of PSNRs in under
40 iterations for PnP-LBFGS1, much faster than the compared PnP methods.

We can calculate Tγ and Rγ together using one call each of ∇f and Dσ. From (3.5), φγ790

requires ∇f and gσ, which in turn requires Nσ. ∇φγ has a closed form, which requires Rγ791

and an evaluation of ∇2f .792

Consider a single iteration of PnP-LBFGS. We first compute ∇φγ(xk) and φγ(xk). Com-793

puting dk using L-BFGS does not require any additional evaluations of Dσ, Nσ,∇f or ∇2f ,794

as the secants and differences will have been computed in the previous iteration. For each test795

of wk, we need to compute a single iteration of φγ , which takes one evaluation each of ∇f796

This manuscript is for review purposes only.



30 H. Y. TAN, S. MUKHERJEE, J. TANG, AND C.-B. SCHÖNLIEB
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(a) PnP-LBFGS1
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(b) PnP-LBFGS2
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(c) DPIR
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(d) PnP-PGD
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(e) PnP-α̂PGD
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(f) PnP-FISTA
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(g) PnP-DRSdiff
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(h) PnP-DRS

Figure 8: Convergence of the residuals mini≤k ∥xi+1 − xi∥2/∥x0∥2 of the various methods for
super-resolution. Each curve corresponds to one of the 10 images from the CBSD10 dataset,
evaluated with the Gaussian blur kernel with standard deviation σblur = 1.2 and additive noise
σ/255 = 7.65, with scale ssr = 2. PnP-LBFGS2 demonstrates significantly faster residual
convergence of the proposed method.

and Nσ. Once a suitable wk is found, we compute Tγ(wk) and Rγ(wk) together using the last797

stored ∇f(wk), requiring only one additional Dσ operation. For the secant yk, we require an798

evaluation of ∇φγ(wk), which requires only one additional ∇2f evaluation. This concludes799

one iteration.800

To evaluate the proposed stopping criteria for PnP-LBFGS1, we are also required to801

compute φ(xk+1) from (3.5d). Note we already have gσ(wk − γ∇f(wk)) from computing802

φγ(wk), and Tγ(wk) = xk, hence we get φ(xk+1) with no further evaluations needed.803
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In total, assuming we need T tests for τk, the per iteration-cost is804

(4.2)


#Nσ

#Dσ

#∇f
#∇2f


PnP-LBFGS

=


1
1
1
1


︸ ︷︷ ︸

∇φγ(xk),

φγ(xk)

+ T


1
0
1
0


︸ ︷︷ ︸
test wk

+


0
1
0
0


︸ ︷︷ ︸
Tγ(wk),

Rγ(wk)

+


0
0
0
1


︸ ︷︷ ︸

∇φγ(wk)

=


T + 1

2
T + 1

2

 .805

At later iterations, the number of tests is only T = 1, since the step-size τ = 1 is accepted806

almost always. Therefore, later iterations require two ofNσ, Dσ,∇f and∇2f . For comparison,807

PnP-PGD requires one evaluation each of Dσ and ∇f , and the PnP-DRS methods require one808

evaluation each of Dσ and proxf . Note that for these methods to test their stopping criteria809

by computing φ, they also require one evaluation of gσ and hence of Nσ [33]. These methods810

thus have complexity811 #Nσ

#Dσ

#∇f


PnP-PGD

=

1
1
1

 ,

 #Nσ

#Dσ

# proxf


PnP-DRS;

PnP-DRSdiff

=

1
1
1

 .812

To compute the asymptotic complexity of PnP-LBFGS, suppose the images have dimen-813

sion d, and that the denoisers have P parameters. From (4.2), we can read off the com-814

plexity of computing one iteration given dk as O(d × P × T ), with O(d) memory require-815

ment to hold the xk, wk and intermediate gradients. To compute dk, the computational816

complexity of L-BFGS scales linearly with the input dimension and memory length m, and817

requires us to store m secants and differences. The asymptotic complexity per iteration is thus818

O (d× P × T +md), where the number of tests T is eventually always 1. The total memory819

requirement is O ((m+ 1)× d), where we store m differences and secants.820

A similar complexity analysis can be applied to the PnP-PGD, PnP-DRSdiff and PnP-821

DRS methods to achieve a per-iteration computational complexity of O(d × P ) and mem-822

ory requirement of O(d). However, these three PnP methods do not come with improved823

convergence rates under additional smoothness assumptions, and come with residual conver-824

gence at a rate mini≤k ∥xi+1 − xi∥ = O(1/k). PnP-LBFGS achieves residual convergence825

mini≤k ∥Rγi(x
i)∥ = O(1/k) from Theorem 2.11, as well as superlinear convergence under the826

assumptions of Theorem 2.14. This is summarized in Table 5.827

The above complexity analysis shows that the main increase in computational burden for828

PnP-LBFGS is the requirement of two evaluations of ∇2f at each iteration, as well as at least829

double the number of neural network evaluations compared to the compared PnP methods.830

However, assuming only one test for wk is needed, each iteration only requires one additional831

evaluation of the denoiser-related networks Nσ, Dσ and fidelity gradient ∇f (or proxf ) to the832

compared PnP methods. In our experiments, ∇2f has a low computational cost due to the833

closed form. This allows us to trade roughly 2–3× the per-iteration cost with nearly 10×834

fewer iterations required as shown in Figures 4 and 8, resulting in fewer total function calls,835

and thus the 4–5× faster reconstruction times as shown in Tables 3 and 4.836
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Table 5: Complexity to achieve an ϵ-optimal solution, in terms of the squared residual for
PnP-PGD/DRS/DRSdiff, and in terms of the residual Rγi(x

i) for PnP-LBFGS. Under the
assumptions of Theorem 2.14 for superlinear convergence, the number of tests is eventually
always T = 1, and we are able to achieve at least linear speedup.

Complexity PnP-PGD/DRS/DRSdiff PnP-LBFGS PnP-LBFGS superlinear

Computation O(dPϵ−1) O
(
(dPT +md)ϵ−1

)
O ((dP +md) log ϵ)

Memory O(d) O ((m+ 1)d) O ((m+ 1)d)

5. Conclusion. In this work, we propose a Plug-and-Play approach to image reconstruc-837

tion that utilizes descent steps based on the forward-backward envelope. Using the descent838

formulation, we are able to further incorporate quasi-Newton steps to accelerate convergence.839

The resulting PnP scheme is provably convergent with a gradient-step assumption on the840

denoiser by using the Kurdyka- Lojasiewicz property and theoretically achieves superlinear841

convergence if a Hessian approximation satisfying the Dennis-Moré condition is available.842

Moreover, properties of the forward-backward envelope allow for additional ways of checking843

convergence. Our experiments demonstrate that it is able to converge significantly faster in844

terms of both time and iteration count as well as having highly competitive performance when845

compared with competing PnP methods with similar convergence guarantees.846

For future works, one route is to consider alternative parameterizations of the denoiser847

Dσ. For example, consider the objective φ = f+ϕσ and the task of learning the regularization848

term ϕσ [49, 50]. By enforcing convexity of ϕσ through the neural network architecture, such849

as using input-convex neural networks [1], (weakly-) convex ridge regularizers [25, 26], firm850

nonexpansiveness [57], or parametric splines [53], results from [67] utilizing convexity such851

as global sublinear convergence and local linear convergence can be applied. This may also852

alleviate divergence problems caused when Lipschitz constraints on the denoisers are violated,853

as sometimes arises using spectral regularization. One restriction of the proposed method lies854

in the restriction of the regularization parameter, which imposes a bound on the minimum855

amount of regularization. Future works could look to loosen this restriction, similarly to856

[31]. In addition, while only simple forward operators such as image deblurring and super-857

resolution are experimented on in this work, the accelerated convergence rate and model-based858

interpretation may make this PnP scheme suitable for more complicated forward operators859

such as CT ray transforms. Future works may explore these practical applications, with a860

suitably trained “denoiser” for these domains.861
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