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Abstract – Requirement engineering is a mandatory phase of the Software development life cycle (SDLC) that includes defining and 
documenting system requirements in the Software Requirements Specification (SRS). As the complexity increases, it becomes difficult to 
categorise the requirements into functional and non-functional requirements. Presently, the dearth of automated techniques necessitates 
reliance on labour-intensive and time-consuming manual methods for this purpose. This research endeavours to address this gap 
by investigating and contrasting two prominent feature extraction techniques and their efficacy in automating the classification of 
requirements. Natural language processing methods are used in the text pre-processing phase, followed by the Term Frequency – Inverse 
Document Frequency (TF-IDF) and Word2Vec for feature extraction for further understanding. These features are used as input to the 
Machine Learning algorithms. This study compares existing machine learning algorithms and discusses their correctness in categorising 
the software requirements. In our study, we have assessed the algorithms Decision Tree (DT), Random Forest (RF), Logistic Regression 
(LR), Neural Network (NN), K-Nearest Neighbour (KNN) and Support Vector Machine (SVM) on the precision and accuracy parameters. 
The results obtained in this study showed that the TF-IDF feature selection algorithm performed better in categorising requirements than 
the Word2Vec algorithm, with an accuracy of 91.20% for the Support Vector Machine (SVM) and Random Forest algorithm as compared 
to 87.36% for the SVM algorithm. A 3.84% difference is seen between the two when applied to the publicly available PURE dataset. We 
believe these results will aid developers in building products that aid in requirement engineering.

Keywords: Natural Language Processing, Machine Learning, Software Engineering, Supervised Machine Learning

1.  INTRODUCTION

In system engineering, the software development life 
cycle (SDLC) or application development life cycle is a 
process utilised to plan, test, and deploy software proj-
ects. The SDLC is a standardised procedure that tries to 
guarantee the accuracy of the shipped software in ac-
cordance with the client’s requirements. A crucial stage 
in SDLC is requirement engineering, which involves es-
tablishing, documenting, and managing system require-
ments [1]. Requirement elicitation, which is a compo-
nent of requirement engineering, is the process of col-

lecting software requirements by communicating with 
stakeholders. The methods used for requirement elicita-
tion include task analysis, interviews, and brainstorming. 

There are two main types of requirements: Function-
al and Non-Functional. Functional requirements are 
mandatory requirements that must be implemented in 
the software system. It defines what a system must do 
and its features and functions. Non-functional require-
ments are not mandatory but desirable attributes that 
specify how a system should function. They can be con-
sidered as quality attributes of the software systems.
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Another aspect of requirement engineering is re-
quirement prioritisation. After identifying functional 
and non-functional requirements, priorities are to be 
assigned to streamline and order the development of 
software. Requirement prioritisation is a continuous 
process encompassing multifaceted and critical deci-
sion-making events that simplify high-quality software 
development. This process ensures that the ordering 
of both functional and non-functional requirements 
specified by software stakeholders is correct for imple-
mentation [2]. 

These requirements are ordered as per their signifi-
cance, such as conflict, penalty, and price [3]. Given the 
rising demand for software functionality, many software 
solutions have a wide range of requirements. Imple-
menting various requirements in a limited amount of 
time with limited availability of resources and budget is 
challenging. Hence, software products are delivered in 
stages. With each new release, features can be added. 
However, this prioritisation of shipping the critical re-
quirements earliest and proceeding with the less crucial 
aspects makes requirement engineering a challenging 
process. Accurate requirement classification is critical to 
a software project’s success. There are significant risks as-
sociated with the incorrect classification of requirements 
[4]. These risks can entail the project being over budget, 
going overtime, or even failing. According to research, 
71% of errors result from an unclear understanding and 
classification of requirements [5]. The CHAOS report by 
the Standish Group outlined the causes of IT project fail-
ure in the United States. It revealed that just 16.2% of IT 
projects were successful; the rest failed [6]. The current 
manual methods for classifying software requirements 
are labour and time-intensive and require subject-mat-
ter specialists. Additionally, manual techniques can also 
lead to inaccuracy and misrepresentation. Our purpose 
in undertaking this research is to provide a modern auto-
mated solution that will aid the process of requirement 
engineering by improving accuracy while reducing the 
time taken. 

Significant research is being conducted in the field 
of applying machine learning models and techniques 
in classifying text [7] from documents and other natu-
ral language processing techniques. Based on several 
studies [3, 8, 9] and comparative analysis, in this paper, 
TF-IDF and Word2Vec techniques have been employed 
for feature selection and several machine learning al-
gorithms, which are Decision tree, Random Forest, 
Linear regression, Neural network, KNN (K – nearest 
neighbours), SVM (Support vector machines) for text 
categorisation.

This paper is organised as follows: The literature re-
view is covered in section two. The research method-
ology and techniques employed are thoroughly de-
scribed in section three. Experimental results are dis-
cussed in section four. In section five, the conclusion is 
presented, and future scope is discussed in section six. 

2. LITERATURE REVIEW

Using machine learning, researchers have employed 
many techniques to classify software requirements 
(functional and nonfunctional). The j48 decision tree 
is implemented with pruned and unpruned being 
the two types of trees to create a total of four models; 
model 1 handles ‘authentication authorization’ type 
of security requirements, model 2 deals with ‘access 
control’ requirements, model 3 defines ‘cryptography-
encryption’ requirements and model 4 is concerned 
with ‘data integrity’ requirements. Out of which, model 
4 gives the maximum accuracy [10]. The use of algo-
rithms such as MNB, Gaussian Naïve Bayes (GNB), KNN, 
Decision tree, Support Vector Machine (SVM), and Sto-
chastic Gradient Descent SVM (SVM SGD) was done. Of 
these, SVM and SGD performed better than all the al-
gorithms with GNB performing the worst [11]. The au-
thor has used KNN, SVM, Logistic regression, and MNB. 
SVM and Linear regression both have shown high pre-
cision values in classifications of functional and non-
functional requirements [12]. In this paper, the authors 
have used Multinomial Naïve Bayes, KNN, Sequential 
Minimal Optimization (SMO). SMO performed the best 
with an accuracy of 0.729 [13]. A series of support vec-
tor machine (SVM) is used along with lexical features to 
achieve recall and precision on 0.92 [10]. It is observed 
that the modified version of decision tree, Multiple Cor-
relation based decision tree, used to classify software 
requirements performs better when using TF-IDF as a 
feature extraction method [14]. MNB and Logistic re-
gression are employed to obtain an accuracy of 95.55% 
and 91.23% respectively [15]. Naïve Bayes and decision 
tree were employed on a dataset comprising crowd-
sourced software requirements with accuracy results 
for Naïve Bayes being 92.7% and Decision tree being 
84.2% [16]. The study investigated two types of models 
CNN (convolutional neural network) and ANN (Artificial 
neural network) by varying the hyperparameters i.e., 
Training epoch, Batch size, Number of filters, Embed-
ding Dimension for CNN and Training Epochs, Alpha, 
Hidden Neurons for ANN having achieved an accuracy 
of 82% to 90% for the ANN model and 82% to 94% for 
the CNN models [17]. A semi-supervised learning ap-
proach is described for NFR classification. This approach 
with EM strategy (expectation maximisation) shows an 
improvement in classification accuracy as compared to 
supervised naïve bayes, KNN and TF-IDF in terms of its 
accuracy. In accordance with the percentage increase 
of labelled requirements, the accuracy achieved ranges 
from 80% to higher 90’s [18]. In this approach, the BoW 
(bag of words) is used as a text vectorization technique 
in combination with two machine learning algorithms, 
SVM and KNN. The results are presented in three types. 
Firstly, the classification of FR/NFR having a precision of 
90% and 82%, secondly, the classification of subcatego-
ries of NFR with an accuracy of 68% and 56% and lastly, 
the classification of subcategories of NFR and FR with 
a precision of 73% and 67% respectively, for SVM and 
KNN algorithms [19]. Researchers applied the TF-IDF 
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preprocessing technique to a dataset containing SRS 
document phrases with functional and non-functional 
requirements and were able to achieve an accuracy of 
78.57% for the SVM algorithm whereas decision tree 
performed the worst with an accuracy of 61.42% [20]. 

The studies mentioned had to preprocess and extract 
important features to manually achieve this goal. With 
the rise of powerful deep learning algorithms, cheaper 
computational power, and other advancements facili-
tating the use of such algorithms, it was observed that 
end-to-end methods could be built to do this work. 
The authors in [21] employed the use of Bidirectional 
Gated Recurrent Neural Networks (BiGRU) to classify 
requirements using raw text, using word and character 
sequence as tokens. The accuracy range for the Word 
sequence ranged from 76% to 87% whereas for the 
character sequence ranged from 56% to 70% for binary 
classification and multiclass multilabel classification. The 
results were 69% for word vector and 64% for character 
sequence. The authors have examined the possibility of 
combining standard feature selection with 9 different 
kinds of deep learning predictors. They have used dif-
ferent types of Max–Min ratio (MMR) approaches, which 
have shown an improvement in performance by 1 to 5% 
when tested on the PROMISE dataset [22]. 

The research gap that we identified in the reviewed 
publications is that they do not consider all types of 
software requirements (functional/non-functional) 
[10, 11, 13] as well as a wide array of existing machine 
learning algorithms have not been evaluated [10, 15, 
16, 19]. To overcome this drawback, machine learning 
algorithms such as DT, RF, LR, NN, KNN, and SVM are 
considered, and feature extraction techniques, TF-IDF 
and Word2Vec are evaluated in this study. This will as-
sist researchers in developing the software framework.

3. METHODOLOGY

To classify software requirements, many research-
ers have suggested various requirement classification 
strategies. Since each stakeholder has a unique view-
point on the software, this process takes a long time 
to complete. This calls for automating the requirement 
identification process. Different machine learning (ML) 
techniques are utilised to automate the requirements 
classification. As these requirements are stated in natu-
ral language, the text pre-processing phase is neces-
sary to turn the text into vectors. These vectors can be 
used as input for ML algorithms. The steps in the con-
duct of this research are mentioned in Fig.1.

Fig. 1. Proposed Architecture for Automation of Classifying Requirements

3.1. TExT PREPROCESSING

Natural language processing (NLP) is a branch of Ma-
chine learning that deals with teaching computers to 
process data that is specified in human-readable lan-
guage. The raw text is cleaned by feature extraction 
and text preprocessing techniques, which then supply 
the features to machine learning algorithms. Training 
on supervised learning algorithms becomes easier 
when raw text is processed. The text preprocessing 
methods are as follows:

•	 Extract text: This method uses Python libraries to 
extract the text from documents in PDF or CSV for-
mats to give the outputs in paragraphs.

•	 Lowercase: All uppercase characters are converted 
to lowercase, as having some uppercase characters 
might lead to incorrect feature extraction caused 
by duplication.

•	 Removal of noise: meaningless symbols that do not 
carry any specific meaning, such as ! $@$%&*(^$#@
{}[]:’’><,.}]| are removed.

•	 Removal of white space: extra white space occurring 
between two words is removed for preprocessing.

•	 Removal of stop words: certain words in grammar 
such as “the”, “a”, “on”, “is”, “all” do not carry any in-
formation of significance and hence are removed.

3.2. ExTRACTION TECHNIqUE

Based on the literature survey, two techniques, Term 
Frequency – Inverse Document Frequency and Word-
2Vec are used to extract features.

Term Frequency – Inverse Document Frequency 
(TF-IDF) – is a method to compute words in a set of 
documents. It quantifies the frequency of a term in a 
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document while considering its rarity across the entire 
collection, aiding in information retrieval and text anal-
ysis. It is calculated by:

(1)

where Term Frequency (TF) is simply a frequency coun-
ter for a word (w) in document(d).

(2)

Inverse Document Frequency measures the informa-
tiveness of word (w). It is calculated by

(3)

Word2Vec – Word2Vec's objective is to align the vec-
tors of words with similar meanings in the vector space. 
It searches for mathematical similarities. Word2Vec au-
tomatically distributes numerically and vectorizes word 
characteristics, such as the context of specific words.

3.3. CLASSIFICATION ALGORITHMS

•	 Decision Tree (DT): A Decision Tree is a non-para-
metric algorithm for classification and regression. It 
organises data into a tree-like flowchart, using if-else 
tests on features to recursively partition the dataset. 
The leaves of the tree provide final predictions. Mea-
sures like Entropy, Gini Index, and Chi-Square Test 
guide the selection of important features, aiding in 
decision-making and prediction accuracy.

•	 Random Forest (RF): It is an ensemble method, 
which means that a random forest model is com-
posed of numerous decision trees, known as esti-
mators, each of which generates a separate set of 
predictions. The estimators' predictions are com-
bined by the random forest model to yield a more 
precise prediction.

•	 Logistic Regression (LR): It is an ML Algorithm used 
for binary classification by predicting whether 
something happens or not. It uses a Sigmoid func-
tion (Logistic function) to give the probability 
output which is then compared to a pre-defined 
threshold and further labelled into one of the two 
categories accordingly. 

•	 Neural Network (NN): It is an ML Algorithm used 
to diagnose the relationships in a set of features 
through a process inspired by the behaviour of the 
human brain. Several nodes comprise a neural net-
work layer that can have multiple layers.  

•	 K-nearest neighbours (KNN): It is a type of supervised 
learning classifier that groups individual data points 
together which are in close proximity (k closest rela-
tives). It assumes that points lying near one another 
are similar. The class label is decided based on the 
class labels assigned to the surrounding points; this 
is referred to as “majority voting”. Its performance is 
lower than SVM and Multinomial Naïve Bayes.

•	 Support Vector Machines (SVM): are a set of super-
vised machine learning algorithms employed for 
classification and regression. In an n-dimensional 
space, where n represents the number of features, 
data items are plotted, and a hyperplane is identi-
fied. This hyperplane effectively separates the co-
ordinates into positive and negative classes, clas-
sifying the data items. SVM is less suitable for large 
datasets due to extended training times.

4. ExPERIMENTAL RESULTS

To the best of our knowledge, a comparison between 
Word2Vec and TF-IDF feature extraction techniques 
has yet to be performed on the PURE dataset.

4.1. ExPERIMENTAL SETTINGS

These experiments were carried out on a local com-
puter running 64-bit Windows 11 equipped with 8GB 
RAM. These experiments were carried out on a local 
Jupyter Notebook environment with the Python3 pro-
gramming language.

4.2. DESCRIPTION OF THE DATASET

Table 1. Categories of Requirements

PURE dataset [23]

1. Functional Requirement 
(FR) 11. Quality attribute 

requirements

2. Qualitative attributes 12. Availability requirement

3. Help module 13. Maintainability requirement

4. Support module 14. Other requirements

5. Audit module 15. Safety requirement / 
Security requirement

6. Access module 16. Usability requirements

7. Ease of use 17. Portability requirements 

8. Usability 18. Testability requirements 

9. System Availability 19. Other nonfunctional 
requirements 

10. Performance and scalability 
/ Performance requirement 20. Software quality attributes

The publicly available dataset PURE (PUblicREquire-
ment) used is a compendium of 79 different documents 
in PDF and HTML formats. These are SRS (Software Re-
quirement Specification) documents that represent re-
al-world requirements taken from academia, industry, 
etc., and contain 20 different functional and nonfunc-
tional requirements written in natural language. These 
documents would be representative of the client’s re-
quirements, typically presented to the software devel-
opers. Table 1 provides an overview of the number of 
requirements present in the dataset [23].

4.2. RESULTS

This study uses the PURE dataset, which contains 79 
SRS documents. Two text preprocessing techniques, 
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Word2Vec and TF-IDF, are employed. A total of 2153 
feature instances were extracted, representing 20 dis-
tinct feature categories within the dataset. The results 
are as follows. A comparison of the results using the 
TF-IDF technique and the Word2Vec technique is dis-
cussed below.

Using the TF-IDF preprocessing technique, which 
calculates how relevant a word in a series or corpus is 
to a text/document [24], in our study, all of the algo-
rithms were able to identify Functional, Access mod-
ule, Maintainability requirements, other requirements, 
Performance requirements, software quality attributes, 
Usability, and software qualitative attributes, as illus-
trated in Fig. 2. 

Only Decision Tree was able to identify the Audit 
Module, and only Neural Network was able to identify 
Portability Requirements. The Help module, support 

Fig. 2. Comparison of ML Algorithms Using TF-IDF 
(Precision)

Fig. 3. Comparison of ML Algorithms Using TF-IDF 
(Accuracy)

module, Ease of use, Availability, Usability require-
ments, Testability, and Other nonfunctional require-
ments were all not identified by any of the algorithms. 
However, some algorithms, while able to correctly 
identify the requirements, are not in all cases able to 
correctly map those requirements to the correspond-
ing test dataset, as shown in Table 2. ‘0’ indicates that it 
is identified but not mapped, whereas ‘-‘ indicates it is 
not identified at all.

Fig. 3 shows the accuracy technique for the various 
algorithms. SVM (support vector machine) performs the 
best with an accuracy of 91.20%, followed by 90.10% for 
the KNN algorithm. Decision Tree, Logistic Regression, 
Random Forest, and Neural Network all have accuracies 
of 88.46%, 87.91%, 87.36%, and 84.06% respectively.

Table 2. Comparison of Precision Value for ML Algorithms Using TF-IDF
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KNN - - 0 0.25 0.75 - - - - 0
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Fig. 5. Comparison of ML Algorithms Using 
Word2Vec (Accuracy)

Fig. 4. Comparison of ML Algorithms Using 
Word2Vec (Precision)
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Random forest - 0 0 0.33 0 0 1 - 0 0

Logistic regression - - 0 0 0 0 0 - 0 0

Neural network - - 0 0 0 0 0 - 0 0

KNN - - 0 0.5 0 0 0 - 0 0

SVM - - 0 0 0 0 0 - 0 0

The Word2Vec learns representations by predicting 
word contexts in a given dataset. This enables efficient en-
coding of semantic similarities and differences, facilitating 
tasks like natural language processing and machine learn-
ing [25]. In our research, all the algorithms were able to 
identify Functional requirements, Qualitative attributes, 
Access module, Usability, Maintainability, other require-
ment, Safety/Security Requirements, Usability require-
ments, Portability, other nonfunctional requirements, 
and software quality attributes. Only random forest and 
decision tree can classify the Help module and Availabil-
ity requirements; all other requirements were unidenti-
fied by any of the algorithms. However, some algorithms, 
while able to correctly identify the requirements, are not 
in all cases able to correctly map those requirements to 
the corresponding test dataset, as illustrated in Table 3. ‘0’ 
indicates that it is identified but not mapped whereas ‘-‘ 
indicates it is not identified at all.

5. CONCLUSION

Through this work, we have provided a systematic 
comparison of several ML algorithms (DT, Random 
Forest, LR, NN, KNN, and SVM) used to identify and 
categorise a number of functional and non-functional 
requirements. The dataset undergoes preprocessing 
which includes extracting the text, conversion to low-
ercase, removal of noise, white space, and stop words 
after which the feature selection technique of TF-IDF 
and Word2Vec is employed. The performance of the ML 
algorithms is measured by the test dataset.

79 separate SRS documents in PDF and HTML for-
mats that depict actual client requests were employed 
in the second phase of our research. In this, the feature 
selection techniques are compared while the pre-pro-
cessing methods stay the same. The study was carried 
out using the Word2Vec and TF-IDF approaches. When 
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compared to the Word2Vec technique, it has been 
found that the TF-IDF feature selection technique pro-
duces better outcomes in subsequent algorithmic eval-
uations. 91.20% (for the SVM and Random Forest algo-
rithm) as compared to 87.36% (for the SVM algorithm), 
a 3.84% difference is seen between the two. We are 
sure that these techniques will assist developers in au-
tomating the task of software requirement categorisa-
tion, thus saving time, money, and other vital resources 
in the SDLC while being able to ship the most suitable 
product tailored to the stakeholder’s requirements. Ad-
ditionally, it can assist industry experts in choosing the 
appropriate algorithm that offers the most significant 
degree of accuracy in the categorisation process. 

6. FUTURE SCOPE

To facilitate the widespread adoption of ML algo-
rithms in requirement engineering, the future scope 
entails extending the research to ensure practical ap-
plicability and scalability. The focus should be on opti-
mising the proposed methods for large-scale projects. 
Additionally, there is a need to explore integration with 
popular development tools, thereby facilitating adop-
tion by development teams and streamlining the soft-
ware engineering process. 
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