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Summary
Anaplastic large-cell lymphoma (ALCL) is a T-cell malignancy predominantly driven 
by the oncogenic anaplastic lymphoma kinase (ALK), accounting for approximately 
15% of all paediatric non-Hodgkin lymphoma. Patients with central nervous sys-
tem (CNS) relapse are particularly difficult to treat with a 3-year overall survival of 
49% and a median survival of 23.5 months. The second-generation ALK inhibitor 
brigatinib shows superior penetration of the blood–brain barrier unlike the first-
generation drug crizotinib and has shown promising results in ALK+ non-small-
cell lung cancer. However, the benefits of brigatinib in treating aggressive paediatric 
ALK+ ALCL are largely unknown. We established a patient-derived xenograft (PDX) 
resource from ALK+ ALCL patients at or before CNS relapse serving as models to fa-
cilitate the development of future therapies. We show in vivo that brigatinib is effec-
tive in inducing the remission of PDX models of crizotinib-resistant (ALK C1156Y, 
TP53 loss) ALCL and furthermore that it is superior to crizotinib as a second-line ap-
proach to the treatment of a standard chemotherapy relapsed/refractory ALCL PDX 
pointing to brigatinib as a future therapeutic option.
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I N TRODUC TION

Systemic anaplastic large-cell lymphoma (ALCL) is a T-
cell malignancy accounting for approximately 15% of 
all paediatric non-Hodgkin lymphoma (NHL).1 More 
than 90% of paediatric cases express anaplastic lym-
phoma kinase (ALK) fusion proteins (ALK+) as a result 
of translocations, the most predominant being the t(2;5)
(p23;q35) encoding Nucleophosmin 1 (NPM)-ALK.2,3 
While for most patients, ALCL99 therapy leads to a good 
outcome with the 10-year overall survival (OS) reaching 
90%, progression-free survival (PFS) at approximately 
70% requires improvement.4 Recent addition of the first-
generation ALK tyrosine kinase inhibitor (TKI), crizo-
tinib to the standard ALCL99 backbone gives a similar OS 
of 95%, but this ref lects just 2 years of follow-up at which 
point event-free survival (EFS) is 76.8%, suggesting that 
the addition of crizotinib protects against relapse at this 
early stage.5

At present, 85% of patients treated with a standard 
chemotherapy backbone who relapse after completion 
of front-line therapy enter a second remission regard-
less of the chemotherapy regimen used.6-8 However, 
approximately 50% of children who progress during 
front-line therapy will experience progression during 
reinduction.8 For paediatric ALK+ ALCL patients that 
relapse from chemotherapy, crizotinib has been trialled 
as a salvage therapy (NCT00939770, NCT01606878, 
NCT01979536, NCT02304809, UMIN000028075, 
Eudract: 2015-005437-53)9-13 with the aim to induce sec-
ond remission8 and in some cases leading to allogeneic 
stem cell transplant (SCT) as established for adult patients 
with relapsed ALK+ ALCL.14,15 For patients who relapse 
in the central nervous system (CNS), the 3-year OS is  
only 48.70%.16 Brigatinib, which has good CNS pene-
tration, is now being investigated for relapsed/refrac-
tory (r/r) ALK+ ALCL (NCT04925609), and in studies of 
ALK+ NSCLC, it is effective in patients who have failed 
crizotinib.17

Here, we describe three PDXs of ALK+ ALCL developed 
from patients who all had CNS disease or CNS relapse, com-
prising a subgroup of patients with unmet clinical needs.18,19 
We demonstrate that these models recapitulate the biology of 
parental human tumours and that the PDX platform serves 
as a tool for the discovery and testing of targeted therapies. 
Specifically, we demonstrate the effectiveness of brigatinib 
in these PDXs in the context of potential crizotinib resis-
tance mechanisms, including ALK copy gain, ALK C1156Y 
mutation and IRF4 amplification.

M ATER I A L S A N D M ETHODS

Information about PDX establishment, animal licenc-
ing, Whole Exome Sequencing, immunohistochemis-
try and ethics approvals can be found in the Supporting 
Information with reagents and resources detailed in 
Table S1.

In vivo studies

Viably frozen PDX cells were thawed, washed in PBS/2% FBS 
before resuspension in Matrigel:PBS (1:2) and subcutane-
ous injection of 0.5 × 106 cells into the left flank of a NOD./
Cg-PrkdcscidIl2rgtm1Wjl/SzJ mouse. Once tumours reached 
400 mm3, mice were randomly assigned to one of three treat-
ment groups and treated daily by oral gavage with either ve-
hicle (1 × PBS, 10% DMSO), 100 mg/kg crizotinib or 25 mg/
kg brigatinib.

Sequencing data analysis

Quality control, processing and variant calling steps were 
undertaken as part of an established in-house, publicly 
available Snakemake pipeline,20 with software deployed in 
isolated Conda environments and executed in a versioned 
Singularity container. Brief ly, FastQC was used to assess 
sequence-level quality before Xengsort was employed to 
filter murine host reads in silico prior to alignment to the 
human genome (GRCh38.p14) with bwa mem. Small nu-
cleotide variants were called using Octopus and Mutect2. 
Input CRAM files for Mutect2 were processed according 
to the GATK Best Practices preprocessing guidelines.21 
Structural variants were called from WES using DELLY, 
and gene fusions were called from RNAseq data using 
STAR-Fusion. Allele-specific copy number calls and pu-
rity estimates were generated for the tumour sample from 
Patient 3 and corresponding GR-ALCL-1 PDX using se-
quenza (v3.0.0), using a bin width of 50. Variants at the 
nucleotide level are reported on the canonical transcript, 
according to Ensembl.

Statistical analysis

All statistics were calculated using R (v4.0.2). Benjamini–
Hochberg adjusted p-values were calculated with the logrank_
test function from the coin package (v1.4-1) and adjusted 

F I G U R E  1   Established PDX models maintain histologic features of the engrafted ALK+ ALCL tumours. (A) Schema of the treatment history of 
ALK+ ALCL patients. (B) Schema of PDX generation; mononuclear cells (MCs) were isolated from a bone marrow (Patient 1), pleural effusion (Patient 2) or 
paravertebral tumour lymph node (Patient 3) sample and injected subcutaneously into NSG mice to establish PDX models of ALK+ ALCL. (C) Representative 
haematoxylin and eosin staining (400×) with corresponding ALK and CD30 immunohistochemistry (400×) performed on sections of the pleural effusion 
taken at diagnosis (Patient 1), diagnostic tumour (Patient 2) compared with the PDX (at passage 3). No material was available for Patient 3, and the PDX alone 
is shown. BV, brentuximab vedotin; SCT, stem cell transplant; VBL, vinblastine; CYVE, cytarabine + etoposide. See Table S2 for further patient details. [Colour 
figure can be viewed at wileyonlinelibrary.com]
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with the stats::p.adjust function setting method = ‘BH’. 
Mouse weight data were analysed by fitting a linear model 
(stats::lm) to the weight difference from baseline to the end 
of the study, with baseline weight and treatment used as 
predictors.

R E SU LTS

Established PDX models maintain histologic 
features of the engrafted ALK+ ALCL tumours

All PDX models are derived from patients who experi-
enced r/r disease during front-line ALCL99 chemotherapy4 
(Figure  1A, Table  S2). Patient 1 (MGS-A-x) further pro-
gressed with CNS involvement while undergoing treatment 
with vinblastine combined with intravenous and intrathe-
cal chemotherapy. Since this treatment was poorly tolerated 
and only an incomplete response was achieved, the patient 
commenced crizotinib alongside intrathecal chemotherapy, 
achieving a CR. The patient then received an allogeneic SCT 
but progressed rapidly thereafter. The patient was re-treated 
with crizotinib until eventual progression. Mononuclear 
cells (MCs) isolated from a bone marrow sample at this time-
point were used to generate the PDX (Figure  1B). Despite 
subsequent treatment with weekly brentuximab vedotin and 
vinblastine, the patient died due to progressive disease and 
the complications of therapy shortly after.

Patient 2 (MTK-A-x) commenced crizotinib treatment 
with intrathecal chemotherapy due to continued refractory 
disease, despite treatment including ALCL99 chemotherapy 
(Figure 1A, Table S2). MCs were isolated from a pleural ef-
fusion obtained early in the disease course, before crizotinib 
initiation, and were used to generate the PDX (Figure 1B). 
Despite an excellent initial response to crizotinib, with CR 
confirmed on imaging 7 weeks after initiation, Patient 2 
relapsed with aggressive isolated CNS involvement shortly 
afterwards and died despite further intensive conventional 
intravenous chemotherapy.

Patient 3 (GR-ALCL-1) was treated according to ALCL99 
protocol recommendations for patients with CNS involve-
ment achieving partial response after the first three chemo-
therapy cycles but relapsed while still on chemotherapy.22 
Crizotinib treatment was then commenced, but disease 
progression led to the cessation of treatment 2 months after 
initiation (Figure 1A, Table S2). A paravertebral lymph node 
was sampled 1 month after crizotinib initiation, and this was 
used to establish the PDX (Figure 1B)23. This patient achieved 
a CR following subsequent treatment with nivolumab and 
remains in CR 5 years later.

Tumour growth in mice was observed within 6 months of 
implantation for all three patients; tumours were confirmed 
by immunohistochemistry to be positive for ALK and CD30 
expression at passage 3 (Figure 1C). Histologic concordance 
was noted between the PDXs and primary tumours for cases 
with available corresponding diagnostic biopsy material 
(Figure 1C).

The genomic profile of the implanted ALK+ 
ALCL tumour is maintained in the PDX

To determine whether the established PDX preserves the 
genomic profile of the implanted tumour, DNA was isolated 
from peripheral blood mononuclear cells (PBMCs) and the 
relapse tumour biopsy from Patient 3, as well as the corre-
sponding established PDX at passage 4.

As expected, the t(2;5) encoding NPM1-ALK24 was de-
tected in both the relapse biopsy and the established PDX 
(Figure  2A). Furthermore, structural variants, including a 
deletion on chr1 including the IQGAP3 locus, a duplication 
on chr2 including IDH1 and a breakend between KIF26B 
and LRP12 (chr1 and chr8), were also detected in both the 
relapse biopsy and established PDX (Figure 2A). One dupli-
cation and two breakends detected in the relapse biopsy were 
not retained in the PDX; a duplication on chr6 involving the 
EHMT2-AS1 anti-sense RNA gene, a gene fusion between 
SEPTIN7P2 and PSPH on chr7 and a gene fusion be-
tween TRIP12 and DNER on chr2 respectively (Figure 2A). 
Conversely, new structural variants were seen in the PDX 
but not in the original biopsy, including the deletion of a 
region containing ANXA2, as well as duplication of regions 
containing RAB20, COL4A2, FIZ1 and DDX3X (Figure 2A).

Despite differences in some structural variants, the tran-
scriptomes of the samples demonstrated concordance, with 
75% of the gene expression variance in the PDX tumour ex-
plained by gene expression in the patient sample (R2 = 0.75, 
p < 2.2e-16; Figure  2B). In particular, key genes previously 
associated with the biology of ALCL including STAT3 were 
expressed in both the PDX and primary tumour.25

Next, subclonal SNVs were assessed by comparing variant 
allele frequencies (VAF) for those detected before and after 
tumour engraftment in the mouse (Figure  2C, Figure  S1). 
While many SNVs lie off the scatterplot diagonal, indicating 
clonal selection, VAFs across the two samples highly cor-
related, with 42% of the VAF variance in the PDX explained 
by VAF in the patient tumour (Figure  2D). Furthermore, 
considering the trinucleotide context, the mutational cata-
logue of the patient tumour sample was well-preserved in the 
PDX (cosine similarity 0.72; Figure 2D).

The majority of small variants detected in the PDX but 
not the primary tumour were detected at a low VAF (<0.2), 
consistent with the ongoing accumulation of mutations be-
tween or during cell division (Figure 2E). However, several 
small variants that were not detected in the patient sample 
attained high frequency (>40%) in the PDX, including a de-
letion in TRIP12 suggesting ongoing clonal evolution in vivo 
(Figure 2E).

Copy number alterations were largely maintained in the 
PDX, though some events including del(11q) and gain(5q) were 
detected in the PDX but not the patient sample, while events 
including gain(19q) appeared to be lost in the PDX tumour 
(Figure 2F). Together, these data show that although there is 
ongoing clonal evolution upon xenotransplantation, the PDX 
maintains the landscape of somatic mutations and oncogenic 
drivers displayed in its parental ALK+ ALCL tumour.
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Established PDX models retain the crizotinib 
sensitivity of the engrafted ALK+ ALCL 
tumour and are sensitive to brigatinib

To determine whether the PDX tumours retain their sen-
sitivity or resistance to crizotinib as seen in the patients 
(Figure  1A), mice were exposed to the drug (100 mg/kg) 
or vehicle (1 × PBS, 10% DMSO) once tumours reached 
400 mm3 in volume (Figure 3, Figure S2). As expected, the 
MTK-A-x PDX derived from Patient 2 at a time when they 

were naïve to crizotinib showed a significant increase in 
EFS for animals treated with crizotinib relative to vehicle 
(p = 0.048, Figure  3H). While 3/4 mice that were treated 
with crizotinib showed a reduction in tumour volume and 
1/4 mice demonstrated a complete response, 5/5 mice that 
were treated with vehicle presented with tumour progres-
sion (Figure  3E) within 1 day after treatment initiation 
(Figure 3B).

The other two PDXs (MGS-A-x and GR-ALCL-1) were 
developed from tumour samples taken from Patients 1 

F I G U R E  2   The genomic profile of the implanted ALK+ ALCL tumour is maintained in the PDX. (A) Circos representation of structural variants 
detected from WES and RNAseq data for the patient sample (left plot) and the passage 4 PDX sample (right plot). Blue points represent insertions, while 
red points represent deletions. Arcs represent translocations. (B) Scatter plot showing normalised gene expression (transcripts per million) for the tumour 
sample from Patient 3 and the derived PDX tumour (GR-ALCL-1; passage 4). The blue line represents the linear regression fit. (C) Scatter plot showing 
the joint empirical VAF distribution of SNVs detected in both the tumour sample from Patient 3 and the derived PDX tumour (GR-ALCL-1; passage 4). 
The blue line represents the linear regression fit. (D) Mutational catalogues showing the burden of SNVs according to the original and mutated bases, as 
well as the bases immediately 5′ or 3′ to the mutated base. (E) VAF of mutations detected that are unique to the patient sample or derived PDX. Mutations 
with a VAF greater than 0.2 are highlighted. (F) Total copy number profiles for the autosomes and X chromosome. Genomic segments are coloured 
according to the estimated total copy number. DEL, deletion; DNP, dinucleotide polymorphism; INS, insertion; R, correlation coefficient; SNP, single 
nucleotide polymorphism; TNP, trinucleotide polymorphism; VAF, variant allele frequency. [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E  3   Established PDX models retain the chemotherapy sensitivity of the engrafted ALK+ ALCL tumours and are sensitive to brigatinib. 
(A–C) Tumour volume over time for MGS-A-x (A), MTS-A-x (B) and GR-ALCL-1 (C) mice administered vehicle (PBS, 10% DMSO), crizotinib (100 mg/
kg) or brigatinib (25 mg/kg) daily by oral gavage. Data represent the mean and standard error of each treatment group (crizotinib: four mice MTX-A-x, 
eight mice MGS-A-x, six mice GR-ALCL-1; Vehicle: five mice MTX-A-x, six mice GR-ALCL-1; brigatinib: eight mice for all treatment groups). Day 0 
refers to the day that the tumour volume first met or exceeded 400 mm3 (baseline) and treatment was initiated. Individual mouse tumour measurements 
were included until the mouse either reached the event (defined as the tumour reaching or exceeding 15 mm in any direction) or was censored (removed 
from the study due to reaching a humane end-point other than tumour size, or 21 consecutive days of treatment). (D–F) Percentage change in tumour 
volume at the study end-point compared with the baseline volume for individual tumour-bearing MGS-A-x (D), MTK-A-x (E) or GR-ALCL-1 (F) mice. 
(G–I) Kaplan–Meier EFS for tumour-bearing MGS-A-x (G), MTS-A-x (H) or GR-ALCL-1 (I) mice, where an event is defined as the tumour reaching or 
exceeding 15 mm in any direction. Censoring is indicated by vertical ticks. The p-value is determined by the log-rank test. (J–L) Mouse body weights at 
the experimental end-point relative to baseline weights for MGS-A-x (G), MTS-A-x (H) or GR-ALCL-1 (I) mice. p-values were determined by pairwise 
two-sample t-tests. [Colour figure can be viewed at wileyonlinelibrary.com]
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and 3, respectively, when they had become r/r to crizotinib 
(Figure  1A, Table  S2). As expected, both were resistant to 
crizotinib, with the tumours continuing to grow despite 
treatment. For MGS-A-x, 7/8 mice showed tumour pro-
gression (Figure  3D) with no significant difference in EFS 
for animals treated with crizotinib compared with the vehi-
cle (p = 0.4303; Figure 3G). Similarly, the GR-ALCL-1 PDX 
model was also resistant to crizotinib whereby 6/6 and 4/6 
mice treated with vehicle or crizotinib, respectively, pre-
sented with tumour progression (Figure  3F) within 2 days 
after treatment initiation (Figure  3C). Again, EFS did not 
significantly differ for animals treated with crizotinib or ve-
hicle (p = 0.9779; Figure 3I).

The response of all three PDXs to an alternative ALK in-
hibitor, brigatinib, was assessed by exposing mice to 25 mg/
kg of the drug. Brigatinib was chosen for study here as it 
is currently the subject of a European trial for r/r ALK+ 
ALCL (NCT04925609) and has good brain penetration. 
For all three PDXs, significant increases in EFS were seen 
for tumour-bearing animals treated with brigatinib rela-
tive to vehicle (MGS-A-x: p = 0.02494, MTK-A-x: p = 0.048, 
GR-ALCL-1: p = 0.01299; Figure 3G–I), with 3/8, 5/8 and 5/8 
mice, respectively, showing a reduction in tumour volume 
(Figure  3D–F). Brigatinib treatment also led to a signifi-
cant increase in EFS relative to crizotinib-treated mice for 
MGS-A-x and GR-ALCL-1, but not for MTK-A-x (MGS-A-x: 
p = 0.02494, MTK-A-x: p = 0.58, GR-ALCL-1: p = 0.01923; 
Figure  3G–I). Brigatinib was generally well-tolerated, 
though significant decreases in animal weight relative to 
vehicle-treated mice were detected for MTK-A-x- and GR-
ALCL-1-bearing mice (MTK-A-x: p = 0.023, GR-ALCL-1: 
p = 0.05; Figure 3K,L). In comparison, crizotinib led to a sig-
nificant decrease in animal weight relative to vehicle-treated 

mice for MTK-A-x-bearing mice only (p = 0.04; Figure 3K). 
Altogether, these data suggest that brigatinib administration 
is a well-tolerated approach for the treatment of PDX derived 
from ALK-positive ALCL involving the CNS that is either 
sensitive or r/r to crizotinib.

ALK C1156Y mutation, TP53 loss and IRF4 
amplification are likely mediators of resistance 
to crizotinib

For Patients 1 and 2, the corresponding diagnostic tumour 
was available for WES enabling the comparison of the mu-
tational profiles of cells at diagnosis and the corresponding 
PDXs derived from the relapse samples (Figure  4). We fo-
cussed on large-scale alterations as germline samples were 
not available for these patients.

The PDX of Patient 1 (MGS-A-x) harbours an ALK 
c.3467G>A mutation (33% VAF) not present in the diag-
nostic biopsy (Figure  4). This mutation, corresponding to 
C1156Y in full-length ALK, is near the αC helix domain and 
was first described in a crizotinib-resistant ALK+ NSCLC 
patient26 causing resistance via conformational changes that 
alter kinase activity in line with in vivo results (Figure 3G).27 
In addition to the ALK mutation, single copy number gains 
were detected at the NPM1 and ALK loci, suggesting that 
copy gain of NPM1-ALK occurred first, followed by the 
ALK c.3467G>A mutation occurring on one of the two 
translocated copies of ALK. Moreover, a heterozygous TP53 
c.841G>A mutation was present in the PDX (Figure 4). This 
mutation has previously been described to inactivate p53 in 
a dominant-negative fashion28,29 and was present at a fre-
quency of 100% in the PDX, suggesting that the wild-type 

F I G U R E  4   ALK C1156Y mutation, TP53 loss and IRF4 amplification are likely mediators of resistance to crizotinib. WES data determined from the 
established PDX were analysed for Patients 1–3. Events highlighted in pink were also detected in the corresponding diagnostic biopsies for Patients 1 and 
2; diagnostic material was not available for comparisons to be made for Patient 3. The banding pattern represents cytoband staining. [Colour figure can 
be viewed at wileyonlinelibrary.com]
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allele was lost some time between diagnosis and passage 4 
(Figure 4). In addition, copy number changes were detected 
in the PDX but not the diagnostic biopsy, including copy 
loss of chr4, and copy gains of chr5, chr8, chr15, chr18 and 
gain(12p) (Figure 4), while gain(1q) was present in both the 
diagnostic biopsy and PDX.

In contrast to Patient 1, no mutations or copy number al-
terations of NPM1-ALK were detected in the relapse biopsy 
nor the derived PDX of Patient 3 (GR-ALCL-1), despite the 
noted crizotinib resistance (Figure  3C,F,I). However, there 
was an amplification of IRF4 in the implanted tumour ma-
terial, though diagnostic tumour material was not available 
to rule out its presence prior to relapse. However, a previ-
ously published CRISPRa screen showed that IRF4 overex-
pression mediates crizotinib resistance in ALK+ ALCL cell 
lines,30 supporting its role in driving crizotinib resistance 
in the patient. Several additional copy number gains were 
also detected in the relapse biopsy, including gain(1q) and 
gain(8q), which have also previously been associated with 
ALK+ ALCL31-33 (Figure 4, Figure S3).

Similarly, and as expected, no mutations or copy num-
ber alterations of NPM1-ALK were detected in the diagnos-
tic sample nor PDX derived from Patient 2 (MTK-A-x), in 
line with a lack of clinical resistance to crizotinib, and the 
PDX being established from a crizotinib-naïve patient sam-
ple. Interestingly, a TP53 mutation in the intron 6 splice 
donor site was detected in the diagnostic sample of Patient 
2 (Figure 4). This variant has previously been described to 
activate a cryptic splice site in intron 6, resulting in loss of 
function.34 Similar to Patient 1, sometime between diagnosis 
and passage 4 of the PDX, the TP53 locus underwent loss of 
heterozygosity, likely resulting in biallelic loss of p53 func-
tion. No large-scale copy number alterations were detected 
in the diagnostic sample, but the PDX harboured a gain(1q) 
(Figure 4). Given the complex treatment history of this pa-
tient (Figure 1A), these changes may be related to exposure 
to chemotherapeutic agents.

DISCUSSION

We have successfully established and characterised PDX 
models from biopsies of multi-agent chemotherapy-
refractory (Patient 2, MTK-A-x), and both multi-agent 
chemotherapy-refractory- and crizotinib-resistant (Patient 
1, MGS-A-x; Patient 3, GR-ALCL-1) paediatric CNS-positive, 
r/r ALK+ ALCL patients. These PDX models retain the drug 
sensitivity of the engrafted patient tumour.

Our in vivo investigation shows that brigatinib is effective 
in PDX models developed from CNS-relapsed chemotherapy-
refractory and/or crizotinib-resistant ALK+ ALCL patients. 
The advantage of brigatinib, alectinib and lorlatinib over 
crizotinib is that they have a superior ability to cross the 
blood–brain barrier (BBB) and as such are active or preven-
tive against CNS disease.35-39 Indeed, the use of these inhibi-
tors has led to CR for several published r/r ALK+ ALCL cases 
with CNS involvement.40 Hence, while our models do not 

account for the CNS location of the relapse disease, it can be 
assumed that as these drugs are better able to cross the BBB, 
they will inhibit tumour growth and/or disease progression 
and as such might also represent better therapeutic options 
for the up-front treatment of CNS-positive ALCL. However, 
this will require validation in a clinical trial setting.

Analysis of the established PDX has also allowed us to 
postulate mechanisms of resistance to ALK inhibitors. In 
particular, the PDX of Patient 1 (MGS-A-x) carries an ALK 
C1156Y mutant previously reported to mediate resistance to 
crizotinib, but not brigatinib.27 This phenotype was main-
tained in the PDX. Unfortunately, diagnostic biopsy mate-
rial was not available for this patient, and so, we are unable 
to determine whether the responsible mutation was present 
in a minor subclone of tumour cells at diagnosis that was 
selected with crizotinib treatment. Furthermore, our data 
suggest that brigatinib may be a potential therapeutic option 
for this patient.

For Patient 3, the engrafted tumour and the relapse bi-
opsy both demonstrated amplification and high expression 
of IRF4. IRF4 has previously been shown to be overexpressed 
in several NHLs, such as cutaneous ALCL,41 and notably 
large B-cell lymphoma with IRF4 rearrangement.42 Indeed, 
IRF4 knockdown induces apoptosis in both ALK+ and ALK-
ALCL cell lines, and ectopic expression of IRF4 in ALCL 
cell lines has been shown to partially rescue STAT3 knock-
down.43,44 IRF4 may also constitute an ALK inhibitor bypass 
resistance track as previously suggested in a CRISPRa screen 
of ALCL.30 However, why IRF4 amplification would mediate 
resistance to crizotinib, but not brigatinib, is not clear.

Finally, all three of these aggressive cases of CNS-positive 
ALK+ ALCL were assessed for genomic events in the estab-
lished PDX developed from r/r tissue. Given the intensive 
chemotherapy regimens experienced by all of the patients, 
a complex genome is expected. In this regard, a TP53 mu-
tation in the first and second PDX is in keeping with a poor 
prognosis33 and multiple regions of genomic gain and loss 
are consistent with r/r disease.45

In conclusion, we have developed PDX models derived 
from CNS-involved ALCL that demonstrate sensitivity to 
brigatinib, even when known crizotinib resistance mecha-
nisms are active.
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