
Semi-automated Software Requirements
Categorisation using Machine Learning
Algorithms

1107

Original Scientific Paper

Abstract – Requirement engineering is a mandatory phase of the Software development life cycle (SDLC) that includes defining and
documenting system requirements in the Software Requirements Specification (SRS). As the complexity increases, it becomes difficult to
categorise the requirements into functional and non-functional requirements. Presently, the dearth of automated techniques necessitates
reliance on labour-intensive and time-consuming manual methods for this purpose. This research endeavours to address this gap
by investigating and contrasting two prominent feature extraction techniques and their efficacy in automating the classification of
requirements. Natural language processing methods are used in the text pre-processing phase, followed by the Term Frequency – Inverse
Document Frequency (TF-IDF) and Word2Vec for feature extraction for further understanding. These features are used as input to the
Machine Learning algorithms. This study compares existing machine learning algorithms and discusses their correctness in categorising
the software requirements. In our study, we have assessed the algorithms Decision Tree (DT), Random Forest (RF), Logistic Regression
(LR), Neural Network (NN), K-Nearest Neighbour (KNN) and Support Vector Machine (SVM) on the precision and accuracy parameters.
The results obtained in this study showed that the TF-IDF feature selection algorithm performed better in categorising requirements than
the Word2Vec algorithm, with an accuracy of 91.20% for the Support Vector Machine (SVM) and Random Forest algorithm as compared
to 87.36% for the SVM algorithm. A 3.84% difference is seen between the two when applied to the publicly available PURE dataset. We
believe these results will aid developers in building products that aid in requirement engineering.

Keywords: Natural Language Processing, Machine Learning, Software Engineering, Supervised Machine Learning

1. INTRODUCTION

In system engineering, the software development life
cycle (SDLC) or application development life cycle is a
process utilised to plan, test, and deploy software proj-
ects. The SDLC is a standardised procedure that tries to
guarantee the accuracy of the shipped software in ac-
cordance with the client’s requirements. A crucial stage
in SDLC is requirement engineering, which involves es-
tablishing, documenting, and managing system require-
ments [1]. Requirement elicitation, which is a compo-
nent of requirement engineering, is the process of col-

lecting software requirements by communicating with
stakeholders. The methods used for requirement elicita-
tion include task analysis, interviews, and brainstorming.

There are two main types of requirements: Function-
al and Non-Functional. Functional requirements are
mandatory requirements that must be implemented in
the software system. It defines what a system must do
and its features and functions. Non-functional require-
ments are not mandatory but desirable attributes that
specify how a system should function. They can be con-
sidered as quality attributes of the software systems.

Volume 14, Number 10, 2023

Pratvina Talele
Department of Computer Engineering and
Technology,
Dr. Vishwanath Karad MIT World Peace University,
Pune, India
pratvina.talele@mitwpu.edu.in

Siddharth Apte
Department of Computer Engineering and
Technology,
Dr. Vishwanath Karad MIT World Peace University,
Pune, India
sidapte.01@gmail.com

Rashmi Phalnikar
Department of Computer Engineering and
Technology,
Dr. Vishwanath Karad MIT World Peace University,
Pune, India
rashmi.phalnikar@mitwpu.edu.in

Harsha Talele
Department of Computer Engineering,
Pimpri Chinchwad College of Engineering,
Pune, India
harshatalele19@gmail.com

1108 International Journal of Electrical and Computer Engineering Systems

Another aspect of requirement engineering is re-
quirement prioritisation. After identifying functional
and non-functional requirements, priorities are to be
assigned to streamline and order the development of
software. Requirement prioritisation is a continuous
process encompassing multifaceted and critical deci-
sion-making events that simplify high-quality software
development. This process ensures that the ordering
of both functional and non-functional requirements
specified by software stakeholders is correct for imple-
mentation [2].

These requirements are ordered as per their signifi-
cance, such as conflict, penalty, and price [3]. Given the
rising demand for software functionality, many software
solutions have a wide range of requirements. Imple-
menting various requirements in a limited amount of
time with limited availability of resources and budget is
challenging. Hence, software products are delivered in
stages. With each new release, features can be added.
However, this prioritisation of shipping the critical re-
quirements earliest and proceeding with the less crucial
aspects makes requirement engineering a challenging
process. Accurate requirement classification is critical to
a software project’s success. There are significant risks as-
sociated with the incorrect classification of requirements
[4]. These risks can entail the project being over budget,
going overtime, or even failing. According to research,
71% of errors result from an unclear understanding and
classification of requirements [5]. The CHAOS report by
the Standish Group outlined the causes of IT project fail-
ure in the United States. It revealed that just 16.2% of IT
projects were successful; the rest failed [6]. The current
manual methods for classifying software requirements
are labour and time-intensive and require subject-mat-
ter specialists. Additionally, manual techniques can also
lead to inaccuracy and misrepresentation. Our purpose
in undertaking this research is to provide a modern auto-
mated solution that will aid the process of requirement
engineering by improving accuracy while reducing the
time taken.

Significant research is being conducted in the field
of applying machine learning models and techniques
in classifying text [7] from documents and other natu-
ral language processing techniques. Based on several
studies [3, 8, 9] and comparative analysis, in this paper,
TF-IDF and Word2Vec techniques have been employed
for feature selection and several machine learning al-
gorithms, which are Decision tree, Random Forest,
Linear regression, Neural network, KNN (K – nearest
neighbours), SVM (Support vector machines) for text
categorisation.

This paper is organised as follows: The literature re-
view is covered in section two. The research method-
ology and techniques employed are thoroughly de-
scribed in section three. Experimental results are dis-
cussed in section four. In section five, the conclusion is
presented, and future scope is discussed in section six.

2. LITERATURE REVIEW

Using machine learning, researchers have employed
many techniques to classify software requirements
(functional and nonfunctional). The j48 decision tree
is implemented with pruned and unpruned being
the two types of trees to create a total of four models;
model 1 handles ‘authentication authorization’ type
of security requirements, model 2 deals with ‘access
control’ requirements, model 3 defines ‘cryptography-
encryption’ requirements and model 4 is concerned
with ‘data integrity’ requirements. Out of which, model
4 gives the maximum accuracy [10]. The use of algo-
rithms such as MNB, Gaussian Naïve Bayes (GNB), KNN,
Decision tree, Support Vector Machine (SVM), and Sto-
chastic Gradient Descent SVM (SVM SGD) was done. Of
these, SVM and SGD performed better than all the al-
gorithms with GNB performing the worst [11]. The au-
thor has used KNN, SVM, Logistic regression, and MNB.
SVM and Linear regression both have shown high pre-
cision values in classifications of functional and non-
functional requirements [12]. In this paper, the authors
have used Multinomial Naïve Bayes, KNN, Sequential
Minimal Optimization (SMO). SMO performed the best
with an accuracy of 0.729 [13]. A series of support vec-
tor machine (SVM) is used along with lexical features to
achieve recall and precision on 0.92 [10]. It is observed
that the modified version of decision tree, Multiple Cor-
relation based decision tree, used to classify software
requirements performs better when using TF-IDF as a
feature extraction method [14]. MNB and Logistic re-
gression are employed to obtain an accuracy of 95.55%
and 91.23% respectively [15]. Naïve Bayes and decision
tree were employed on a dataset comprising crowd-
sourced software requirements with accuracy results
for Naïve Bayes being 92.7% and Decision tree being
84.2% [16]. The study investigated two types of models
CNN (convolutional neural network) and ANN (Artificial
neural network) by varying the hyperparameters i.e.,
Training epoch, Batch size, Number of filters, Embed-
ding Dimension for CNN and Training Epochs, Alpha,
Hidden Neurons for ANN having achieved an accuracy
of 82% to 90% for the ANN model and 82% to 94% for
the CNN models [17]. A semi-supervised learning ap-
proach is described for NFR classification. This approach
with EM strategy (expectation maximisation) shows an
improvement in classification accuracy as compared to
supervised naïve bayes, KNN and TF-IDF in terms of its
accuracy. In accordance with the percentage increase
of labelled requirements, the accuracy achieved ranges
from 80% to higher 90’s [18]. In this approach, the BoW
(bag of words) is used as a text vectorization technique
in combination with two machine learning algorithms,
SVM and KNN. The results are presented in three types.
Firstly, the classification of FR/NFR having a precision of
90% and 82%, secondly, the classification of subcatego-
ries of NFR with an accuracy of 68% and 56% and lastly,
the classification of subcategories of NFR and FR with
a precision of 73% and 67% respectively, for SVM and
KNN algorithms [19]. Researchers applied the TF-IDF

1109Volume 14, Number 10, 2023

preprocessing technique to a dataset containing SRS
document phrases with functional and non-functional
requirements and were able to achieve an accuracy of
78.57% for the SVM algorithm whereas decision tree
performed the worst with an accuracy of 61.42% [20].

The studies mentioned had to preprocess and extract
important features to manually achieve this goal. With
the rise of powerful deep learning algorithms, cheaper
computational power, and other advancements facili-
tating the use of such algorithms, it was observed that
end-to-end methods could be built to do this work.
The authors in [21] employed the use of Bidirectional
Gated Recurrent Neural Networks (BiGRU) to classify
requirements using raw text, using word and character
sequence as tokens. The accuracy range for the Word
sequence ranged from 76% to 87% whereas for the
character sequence ranged from 56% to 70% for binary
classification and multiclass multilabel classification. The
results were 69% for word vector and 64% for character
sequence. The authors have examined the possibility of
combining standard feature selection with 9 different
kinds of deep learning predictors. They have used dif-
ferent types of Max–Min ratio (MMR) approaches, which
have shown an improvement in performance by 1 to 5%
when tested on the PROMISE dataset [22].

The research gap that we identified in the reviewed
publications is that they do not consider all types of
software requirements (functional/non-functional)
[10, 11, 13] as well as a wide array of existing machine
learning algorithms have not been evaluated [10, 15,
16, 19]. To overcome this drawback, machine learning
algorithms such as DT, RF, LR, NN, KNN, and SVM are
considered, and feature extraction techniques, TF-IDF
and Word2Vec are evaluated in this study. This will as-
sist researchers in developing the software framework.

3. METHODOLOGY

To classify software requirements, many research-
ers have suggested various requirement classification
strategies. Since each stakeholder has a unique view-
point on the software, this process takes a long time
to complete. This calls for automating the requirement
identification process. Different machine learning (ML)
techniques are utilised to automate the requirements
classification. As these requirements are stated in natu-
ral language, the text pre-processing phase is neces-
sary to turn the text into vectors. These vectors can be
used as input for ML algorithms. The steps in the con-
duct of this research are mentioned in Fig.1.

Fig. 1. Proposed Architecture for Automation of Classifying Requirements

3.1. TExT PREPROCESSING

Natural language processing (NLP) is a branch of Ma-
chine learning that deals with teaching computers to
process data that is specified in human-readable lan-
guage. The raw text is cleaned by feature extraction
and text preprocessing techniques, which then supply
the features to machine learning algorithms. Training
on supervised learning algorithms becomes easier
when raw text is processed. The text preprocessing
methods are as follows:

•	 Extract text: This method uses Python libraries to
extract the text from documents in PDF or CSV for-
mats to give the outputs in paragraphs.

•	 Lowercase: All uppercase characters are converted
to lowercase, as having some uppercase characters
might lead to incorrect feature extraction caused
by duplication.

•	 Removal of noise: meaningless symbols that do not
carry any specific meaning, such as ! $@$%&*(^$#@
{}[]:’’><,.}]| are removed.

•	 Removal of white space: extra white space occurring
between two words is removed for preprocessing.

•	 Removal of stop words: certain words in grammar
such as “the”, “a”, “on”, “is”, “all” do not carry any in-
formation of significance and hence are removed.

3.2. ExTRACTION TECHNIqUE

Based on the literature survey, two techniques, Term
Frequency – Inverse Document Frequency and Word-
2Vec are used to extract features.

Term Frequency – Inverse Document Frequency
(TF-IDF) – is a method to compute words in a set of
documents. It quantifies the frequency of a term in a

1110 International Journal of Electrical and Computer Engineering Systems

document while considering its rarity across the entire
collection, aiding in information retrieval and text anal-
ysis. It is calculated by:

(1)

where Term Frequency (TF) is simply a frequency coun-
ter for a word (w) in document(d).

(2)

Inverse Document Frequency measures the informa-
tiveness of word (w). It is calculated by

(3)

Word2Vec – Word2Vec's objective is to align the vec-
tors of words with similar meanings in the vector space.
It searches for mathematical similarities. Word2Vec au-
tomatically distributes numerically and vectorizes word
characteristics, such as the context of specific words.

3.3. CLASSIFICATION ALGORITHMS

•	 Decision Tree (DT): A Decision Tree is a non-para-
metric algorithm for classification and regression. It
organises data into a tree-like flowchart, using if-else
tests on features to recursively partition the dataset.
The leaves of the tree provide final predictions. Mea-
sures like Entropy, Gini Index, and Chi-Square Test
guide the selection of important features, aiding in
decision-making and prediction accuracy.

•	 Random Forest (RF): It is an ensemble method,
which means that a random forest model is com-
posed of numerous decision trees, known as esti-
mators, each of which generates a separate set of
predictions. The estimators' predictions are com-
bined by the random forest model to yield a more
precise prediction.

•	 Logistic Regression (LR): It is an ML Algorithm used
for binary classification by predicting whether
something happens or not. It uses a Sigmoid func-
tion (Logistic function) to give the probability
output which is then compared to a pre-defined
threshold and further labelled into one of the two
categories accordingly.

•	 Neural Network (NN): It is an ML Algorithm used
to diagnose the relationships in a set of features
through a process inspired by the behaviour of the
human brain. Several nodes comprise a neural net-
work layer that can have multiple layers.

•	 K-nearest neighbours (KNN): It is a type of supervised
learning classifier that groups individual data points
together which are in close proximity (k closest rela-
tives). It assumes that points lying near one another
are similar. The class label is decided based on the
class labels assigned to the surrounding points; this
is referred to as “majority voting”. Its performance is
lower than SVM and Multinomial Naïve Bayes.

•	 Support Vector Machines (SVM): are a set of super-
vised machine learning algorithms employed for
classification and regression. In an n-dimensional
space, where n represents the number of features,
data items are plotted, and a hyperplane is identi-
fied. This hyperplane effectively separates the co-
ordinates into positive and negative classes, clas-
sifying the data items. SVM is less suitable for large
datasets due to extended training times.

4. ExPERIMENTAL RESULTS

To the best of our knowledge, a comparison between
Word2Vec and TF-IDF feature extraction techniques
has yet to be performed on the PURE dataset.

4.1. ExPERIMENTAL SETTINGS

These experiments were carried out on a local com-
puter running 64-bit Windows 11 equipped with 8GB
RAM. These experiments were carried out on a local
Jupyter Notebook environment with the Python3 pro-
gramming language.

4.2. DESCRIPTION OF THE DATASET

Table 1. Categories of Requirements

PURE dataset [23]

1. Functional Requirement
(FR) 11. Quality attribute

requirements

2. Qualitative attributes 12. Availability requirement

3. Help module 13. Maintainability requirement

4. Support module 14. Other requirements

5. Audit module 15. Safety requirement /
Security requirement

6. Access module 16. Usability requirements

7. Ease of use 17. Portability requirements

8. Usability 18. Testability requirements

9. System Availability 19. Other nonfunctional
requirements

10. Performance and scalability
/ Performance requirement 20. Software quality attributes

The publicly available dataset PURE (PUblicREquire-
ment) used is a compendium of 79 different documents
in PDF and HTML formats. These are SRS (Software Re-
quirement Specification) documents that represent re-
al-world requirements taken from academia, industry,
etc., and contain 20 different functional and nonfunc-
tional requirements written in natural language. These
documents would be representative of the client’s re-
quirements, typically presented to the software devel-
opers. Table 1 provides an overview of the number of
requirements present in the dataset [23].

4.2. RESULTS

This study uses the PURE dataset, which contains 79
SRS documents. Two text preprocessing techniques,

1111Volume 14, Number 10, 2023

Word2Vec and TF-IDF, are employed. A total of 2153
feature instances were extracted, representing 20 dis-
tinct feature categories within the dataset. The results
are as follows. A comparison of the results using the
TF-IDF technique and the Word2Vec technique is dis-
cussed below.

Using the TF-IDF preprocessing technique, which
calculates how relevant a word in a series or corpus is
to a text/document [24], in our study, all of the algo-
rithms were able to identify Functional, Access mod-
ule, Maintainability requirements, other requirements,
Performance requirements, software quality attributes,
Usability, and software qualitative attributes, as illus-
trated in Fig. 2.

Only Decision Tree was able to identify the Audit
Module, and only Neural Network was able to identify
Portability Requirements. The Help module, support

Fig. 2. Comparison of ML Algorithms Using TF-IDF
(Precision)

Fig. 3. Comparison of ML Algorithms Using TF-IDF
(Accuracy)

module, Ease of use, Availability, Usability require-
ments, Testability, and Other nonfunctional require-
ments were all not identified by any of the algorithms.
However, some algorithms, while able to correctly
identify the requirements, are not in all cases able to
correctly map those requirements to the correspond-
ing test dataset, as shown in Table 2. ‘0’ indicates that it
is identified but not mapped, whereas ‘-‘ indicates it is
not identified at all.

Fig. 3 shows the accuracy technique for the various
algorithms. SVM (support vector machine) performs the
best with an accuracy of 91.20%, followed by 90.10% for
the KNN algorithm. Decision Tree, Logistic Regression,
Random Forest, and Neural Network all have accuracies
of 88.46%, 87.91%, 87.36%, and 84.06% respectively.

Table 2. Comparison of Precision Value for ML Algorithms Using TF-IDF

Precision

M
L

al
go

ri
th

m

FR

q
ua

lit
at

iv
e

at
tr

ib
ut

e

H
el

p
m

od
ul

e

Su
pp

or
t m

od
ul

e

A
ud

it
 m

od
ul

e

A
cc

es
s

m
od

ul
e

Ea
se

 o
f U

se

U
sa

bi
lit

y

Sy
st

em

A
va

ila
bi

lit
y

Pe
rf

or
m

an
ce

Re

qu
ir

em
en

ts

Decision tree 0.98 0 - - 0 1 - 0.60 0 0.62

Random forest 0.91 0 - - - 0 - 0 - 1

Logistic regression 0.90 0 - - - 0 - 0 - 0

Neural network 0.97 0 - - - 0 - 0 - 0.67

KNN 0.95 0 - - - 1 - 0.33 - 1

SVM 0.95 0 - - - 0 - 0.50 - 1

M
L

al
go

ri
th

m

q
ua

lit
y

A
tt

ri
bu

te

Re
qu

ir
em

en
ts

A
va

ila
bi

lit
y

Re
qu

ir
em

en
ts

M
ai

nt
ai

na
bi

lit
y

Re
qu

ir
em

en
ts

O
th

er

Re
qu

ir
em

en
ts

Sa
fe

ty
/S

ec
ur

it
y

Re
qu

ir
em

en
ts

U
sa

bi
lit

y
Re

qu
ir

em
en

ts

Po
rt

ab
ili

ty

Re
qu

ir
em

en
ts

Te
st

ab
ili

ty

Re
qu

ir
em

en
ts

O
th

er

N
on

fu
nc

ti
on

al

Re
qu

ir
em

en
ts

So
ft

w
ar

e
q

ua
lit

y
A

tt
ri

bu
te

s

Decision tree - - 0 0 0.57 - - - - 0.5

Random forest - - 0 0.4 0.33 - - - - 0

Logistic regression - - 0 0.5 0.33 - - - - 0

Neural network 0 - 0 0.14 0.60 - 0 - - 0

KNN - - 0 0.25 0.75 - - - - 0

SVM - - 0 0.33 0.57 - - - - 1

1112 International Journal of Electrical and Computer Engineering Systems

Fig. 5. Comparison of ML Algorithms Using
Word2Vec (Accuracy)

Fig. 4. Comparison of ML Algorithms Using
Word2Vec (Precision)

Precision

M
L

al
go

ri
th

m

FR

q
ua

lit
at

iv
e

at
tr

ib
ut

e

H
el

p
m

od
ul

e

Su
pp

or
t m

od
ul

e

A
ud

it
 m

od
ul

e

A
cc

es
s

m
od

ul
e

Ea
se

 o
f U

se

U
sa

bi
lit

y

Sy
st

em

A
va

ila
bi

lit
y

Pe
rf

or
m

an
ce

Re

qu
ir

em
en

ts

Decision tree 0.93 0 0 - - 0 - 0 - -

Random forest 0.90 0 0 - - 0 - 0 - -

Logistic regression 0.87 0 - - - 0 - 0 - -

Neural network 0.90 0 - - - 0 - 0 - -

KNN 0.89 0 - - - 0 - 0 - -

SVM 0.87 0 - - - 0 - 0 - -

M
L

al
go

ri
th

m

q
ua

lit
y

A
tt

ri
bu

te

Re
qu

ir
em

en
ts

A
va

ila
bi

lit
y

Re
qu

ir
em

en
ts

M
ai

nt
ai

na
bi

lit
y

Re
qu

ir
em

en
ts

O
th

er

Re
qu

ir
em

en
ts

Sa
fe

ty
/S

ec
ur

it
y

Re
qu

ir
em

en
ts

U
sa

bi
lit

y
Re

qu
ir

em
en

ts

Po
rt

ab
ili

ty

Re
qu

ir
em

en
ts

Te
st

ab
ili

ty

Re
qu

ir
em

en
ts

O
th

er

N
on

fu
nc

ti
on

al

Re
qu

ir
em

en
ts

So
ft

w
ar

e
q

ua
lit

y
A

tt
ri

bu
te

s

Decision tree - 0 0 0 0 0 0.1 - 0 0

Random forest - 0 0 0.33 0 0 1 - 0 0

Logistic regression - - 0 0 0 0 0 - 0 0

Neural network - - 0 0 0 0 0 - 0 0

KNN - - 0 0.5 0 0 0 - 0 0

SVM - - 0 0 0 0 0 - 0 0

The Word2Vec learns representations by predicting
word contexts in a given dataset. This enables efficient en-
coding of semantic similarities and differences, facilitating
tasks like natural language processing and machine learn-
ing [25]. In our research, all the algorithms were able to
identify Functional requirements, Qualitative attributes,
Access module, Usability, Maintainability, other require-
ment, Safety/Security Requirements, Usability require-
ments, Portability, other nonfunctional requirements,
and software quality attributes. Only random forest and
decision tree can classify the Help module and Availabil-
ity requirements; all other requirements were unidenti-
fied by any of the algorithms. However, some algorithms,
while able to correctly identify the requirements, are not
in all cases able to correctly map those requirements to
the corresponding test dataset, as illustrated in Table 3. ‘0’
indicates that it is identified but not mapped whereas ‘-‘
indicates it is not identified at all.

5. CONCLUSION

Through this work, we have provided a systematic
comparison of several ML algorithms (DT, Random
Forest, LR, NN, KNN, and SVM) used to identify and
categorise a number of functional and non-functional
requirements. The dataset undergoes preprocessing
which includes extracting the text, conversion to low-
ercase, removal of noise, white space, and stop words
after which the feature selection technique of TF-IDF
and Word2Vec is employed. The performance of the ML
algorithms is measured by the test dataset.

79 separate SRS documents in PDF and HTML for-
mats that depict actual client requests were employed
in the second phase of our research. In this, the feature
selection techniques are compared while the pre-pro-
cessing methods stay the same. The study was carried
out using the Word2Vec and TF-IDF approaches. When

1113Volume 14, Number 10, 2023

compared to the Word2Vec technique, it has been
found that the TF-IDF feature selection technique pro-
duces better outcomes in subsequent algorithmic eval-
uations. 91.20% (for the SVM and Random Forest algo-
rithm) as compared to 87.36% (for the SVM algorithm),
a 3.84% difference is seen between the two. We are
sure that these techniques will assist developers in au-
tomating the task of software requirement categorisa-
tion, thus saving time, money, and other vital resources
in the SDLC while being able to ship the most suitable
product tailored to the stakeholder’s requirements. Ad-
ditionally, it can assist industry experts in choosing the
appropriate algorithm that offers the most significant
degree of accuracy in the categorisation process.

6. FUTURE SCOPE

To facilitate the widespread adoption of ML algo-
rithms in requirement engineering, the future scope
entails extending the research to ensure practical ap-
plicability and scalability. The focus should be on opti-
mising the proposed methods for large-scale projects.
Additionally, there is a need to explore integration with
popular development tools, thereby facilitating adop-
tion by development teams and streamlining the soft-
ware engineering process.

7. REFERENCES:

[1] P. Talele, R. Phalnikar, “Software requirements clas-

sification and prioritization using machine learn-

ing”, Machine Learning for Predictive Analysis,

Lecture Notes in Networks and Systems, Springer,

Vol. 141, 2021, pp. 257-267.

[2] P. Talele, R. Phalnikar, “Automated Requirement

Prioritisation Technique Using an Updated Adam

Optimisation Algorithm”, International Journal of

Intelligent Systems and Applications in Engineer-

ing, Vol. 11, No. 3, 2023, pp. 1211-1221.

[3] R. Phalnikar, D. Jinwala, “Analysis of Conflicting

User Requirements in Web Applications Using

Graph Transformation”, ACM SIGSOFT Software

Engineering Notes, Vol. 40, No. 2, 2015, pp. 1-7.

[4] H. Alrumaih, A. Mirza, H. Alsalamah, "Toward Au-

tomated Software Requirements Classification",

Proceedings of the 21st Saudi Computer Society

National Computer Conference, Riyadh, Saudi

Arabia, 25-26 April 2018, pp. 1-6.

[5] “Fixing the Software Requirements Mess”, https://

www.cio.com/article/255253/developer-fixing-

the-software-requirements-mess.html (accessed:

2023)

[6] The Standish Group Report, “Chaos report”,

https://simpleisbetterthancomplex.com/me-

dia/2016/10/chaos-report.pdf (accessed: 2023)

[7] R. Pawar, S. Ghumbre, R. Deshmukh, “Developing

an Improvised E-Menu Recommendation Sys-

tem for Customer”, Recent Findings in Intelligent

Computing Techniques, Advances in Intelligent

Systems and Computing, Vol. 708, Springer, Sin-

gapore.

[8] M. Binkhonain, L. Zhao, “A review of machine

learning algorithms for identification and classi-

fication of non-functional requirements”, Expert

Systems with Applications: X, Vol. 1, 2019.

[9] A. Khan, B. Baharudin, L. H. Lee, K. Khan, "A Review

of Machine Learning Algorithms for Text-Docu-

ments Classification", Journal of Advances in Infor-

mation Technology, Vol. 1, No. 1, 2010, pp. 4-20.

[10] R. Jindal, R. Malhotra, A. Jain, “Automated clas-

sification of security requirements”, Proceedings

of the International Conference on Advances in

Computing, Communications and Informatics,

Jaipur, India, 21-24 September 2016, pp. 2027-

2033.

[11] M. A. Haque, M. Abdur Rahman, M. S. Siddik,

"Non-Functional Requirements Classification with

Feature Extraction and Machine Learning: An Em-

pirical Study", Proceedings of the 1st International

Conference on Advances in Science, Engineering

and Robotics Technology, Dhaka, Bangladesh, 3-5

May 2019, pp. 1-5.

[12] E. D. Canedo, B. C. Mendes, “Software Require-

ments Classification Using Machine Learning Al-

gorithms”, Entropy, Vol. 22, No. 9, 2020 p. 1057.

[13] P. Talele, R. Phalnikar, "Classification and Prioriti-

sation of Software Requirements using Machine

Learning – A Systematic Review", Proceedings of

the 11th International Conference on Cloud Com-

puting, Data Science & Engineering, Noida, India,

28-29 January 2021, pp. 912-918.

[14] P. Talele, R. Phalnikar, “Multiple correlation based

decision tree model for classification of software

requirements”, International Journal of Compu-

tational Science and Engineering, Vol. 26, No. 3,

2023, pp. 305-315.

International Journal of Electrical and Computer Engineering Systems1114

[15] A. A. A. Althanoon, Y. S. Younis, “Supporting Clas-
sification of Software Requirements system Using
Intelligent Technologies Algorithms”, Technium,
Vol. 3, No. 11, 2021, pp. 32-39.

[16] S. Taj, Q. Arain, I. Memon, A Zubedi. “To apply Data
Mining for Classification of Crowd sourced Soft-
ware Requirements”, Proceedings of the 8th Inter-
national Conference on Software and Information
Engineering, New York, NY, USA, 2019, pp. 42-46.

[17] C. Baker, L. Deng, S. Chakraborty, J. Dehlinger, "Au-
tomatic Multi-class Non-Functional Software Re-
quirements Classification Using Neural Networks",
Proceedings of the IEEE 43rd Annual Computer
Software and Applications Conference, Milwau-
kee, WI, USA, 15-19 July 2019, pp. 610-615.

[18] A. Casamayor, D. Godoy, M. Campo, “Identification
of non-functional requirements in textual speci-
fications: A semi-supervised learning approach”,
Information and Software Technology, Vol 52, No.
4, 2010, pp. 436-445.

[19] G. Y. Quba, H. Al Qaisi, A. Althunibat, S. AlZu’bi,
"Software Requirements Classification using Ma-
chine Learning algorithm’s", Proceedings of the
International Conference on Information Technol-
ogy, Amman, Jordan, 14-15 July 2021, pp. 685-690.

[20] S. Apte, Y. Honrao, R. Shinde, P. Talele, R. Phalnikar,
“Automatic Extraction of Software Requirements
Using Machine Learning”, ICT with Intelligent Ap-

plications, Lecture Notes in Networks and Sys-

tems, Vol. 719, Springer, Singapore.

[21] O. Al Dhafer, I. Ahmad, S. Mahmood, “An end-to-

end deep learning system for requirements clas-

sification using recurrent neural networks”, Infor-

mation and Software Technology, Vol. 147, 2022,

p. 106877.

[22] S. Saleem, M. N. Asim, L. Van Elst, A. Dengel, “FNReq-

Net: A hybrid computational framework for func-

tional and non-functional requirements classifica-

tion”, Journal of King Saud University - Computer

and Information Sciences, Vol. 35, No. 8, 2023.

[23] “Natural Language Requirements Dataset”, http://

nlreqdataset.isti.cnr.it/ (accessed: 2023)

[24] Y. Xu, C. Zhang, W. Song, "Prioritizing Customer

Requirements for Science and Technology Service

Platform Based on Improved TF-IDF and Senti-

ment Analysis", Proceedings of the IEEE Interna-

tional Conference on Industrial Engineering and

Engineering Management, Kuala Lumpur, Malay-

sia, 7-10 December 2022, pp. 210-214.

[25] S. J. Putra, M. N. Gunawan, A. A. Hidayat, "Feature

Engineering with Word2vec on Text Classification

Using The K-Nearest Neighbor Algorithm", Pro-

ceedings of the 10th International Conference on

Cyber and IT Service Management, Yogyakarta,

Indonesia, 20-21 September 2022, pp. 1-6.

