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A large-scale series of cyclic triaxial tests were conducted to explore the evolution
of the dynamic resilient modulus of silty clay for the heavy-haul railway subgrade.
A novel loading sequence for measuring the dynamic resilient modulus was
established, which characterized the dynamic stress state of the subgrade
induced by the heavy-haul train load. In the experimental investigation, the
deviatoric stresses, confining stress, initial moisture content, and compaction
degree were considered as variables, and the effects of the aforementioned
variables were evaluated quantitatively. The experimental results showed that
the dynamic resilient modulus was negatively related to deviatoric stresses and
initial moisture content, where the average decreased rates were 14.65% and
27.79% with the increase in deviatoric stresses from 60 kPa to 150 kPa and
increase in the initial moisture content from 9.8% to 15.8%, respectively.
Furthermore, the dynamic resilient modulus was positively related to confining
stress and compaction degree, where the average increased rates were 23.25%
and 27.48% with the increase in confining stress from 20 kPa to 60 kPa and
increase in compaction degree from 0.91 to 0.95. To provide a better
application, the two high-accuracy predicted methods were established
through the empirical model and artificial neural network approach including
the aforementioned variables. This study can provide useful guidelines for the
effective and safe design of the heavy-haul railway subgrade filled with silty clay.

KEYWORDS

dynamic resilient modulus, subgrade, heavy-haul railway, predicted method, silty clay

1 Introduction

The heavy-haul train is a meaningful approach to improving the capacity and efficiency
of railway transportation (Krechowiecki-Shaw et al., 2016). The subgrade is usually
considered as the important support to undertake the cyclic load transmitted from the
superstructure such as track and ballast, and its stability is critical for the safe operation of
heavy-haul railways (Leng et al., 2017; Bian et al., 2018; Thevakumar et al., 2021; Li et al.,
2022). Compared with the common railway, the cyclic stress is higher and the action depth is
bigger in the subgrade induced by a heavy-haul train load (Zhao et al., 2021; Cui et al., 2022;
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Cui et al., 2023). The dynamic resilient modulus is a key parameter
for evaluating the mechanical performance and service life of the
subgrade for railways and pavement structures (Han and Vanapalli,
2016; Nie et al., 2021; Wang et al., 2022; Indraratna et al., 2023a).
Therefore, it is necessary to reveal the evolution of the dynamic
resilient modulus of the heavy-haul railway subgrade and establish
the predicted method on the dynamic resilient modulus.

The concept of dynamic resilient modulus was proposed by Seed
and applied for evaluating the dynamic performance of the
subgrade, which was defined as the ratio of the amplitude of
deviatoric stresses to resilient strain (Seed et al., 1962).
Subsequently, numerous scholars studied the evolution and
estimation of the dynamic resilient modulus of subgrade soils
and structures subjected to the traffic load. According to the
previous research, several effects on the dynamic resilient
modulus were mainly divided into the types of subgrade soils,
stress levels exposed to soil specimens, and physical conditions of
soils such as initial moisture content and compaction degree (Li and
Selig, 1994; Kim and Kim, 2007; Ng et al., 2013; Zhang et al., 2018;
Zhang et al., 2019a; Zhang et al., 2019b; Liu et al., 2019; Chen et al.,
2020). Furthermore, numerous prediction models on the dynamic
resilient modulus were established and validated, where these
models were divided into three categories, such as models based
only on the statistical relationship between the dynamic resilient
modulus and physical properties (CBR, etc.), models considering the
applied stress state (deviatoric stresses, confining stress, suction
stress, etc.), and models extending the independent stress state
variable approach. Recently, with the development of the
experimental data scale and artificial neural network (ANN)
method, many data-driven models have been successfully used
for predicting the dynamic resilient modulus of subgrade soils,
where the ANN model can capture the complex non-linear
relationships of high-dimensional data to promote prediction
accuracy (Khasawneh and Al-jamal, 2019; Ren et al., 2019; Zhang
J.-h. et al., 2021; Zhang Q. et al., 2021; Heidarabadizadeh et al., 2021;
Zou et al., 2021; Khan et al., 2022; Indraratna et al., 2023b).

However, the research results mentioned previously were
obtained and analyzed based on the conventional cyclic stress
levels induced by normal traffic load, where the high cyclic stress
levels induced by the heavy-haul train load were little considered,
especially for subgrade silty clay. Therefore, the objective of this
paper is to reveal the evolution of the dynamic resilient modulus
including the effect variables of deviatoric stresses, confining stress,
moisture content, and compaction degree by using a series of cyclic
triaxial tests conducted on subgrade silty clay. In addition, based on
the experimental results, the predicted methods for predicting the
dynamic resilient modulus were proposed through the empirical
model and ANN approach, which can supply the fundamental
reference for the subgrade design of the heavy-haul railway.

2 Experimental investigation

2.1 Preparation of the specimen

The soil tested in this paper was taken from the subgrade site of
the Datong–Qinhuangdao heavy-haul railway, as shown in Figure 1,
and the field tests of the dynamic response of the heavy-haul

subgrade were conducted by our team here (Cui et al., 2023).
According to the Chinese Standard TB 10102–2010 (Code for
Soil Test of Railway Engineering), the basic physical properties of
the tested soil were obtained and listed in Figure 2 and Table 1.

Considering the variations in the compaction degree and
moisture content of subgrade soil during the service period, the
compaction degrees are set as 0.91, 0.93, and 0.95, and the initial
moisture contents are set as 10%, 13% (optimal moisture content),
and 16%, respectively.

The specimens were unsaturated cylinders with 39.1 mm
diameter and 80 mm height under the target compaction degree
and initial moisture content. Meanwhile, the predetermined silty
clays were compacted into five layers with equal thickness and
quality of any layer to ensure the uniform distribution of soil
particles and water, as shown in Figure 3.

2.2 Cyclic triaxial test

Due to the stress dependence of the dynamic resilient modulus,
the loading condition is crucial to measure and determine the
dynamic resilient modulus reasonably by using the cyclic triaxial
test. According to the stress state obtained from the field test and
numerical simulation, and considering the expansion of railway
capacity such as the 400 kN axle load train in Australia, the
deviatoric stresses are set as 60 kPa, 90 kPa, 120 kPa, and
150 kPa, and the confining stresses are set as 20 kPa, 40 kPa, and
60 kPa (Indraratna et al., 2021; Zhao et al., 2021; Cui et al., 2023).
Meanwhile, the additional 15 kPa static deviatoric stresses are added
to simulate the superstructure. The loading frequency is set as 1 Hz,
which can be usually calculated by the passing speed of the heavy-
haul train. Before the formal loading, a pre-loading phase of
1000 cycles is adopted to eliminate the initial plastic strain and
reduce the variability of specimens. In general, the loading sequence
is listed in Table 2. It is shown that the dynamic resilient modulus is
defined and calculated as follows:

MR � σd
εd
, (1)

where MR is the dynamic resilient modulus (MPa), σd is the
deviatoric stress (kPa), σd = σ1→σ3, where σ1 and σ3 are the
major principal stress and confining stress (kPa), respectively,
and εd is the average resilient deformation recorded in the last
five cyclic loadings.

3 Results and analysis

3.1 Effect of deviatoric stresses

Figure 4 shows the effect of deviatoric stresses on the dynamic
resilient modulus of subgrade silty clay at different confining
stresses and physical states (initial moisture content w and
compaction degree K). It can be seen that with the increase in
deviatoric stresses, the dynamic resilient modulus decreases
under any stress and physical states. Because the increase in
deviatoric stresses makes the resilient strain increase during
every cycle of loading, there is a decrease in the dynamic
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resilient modulus according to the calculation by Eq. 1. Then, the
decreased rate is introduced and defined as the ratio of variation
in the dynamic resilient modulus with an increase in maximum
deviatoric stresses to the values of dynamic resilient modulus
with minimum deviatoric stresses. Through the calculation, the
results of the decreased rate due to the deviatoric stresses are
tabulated in Table 3. It can be concluded that the average
decreased rate is 14.65% when the deviatoric stresses increase
from 60 kPa to 150 kPa. In addition, the maximum value of the
decreased rate is up to 39.1% when confining stress, moisture
content, and compaction degree are 20 kPa, 15.8%, and 0.91,
respectively, which means that the deviatoric stress level must be
considered in the subgrade design and be controlled and limited
in a safe range, such as promoting the stiffness of track or ballast.

3.2 Effect of confining stress

Figure 5 shows the effect of confining stress on the dynamic
resilient modulus when the other states of the specimen are the
same. It can be seen that the dynamic resilient modulus increases
with the increase in confining stress, which is because the confining
stress can restrict the deformation of the specimen subjected to the
cyclic loading, leading to a decrease in the value of resilient strain
with every cycle loading. Similar to the quantitative analysis
mentioned previously, the increased rate is defined as the ratio of
the variation in the dynamic resilient modulus with an increase in
the maximum confining stress to the values of the dynamic resilient
modulus with minimum confining stress. Table 4 shows the
calculated results of increased rates of every test condition. It can
be known that the average increased rate is 23.25% when the
confining stress increases from 20 kPa to 60 kPa. In addition, the
maximum value of increased rate due to the confining stress is up to
51.9% at the state of 150 kPa deviatoric stresses, 15.8% initial
moisture content, and 0.91 compaction degree, where this state
of the tested specimen can be regarded as the most unfavorable
condition among the designed test conditions. Therefore, increasing
the confining stress level can be taken as an effective measurement to
guarantee subgrade stability, such as the subgrade structures with
prestress (Dong et al., 2023) (as shown in Figure 6).

3.3 Effect of initial moisture content

Figure 7 shows the relationships between the dynamic resilient
modulus and different moisture content. It can be proven that the
dynamic resilient modulus decreases with the increase in the initial
moisture content obviously. The reason for this phenomenon is that
when the initial moisture content increases, the water film on the soil
particle surface thickens and friction between the soil particles

FIGURE 1
Location of subgrade silty clay sampling (Cui et al., 2023).

FIGURE 2
Gradation curve of soil samples.

TABLE 1 Basic physical properties of the tested soil.

Liquid limit (%) Plastic limit (%) Optimal moisture content (%) Maximum dry density (g/cm3) Soil gravity Soil type

27.1 16.8 12.9 1.89 2.7 Low liquid silty
clay
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decreases. Then, the soil particles move easily, and deformation
increases under the cyclic loading, resulting in the decrease in the
dynamic resilient modulus and degrade in performance. Similarly,
the decreased rate is also used, where the calculation is the same as
that mentioned previously as the ratio of variation in dynamic
resilient modulus with an increase in the maximum initial
moisture content to the values of dynamic resilient modulus with
the minimum initial moisture content. As tabulated in Table 5, it can
be concluded that the average decreased rate is 27.79% when the
initial moisture content increases from 10% to 16%. In addition, the
maximum decreased rate is up to 41.6% due to the increase in the
initial moisture content. Furthermore, it is well known that if the
initial moisture content is higher, the sensitivity of freeze–thaw or
drying–wetting cycles of subgrade soil is more obvious to soften the
mechanical performance of the subgrade under the coupled effect of
the heavy-haul train load and environmental load (Ding et al., 2020;
Hao et al., 2022; Abbey et al., 2023; Ha et al., 2023). Thus, it is
suggested that the subgrade silty clay should be treated by additional

mixtures or the drainage materials should be used in the subgrade
structure to control the moisture content level during the service
period of the heavy-haul railway (Changizi et al., 2021; Wu et al.,
2021; Zhang et al., 2023).

3.4 Effect of compaction degree

Figure 8 shows the effect of confining stress on the dynamic
resilient modulus when the other tested conditions are the same.
Obviously, it can be known that the dynamic resilient modulus is
positively related to the compaction degree. The mechanism is that
when the compaction degree of the soil specimen is larger, the pores
and contact force between the soil particles are smaller and stronger,
respectively, which promote the resistance on deformation of the
specimen under cyclic loading. Table 6 presents the increased rates
due to the increase in the compaction degree, where this increased
rate is decided as the ratio of variation in the dynamic resilient

FIGURE 3
Schematic illustration of specimen compaction.

TABLE 2 Loading sequence for heavy-haul railway subgrade soils.

Sequence Confining stress (kPa) Deviatoric stress (kPa) Major principal stress (kPa) Number of cycles

0 (pre-loading) 20 90 125 1000

1 60 60 135 100

2 40 60 115 100

3 20 60 95 100

4 60 90 165 100

5 40 90 145 100

6 20 90 125 100

7 60 120 195 100

8 40 120 175 100

9 20 120 155 100

10 60 150 225 100

11 40 150 205 100

12 20 150 185 100
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modulus with an increase in themaximum compaction degree to the
values of dynamic resilient modulus with the minimum compaction
degree. The average increased rate is 27.48%, and the maximum

value is up to 47.6%. Hence, the construction of the heavy-haul
railway subgrade must improve the compaction quality to reach the
designed compaction degree, such as the development of intelligent
compaction technology.

4 Predicted method

4.1 Empirical model

In the existing empirical model for predicting the dynamic
resilient modulus of subgrade soils, the most widely used model
is the three-parameter universal model proposed by NCHRP 1–28A,
as shown in the following equation:

MR � k1Pa
θ

Pa
( )k2 τoct

Pa
+1( )k3

, (2)

where Pa� 101.3 kPa is the atmospheric pressure; θ is the bulk stress,
θ � σ1 + σ2 + σ3 (σ1 is the major principal stress, σ2 is the
intermediate principal stress, and σ3 is the confining stress); τoct
is the octahedral shear stress, τoct �

�
2

√
/3(σ1 − σ3) �

�
2

√
/3σd; and

k1, k2, and k3 are the regression coefficients.

FIGURE 4
Effect of deviatoric stresses on the dynamic resilient modulus.

TABLE 3 Effect of deviatoric stresses on the decreased rate.

Specimen state Decreased rate (%)

Confining stress

20 kPa (%) 40 kPa (%) 60 kPa (%)

w = 10%, K = 0.91 18.7 14.2 13.3

w = 10%, K = 0.93 14.2 11.7 11.6

w = 10%, K = 0.95 12.6 8.9 6.5

w = 13%, K = 0.91 30.8 28.8 16.9

w = 13%, K = 0.93 23.1 18.0 12.2

w = 13%, K = 0.95 15.6 11.9 10.0

w = 16%, K = 0.91 39.1 30.6 24.3

w = 16%, K = 0.93 28.9 28.5 20.4

w = 16%, K = 0.95 21.0 18.1 15.4
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TABLE 4 Effect of confining stress on the increased rate.

Specimen state Increased rate (%)

Deviatoric stresses

60 kPa (%) 90 kPa (%) 120 kPa (%) 150 kPa (%)

w = 10%, K = 0.91 17.1 21.2 21.5 24.9

w = 10%, K = 0.93 15.2 17.2 16.9 18.8

w = 10%, K = 0.95 14.0 15.5 18.8 22.0

w = 13%, K = 0.91 17.9 25.5 30.8 41.6

w = 13%, K = 0.93 16.9 20.3 24.6 33.5

w = 13%, K = 0.95 14.7 15.9 19.3 22.4

w = 16%, K = 0.91 22.2 29.0 39.4 51.9

w = 16%, K = 0.93 19.9 21.8 27.3 34.3

w = 16%, K = 0.95 17.2 19.6 22.5 25.5

FIGURE 5
Effect of confining stress on the dynamic resilient modulus.
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According to the aforementioned analysis, the effects of the
compaction degree and initial moisture content are important in
relation to the dynamic resilient modulus and should be

introduced into the prediction model. Thus, the novel
empirical model is proposed by modifying the three-parameter
model as follows:

FIGURE 6
Schematic drawing of the prestressed subgrade structure (Dong et al., 2023).

FIGURE 7
Effect of the initial moisture content on the dynamic resilient modulus.
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TABLE 5 Effect of the initial moisture content on the decreased rate.

Specimen state Decreased rate (%)

Deviatoric stress

60 kPa (%) 90 kPa (%) 120 kPa (%) 150 kPa (%)

σ3 = 20 kPa, K = 0.91 22.0 26.9 34.5 41.6

σ3 = 20 kPa, K = 0.93 23.8 27.4 32.5 36.9

σ3 = 20 kPa, K = 0.95 24.6 28.3 30.7 31.9

σ3 = 40 kPa, K = 0.91 21.6 24.7 30.3 36.6

σ3 = 40 kPa, K = 0.93 22.2 25.8 32.5 37.0

σ3 = 40 kPa, K = 0.95 23.5 27.0 24.9 31.2

σ3 = 60 kPa, K = 0.91 18.7 22.2 24.8 29.0

σ3 = 60 kPa, K = 0.93 20.8 24.5 26.5 28.6

σ3 = 60 kPa, K = 0.95 22.5 25.7 28.6 29.9

FIGURE 8
Effect of compaction degree on the dynamic resilient modulus.
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Mr � k1PaK
k2

w

wopt
( )k3 θ

Pa
( )k4 τoct

Pa
+1( )k5

, (3)

where K is the compaction degree, w is the initial moisture content,
wopt is the optimal moisture content, and parameters k1–k5 are the
regression coefficients.

In the proposedmodel, the coefficient k1 is a positive value to adjust
the fitting results. Then, it has been concluded that the dynamic resilient
modulus is positively related to the compaction degree and confining

stress, where the coefficients k2 and k4 are the positive values.
Furthermore, the coefficients k3 and k5 are negative values due to
the softening effect on the dynamic resilient performance of subgrade
soils caused by the increase in the initialmoisture content and deviatoric
stresses.

Through non-linear regression fitting, the regression
coefficients are obtained based on the experimental data, and
fitted results are shown in Table 7 and Figure 9. According to the
comparison between the tested values and predicted values, the
proposed empirical model is acceptable and accurate to be
applied for predicting the dynamic resilient modulus of
subgrade silty clay.

4.2 ANN model

4.2.1 Basic principle
The error backpropagation network is the most well-known

feedforward network, which was proposed by Rumelhart et al.
(1986), and it has good multi-dimensional function mapping
capabilities. This network uses the square of the error as the
objective function, employs the gradient descent method to find the
minimum value of the objective function, and continuously modifies
the connection weight to reduce the difference between the network
output and objective output. However, the convergence speed of the BP
network is slow, and it is easy to fall into the local optimum. Ding et al.
(2011) optimized the BP network by using the genetic algorithm (GA),
and the results showed that this method was less likely to fall into a local
optimum and it had superior generalization capability.

This paper uses the genetic algorithm to optimize the input initial
weights and thresholds of the BP network. The algorithm flowchart is
shown in Figure 10: the network is initialized first, and then, the initial
weights and thresholds are generated; the second process is the GP
process, the numerical values are encoded, the initial population is
created, the fitness function is established, and finally, the individuals
with high fitness for replication are selected, intersected, andmutated to
update the new populations in this process; and finally, the optimal

TABLE 6 Effect of compaction degree on the increased rate.

Specimen state Increased rate (%)

Deviatoric stress

60 kPa (%) 90 kPa (%) 120 kPa (%) 150 kPa (%)

w = 10%, σ3 = 20 kPa 23.7 27.7 28.2 33.0

w = 10%, σ3 = 20 kPa 21.0 29.8 36.3 47.6

w = 10%, σ3 = 20 kPa 19.6 25.2 35.5 55.2

w = 13%, σ3 = 40 kPa 21.9 25.7 22.5 29.4

w = 13%, σ3 = 40 kPa 18.8 25.5 37.3 47.1

w = 13%, σ3 = 40 kPa 18.9 21.8 32.0 40.3

w = 16%, σ3 = 60 kPa 20.4 21.7 25.3 29.9

w = 16%, σ3 = 60 kPa 17.7 20.0 24.4 27.5

w = 16%, σ3 = 60 kPa 14.7 16.1 19.0 28.2

TABLE 7 Regression coefficients of the proposed empirical model.

k1 k2 k3 k4 k5 R2

1.536 −0.760 3.6056 0.316 −1.088 0.94

FIGURE 9
Comparison between the tested values and predicted values.
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weight and threshold for the BP algorithm are output if the termination
condition is met; otherwise, the aforementioned operation is repeated.

The input value is normalized and transmitted forward to the
hidden layer, and this input value is then non-linearly transformed
to output by the activation function, and the relationship between
the input and output is shown as follows:

yj � f ∑n
i�1
wjixi

⎛⎝ ⎞⎠ + bj, (4)

where yi is the actual output variable of neurons; f is the activation
function, and the sigmoid function is used as the activation function;

wji is the network weight; xj is the input variable of the neuron; and bj
is the network threshold.

The loss function is used to calculate the network error, as given
in the following equation:

Etotal � 1
2
∑m
k�1

Tk − Ok( ), (5)

where Etotal is the sum of squares of network errors and m is the
number of output nodes; Tk is the target output; andOk is the output
of the k output layer.

FIGURE 10
GA–BP algorithm flowchart.

FIGURE 11
Structure diagram of the ANN.
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The training completes if the termination condition is met;
otherwise, the network weights and thresholds are backpropagated
to the input layer to update the network and repeat it to meet the
objective value by using the gradient descent method shown as follows:

wij l+1( ) � wij l( ) − η
∂Etotal

∂wij l( ), (6)

wjk l+1( ) � wjk l( ) − η
∂Etotal

∂wjk l( ), (7)

bq l+1( ) � bq l( ) − η
∂Etotal

∂bq l( ), (8)

where wij(l), wij(l+1), wjk(l), wjk(l+1), bq(l), and bq(l+1) are the
connection weights of input layer neuron i and hidden layer
neuron j, the connection weights between the hidden layer
neuron j and the output layer neuron k in the lth and l+1st
iteration, and the qth offset in the lth and l+1st iteration,
respectively; η is the learning rate, usually equal to 0.1.

4.2.2 Construction of the ANN
The GA–BP model in this paper contains three network layers,

including an input layer, a hidden layer, and an output layer, as shown
in Figure 11. It can be seen previously that the important factors
affecting the dynamic resilient modulus are the compaction degree K,
initial moisture contentw, bulk stress θ, and octahedral shear stress τoct.
Therefore, these four parameters are the input of the neural network.
The number of nodes in the hidden layer n2 is twice the number of
nodes in the input layer and plus 1 so that n2=9, and the output layer
value is the dynamic resilient modulus (Zhang J.-h. et al., 2021).

FIGURE 12
Fitness curve of the established GA–BP model.

FIGURE 13
Comparison between target values and output values.
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The mapping relationship between the input layer and the
output layer is shown in the following equations:

f z( ) � 1
1 + e−z

, (9)

y � fHO bk +∑9
j�1
wj1fIH bj +∑4

i�1
wijxi

⎛⎝ ⎞⎠⎛⎝ ⎞⎠. (10)

Among them, fIH and fHO are the sigmoid functions between the
input layer and the hidden layer, as well as between the hidden layer
and the output layer, respectively; wij and wj1 are the connection
weights between the input layer and the hidden layer, as well as
between the hidden layer and the output layer, respectively; bj and bk
are the offset of the hidden layer and the output layer, respectively;
and xi is the input variable.

4.2.3 Training results and validation
As shown in Figure 12, the population fitness decreases at the

1st, 14th, and 33rd generations, with fitness values declining by
5.8%, 4.5%, and 2.3%, respectively. It can be seen that the genetic
algorithm has a certain optimization effect on the initial weights and
thresholds of the input BP neural network.

Figure 13 shows the target value and output values of the
training set, validation set, testing set, and all datasets, where the
values of R2 are all above 0.99. Compared with R2 = 0.94 in the
empirical model proposed previously, the accuracy of dynamic
resilient modulus given by the GA–BP model is better. The
prediction method based on ANNs has higher accuracy
compared to traditional methods, and more importantly, its
scalability is great. In subsequent research, if other physical or
environmental factors, such as freeze–thaw cycles, are considered,
it can still have high accuracy with sufficient training datasets.
However, traditional prediction methods need to re-establish
prediction formulas. Therefore, the prediction model based on

ANNs has greater potential in future research, and we will also
conduct further research on this method in the future.

In order to improve the practicality and usability of the GA–BP
model, the graphical user interface (GUI) is designed and developed,
as shown in Figure 14, which provides the application and tool to
obtain the value of dynamic resilient modulus easily for practicing
engineers.

5 Conclusion

In order to explore the evolution of the dynamic resilient
modulus of subgrade silty clay subjected to a heavy-haul train
load, a series of cyclic triaxial tests were conducted considering
the deviatoric stresses, confining stress, initial moisture content, and
compaction degree as experimental variables. The main conclusions
are as follows:

1) The dynamic resilient modulus is positively related to the
confining stress and compaction degree, where the average
increased values of each other are 23.25% and 27.48%,
respectively.

2) The dynamic resilient modulus decreases with the increase in
deviatoric stresses and initial moisture content, where the
average decreased values of each other are 14.65% and
27.79%, respectively.

3) Based on the experimental results, the predicted methods are
established and validated by the empirical model and GA–BP
model. The two prediction models have high accuracy for
predicting the dynamic resilient modulus, where the GA–BP
model is better (R2=0.99) than the empirical model (R2=0.94).
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