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The delineation of well capture zones (WCZs), particularly for water supply wells, is
of utmost importance to ensure water quality. This task requires a comprehensive
understanding of the aquifer’s hydrogeological parameters for precise delineation.
However, the inherent uncertainty associated with these parameters poses a
significant challenge. Traditional deterministic methods bear inherent risks,
emphasizing the demand for more resilient and probabilistic techniques. This
study introduces a novel approach that combines the Karhunen–Loève expansion
(KLE) technique with stochastic modeling to probabilistically delineate well
capture zones in heterogeneous aquifers. Through numerical examples
involving moderate and strong heterogeneity, the effectiveness of KLE
dimension reduction and the reliability of stochastic simulations are explored.
The results show that increasing the number of KL-terms significantly improves
the statistical attributes of the samples. When employing more KL-terms, the
statistical properties of the hydraulic conductivity field outperform those of cases
with fewer KL-terms. Notably, particularly in scenarios of strong heterogeneity,
achieving a convergent probabilistic WCZs map requires a greater number of KL-
terms and stochastic simulations compared to cases with moderate
heterogeneity.
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1 Introduction

Well capture zones have undergone significant evolution as our understanding of
groundwater flow and contaminant transport processes has grown. Early approaches,
such as the fixed-radius method and analytical methods (EPA, 1994; Shan, 1999; Christ
and Goltz, 2002; Fienen et al., 2005), were relatively simplistic; however, they failed to
account for the uncertainties inherent in the groundwater system and potential contaminant
sources. Consequently, these approaches exhibited limitations in providing reliable and
robust protection measures for well capture zones.

To address the demand for enhanced accuracy and reliability in well capture zone
protection strategies, significant progress has been achieved in the field of hydrogeology and
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contaminant transport (Jiang et al., 2019; Zhu et al., 2019). Among
the approaches, the Particle Tracking (PT) method (Rock and
Kupfersberger, 2002; Barry et al., 2009; Nalarajan et al., 2019) has
gained prominence among hydrogeologists. This method entails
utilizing groundwater modeling codes to establish flow systems and
subsequently tracking particles along flow paths to delineate well
capture zones or travel time areas. Nevertheless, it’s important to
note that conventional PT methods often neglect the consideration
of uncertainties.

To address this challenge, one approach is to embed Particle
Tracking (PT) within a Monte Carlo framework (PTMC) (Hunt
et al., 2001; Frind and Molson, 2018; Moeck et al., 2020). By
incorporating Monte Carlo methods, PTMC can evaluate the well
capture zones (WCZs) while accounting for uncertainties. This is
accomplished by simulating possible variations in the flow system
and different flow paths. Each realization represents one possible
state of the aquifer system, and aggregating the outcomes of all
realizations provides a more comprehensive and reliable assessment
of WCZs.

While embedding Particle Tracking within a Monte Carlo
framework (PTMC) offers a degree of uncertainty consideration,
the representation of uncertainty associated with the site’s hydraulic
conductivity can still be relatively simplistic. Often, this relies on
homogeneous or zonal approaches (Qiao et al., 2015; Mohebbi
Tafreshi et al., 2019). The homogeneous approach assumes a
uniform hydraulic conductivity across the entire aquifer, which
could be suitable for specific cases but might oversimplify the
complexity of most sites. The zonal approach seeks to delineate
different hydraulic conductivity values in distinct regions or layers to
better reflect spatial heterogeneity realistically. However, the zonal
approach may not fully capture the true spatial variability of the
hydraulic conductivity.

When dealing with uncertainty in hydraulic conductivity, a more
sophisticated and accurate approach involves the use of geostatistical
modeling methods (Turcke and Kueper, 1996; Patriarche et al., 2005;
Jiang et al., 2021). This technique can generate numerous equiprobable
realizations of the hydraulic conductivity by considering the spatial
variability of geological data. These realizations can subsequently be
integrated into groundwater models to analyze well capture zones.
However, geostatistical modeling methods [such as SGSIM, (Pebesma
and Wesseling, 1998)] require substantial computational resources
when performing extensive site characterization that relies on
statistical information.

To improve the computational efficiency, various methods for
generating hydraulic conductivity fields have been proposed,
including the Fourier transform method (Robin et al., 1993),
wavelet transform method (Haßler et al., 2011), Principal
component analysis method. Among these, the Fourier transform
lacks flexibility dealing with isotropy, and the choice of the wavelet
function has significant impact on the results of the wavelet transform.
In recent years, the Principal Component Analysis (PCA) method is
commonly employed for reducing the dimensionality of hydraulic
conductivity fields. By applying PCA, the hydraulic conductivity field
can be represented with fewer principal components while preserving
the essential information and spatial variability inherent in the
original data. The Karhunen-Loève Expansion (KLE) method
(Ding et al., 2008; Xue et al., 2018; Zhang et al., 2018), a widely
used variant of PCA, is particularly well-suited for handling geologic

attribute data characterized by strong spatial correlation. Through
eigenvalue decomposition of the random field, KLE generates a set of
orthogonal functions that characterize the primary variation modes
within the random field, similar to standard PCA. By selecting the
leading principal components, effective dimensionality reduction can
be achieved.

Previous studies have predominantly relied on the zonal method to
describe heterogeneity, which often falls short of accurately capturing
the true complexity of natural systems. This study aims to advance our
understanding of hydraulic conductivity heterogeneity by adopting the
spatial field perspective, albeit at the cost of increased dimensionality in
the problem to be solved. To address this challenge, we integrate the
dimensionality reduction techniques of Principal Component Analysis
(PCA), particularly the Karhunen-Loève Expansion (KLE), with the
stochastic simulation method to conduct a delineation study of well
capture zones (WCZs) within heterogeneous aquifers. This study spans
various aspects, including the methodological framework, the
effectiveness of KLE-based dimension reduction, and the reliability
of stochastic simulations.

The remainder of this paper is organized as follows. Section 2
provides a comprehensive description of groundwater flow model
and the MODPATH program. It also outlines the methodologies
employed, which include Karhunen-Loève expansion method and
the Monte Carlo simulation method. Section 3 presents an
illustrative example to contextualize this study. In Section 4, the
results obtained from numerical experiments are discussed.
Concluding remarks are given in Section 5.

2 Methods

This section provides an overview of the physical process
(Section 2.1) in this study as well as the methodologies
employed, including Karhunen-Loève (KL) expansion technique
for generating the hydraulic conductivity field (Section 2.2), and
the Monte Carlo simulation method (Section 2.3).

2.1 Problem formulation

In this study, a groundwater flow model was constructed using
the MODFLOWmodule in Flopy (Bakker et al., 2016). Utilizing this
groundwater flow model, we employed the particle tracking
technique from the MODPATH module to determine the sources
of groundwater recharge for supply wells within a specified period
of time.

The governing equation for steady-state groundwater flow is
expressed as follows:

∂
∂xi

Kij
∂h
∂xj

( ) + ε � 0 i,j� 1, 2, (1)

and the flow velocity v [LT−1] can be obtained using Darcy’s law:

vi� −Kij

θ
∂h
∂xj

i,j� 1, 2, (2)

Where h [L] is the hydraulic head; Kij [LT−1] represents the
hydraulic conductivity; xi and xj represent the Cartesian coordinates;
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ε [T-1] is volumetric flux per unit volume representing sources and/
or sinks of water; θ is effective porosity (dimensionless). The
governing equation for flow is solved using the numerical
simulator MODFLOW (Harbaugh et al., 2000).

MODPATH (Pollock, 2016) is a specialized program used for
particle tracking simulations in groundwater studies. The flowline
tracing capability of MODPATH, particularly its backward tracking
technique, can be employed to identify the recharge area of pumping
wells. For two-dimensional steady flow, the mass balance equation
of MODPATH can be expressed as:

∂
∂x1

θv1( ) + ∂
∂x2

θv2( ) � W, (3)

where v1 and v2 are the principal components of the average linear
groundwater velocity vector, W is the volume rate of water created
or consumed by internal sources and sinks per unit volume of
aquifer.

2.2 Generation of hydraulic conductivity
field

Given the intricate and uncertain nature of real geological
media, the utilization of random fields, or spatially correlated
random variables, becomes essential to depict the spatial
distribution attributes of specific geological media. Hydraulic
conductivity, a significant parameter influencing groundwater
flow and contaminant transport, demands the generation of a
well-founded hydraulic conductivity field for robust uncertainty
analysis. Extensive research has corroborated that hydraulic
conductivity fields adhere to a log-normal distribution (Turcke
and Kueper, 1996; Lu et al., 2017) in spatial context.

In the field of hydrogeology, the Karhunen-Loève (KL)
expansion method (Zhang and Lu, 2004) serves as an extensively
used technique for the generation of random fields. This approach

enables the generation of multiple realizations of random fields that
conform to the statistical attributes and spatial structure of the
observed data. In this study, the Karhunen-Loève (KL) expansion
method was adopted for generating the hydraulic conductivity field.

Let Y(x,ω) � ln K(x,ω) be a random event, where x ∈ D and
ω ∈ Ω (a probability space). 〈Y(x,ω)〉 denotes the mean
component of Y(x,ω) over all possible realizations of the
process. A covariance function C(x, y), which is bounded,
symmetric and positive definite, is required to be specified to
construct the KLE and it can be decomposed into:

C x, y( ) � ∑∞
i�1
τ ifi x( )fi y( ), (4)

Where τi and fi(x) are eigenvalues and eigenfunctions of the
correlation function, respectively and can be solved according
to the second kind of the homogeneous Fredholm integral
equation.

The random process Y(x,ω) can be expanded as:

Y x,ω( ) � 〈Y x,ω( )〉 +∑∞
i�1
ξ i

��
τ i

√
fi x,ω( ), (5)

Where ξi are independent standard Gaussian random variables. The
finite-dimensional approximation of the log-conductivity and log-
distribution coefficient field can be given by truncating NKL terms of
Eq. 5.

Y x,ω( ) ≈ 〈Y x,ω( )〉 + ∑NKL

i�1
ξi

��
τ i

√
fi x,ω( ), (6)

2.3 Monte Carlo simulation method

Any model-based risk assessment inherently involves
uncertainties. In the WCZs problem, the incorporation of spatial

FIGURE 1
An illustration of the study area.

Frontiers in Earth Science frontiersin.org03

Gao et al. 10.3389/feart.2023.1302828

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1302828


probability maps can be a viable approach for delineating the
protection areas, which represent the regions that may pose risks
to water supply wells.

The Monte Carlo simulation method is employed in this study
to analyze model uncertainties. In scenarios involving prior
information, the Monte Carlo method is utilized to statistically
estimate the probability of a specific random event. This process
transforms uncertainty within the random model parameters of
hydraulic conductivities into uncertainty within model outcomes,
thereby facilitating uncertainty analysis of WCZs through statistical
techniques. The main steps of our approach are outlined as follows:

3 Illustrative examples

In this study, we investigate a hypothetical aquifer that is saturated
and confined. The aquifer has a fixed thickness of 10 m and spans a
distance of 800 m from east to west and 400 m from north to south. To

model this aquifer, a square grid with dimensions of 10 × 10 m2 was
employed, resulting in a total of 40 rows and 80 columns.

The boundary conditions were established for both the upgradient
(West) and downgradient (East) regions. At the upgradient boundary
(x = 0 m), a hydraulic head of 15 m was specified, whereas at the
downgradient boundary (x = 800 m), a hydraulic head of 10 m was
assigned. Consequently, an average hydraulic gradient of 0.625% was
derived between these two boundary points. The North boundary (y =
500 m) and the South boundary (y = 0 m) were considered
impermeable, as depicted in Figure 1. Additionally, a single
pumping well was positioned at the coordinates of row 21 and
column 62, with a flow rate of 100 m3/d. For the sake of simplicity,
a uniform porosity value of 0.30 was assumed for the aquifer, and the
flow system was in a steady state.

Considering the main objective of this study is to understand the
impact of spatial variability on the delineation ofWCZs and evaluate
the associated probability risks, WCZs were calculated using both
deterministic and stochastic modeling approaches.

FIGURE 2
Statistical attribute (sample mean) with various KL-terms numbers.

The main steps of Monte Carlo simulation to delineate the WCZs

Step 1 Generate parameter values (i.e., hydraulic conductivity field in this study) for the Monte Carlo simulation using Karhunen-Loève (KL) expansion
method described in Section 2.2

Step 2 Configure MODPATH to conduct particle tracking within the groundwater flow field; For each realization of the hydraulic conductivity field, execute
MODPATH’s backward tracking to obtain pathlines for pumping wells

Step 3 Employ the obtained pathline files for post-processing to derive the corresponding WCZs for different hydraulic conductivity fields

Step 4 Analyze the probabilistic WCZs map to evaluate the uncertainty and variability inherent in the delineated WCZs
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(a) Deterministic model: In this approach, a homogeneous aquifer
has a constant hydraulic conductivity of 20.08 m/d (expressed as
lnK = 3.0);

(b) Stochastic model: With the objective of considering different
spatial heterogeneities, the hydraulic conductivity fields were
assumed to follow a lognormal distribution. For both moderate
and strong heterogeneity scenarios, the mean (lnK) remained at
3.0m/d, accompanied by variances (σ2lnK) of 1.0 and 2.5,
respectively. In terms of spatial correlation, for moderate
heterogeneity, the correlation lengths were 120.0 m in the x
direction and 60.0 m in the y direction. For strong
heterogeneity, these values were reduced to 80.0 m in the x
direction and 40.0 m in the y direction.

4 Results and discussion

4.1 Evaluation of the generated random
hydraulic conductivity field

In the context of moderate heterogeneity (with σ2lnK equal to
1.0 and correlation lengths of 120.0 m along the x direction and
60.0 m along the y direction), this study initiates an investigation

into the generation of hydraulic conductivity fields (K-field) using
the Karhunen-Loève Expansion (KLE) technique. When a specific
variogram is given, the KLE technique essentially enables the capture
of the K-field’s variability using a reduced number of significant
eigenvectors, thus simplifying the representation while preserving
the key attributes of the field’s variability.

Based on the preserved variability after KLE dimensionality
reduction, the reduced number can be obtained. In this study,
with the K-field’s dimensionality being 3200 (40 × 80=3200), the
preserved percentages of the total variance are computed for
different KL-terms numbers (100, 200, 300, 400). Specially,
approximately 93.49% of the total variance for the K-field
can be preserved by keeping the first 400 KL-terms (NKLE =
400), i.e.,

∑400
i�1τ i∑∞
i�1τ i

≈ 93.49%, (7)

Preserving only 100, 200, and 300 KL-terms results in retained
percentages of 78.71%, 87.01%, and 91.11%, respectively.

To further investigate the efficiency of sampling under various
KL-terms numbers, statistical attributes of the samples are
computed. Figures 2, 4, 5 illustrate the sample means, variances,
and correlation coefficients (correlation coefficients between each

FIGURE 3
Frequency charts for different lnK ranges with various KL-terms numbers.
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FIGURE 4
Statistical attribute (sample variance) with various KL-terms numbers.

FIGURE 5
Statistical attribute (correlation coefficient) with various KL-terms numbers.
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point in the field and the pumping well) derived from the sampling
data. Within these figures, subfigures labelled (a), (b), (c), and (d)
correspond to KL-terms numbers of 100, 200, 300, and 400,
respectively. For sample mean, frequency charts (Figure 3) with

various KL-terms numbers are added to quantitatively describe the
proportion of area for different lnK ranges.

Figures 2, 3 reveal the spatial randomness and statistical
characteristics (proportion of area) exhibited by sample means.

FIGURE 6
Various K-fields and the corresponding WCZs.
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In Figure 2, it is evident that when the KL-terms number is 100 and
200, the light lime region (values: 2.95–3.00) and pale yellow region
(values: 3.00–3.05) are noticeably smaller compared to the cases with
higher KL-terms (300, 400). In the case of the maximum KL terms
(Figure 2D), there is the largest proportion of area around the mean
(value: 2.95–3.05). For larger KL terms (in Figure 3), there is a
greater proportion of area around the mean (value: 2.95–3.05).

Figure 4 reveal the spatial randomness exhibited by sample
variances. Figure 4 illustrates that when the KL-terms number is 100,
there is a significant deviation from the expected value of 1.0
(σ2lnK� 1.0) in the statistical variance. However, as the number of
KL-terms increases, the statistical variance tends to approach 1.0. In
the case with KL-terms number = 400, the statistical variance
predominantly concentrates in the range of 0.85–1.05, with a
noticeable decrease in the occurrence of high and low variance
regions.

In Figure 5, the dimensions of the red ellipse’s major and minor
axes represent the correlation lengths in the x and y directions of the
variogram (120 m and 60 m, respectively). In the subplots of
Figure 5, a consistent pattern emerges: as the distance from the
pumping well increases, the spatial correlation between sample
points and the pumping well gradually decreases. Concurrently,
with an increasing number of KL-terms, the covariance coefficients
exhibit a more distinct unimodal trend, centered around the
pumping well as the central peak.

In a broader context, the statistical mean shown in Figure 2
remains relatively unaffected by the number of KL-terms. In
contrast, the statistical attributes (variance and correlation
coefficients), as depicted in Figures 4, 5, exhibit significant
improvement with the utilization of 400 KL-terms, outperforming
cases with fewer KL-terms. Notably, the sampling performance with
100 KL-terms falls short of expectations.

4.2 Stochastic simulation of WCZs

Expanding on the stochastic K-field obtained in Section 4.1, this
section utilizes MODPATH for stochastic simulation of WCZs. It
discusses the following aspects: (1) deterministic WCZs versus
stochastic model WCZs; (2) probabilistic WCZs map; (3) the
impact of the number of stochastic realizations. The scenario is
set as follows: (a) Deterministic model: a homogeneous aquifer has a
constant hydraulic conductivity of 20.08 m/d (i.e., lnK = 3.0); (b)
Stochastic model: Within the stochastic model, Monte Carlo

simulations are independently conducted with 10, 50, 100, 200,
300, and 400 times (KL-terms number = 400).

Figure 6 depicts the deterministic WCZs along with four
random realizations (simulations) of K-field and their
corresponding WCZs (100-day backward tracking). Contrasted
with the WCZs obtained through the deterministic model
(Figure 6A), it is evident that despite the mean (lnK� 3.0m/d) of
the random K-fields being identical to the constant K value of the
homogeneous K-field, there exist notable discrepancies in the
resulting WCZs across various random realizations. The
conventional deterministic model yields WCZs with considerable
uncertainty.

As shown in Table 1, the farthest points from pumping well
exhibits significant variations in both distance and direction angle.
Specifically, the farthest point corresponding to Figure 6F is located
at NW66.04° from the pumping well, with a distance of 124.12 m,
which is 1.79 times greater than that of the homogeneous K-field.
Upon comparing the areas of WCZs in Figure 6, notable variations
are evident. The maximum area, depicted in Figure 6F, is 6044 m2,
which is 1.88 times larger than the minimum area of 3217 m2

illustrated in Figure 6H. Consequently, constructing protective
zones for pumping wells based on such deterministic
methodologies carries a substantial element of risk.

As previously mentioned, the WCZs corresponding to various
K-fields exhibit distinct patterns. With the limitations of available
site data, individual K-fields introduce significant uncertainty when
determining WCZs. Recognizing that uncertainty can be effectively
conveyed through probability values, it is rational to consider the
adopting of probabilistic maps for the determination of WCZs.

Given N random K-fields, the process involves determining
whether each grid cell on the site is encompassed by backward
tracking pathlines for each respective K-field. For grid points falling
within the pathlines, they are denoted as 1 using m(i,j); conversely,
for points not within the pathlines, they are denoted as 0.
Subsequently, averaging these values yields the probability values
representing the likelihood of grid points within the site being
situated in the WCZs of the pumping wells.

M i, j( ) � 1
N

∑N
l�1
m i, j( ), (8)

Further investigation delves into the impact of the number of
stochastic simulations on the probabilistic WCZs map. In Figure 7
(100-day backward tracking), with a fixed number of KL-terms
number (400), the subfigures labelled (a), (b), (c), (d), (e) and (f)
correspond to stochastic simulation numbers of 10, 50, 100, 200,
300, and 400, respectively.

From the sequence of probabilistic WCZs maps, the following
observations can be discerned: (1) The WCZs derived from the
deterministic model (constant K) largely predominantly
encompasses areas with a risk probability exceeding 60%.
However, once the WCZs of pumping wells intersects with
regions having a risk probability below 60%, relying solely on
deterministically derived WCZs may lead to ineffectual decisions.
(2) With an increasing number of realizations in the stochastic
simulations, the probabilistic WCZ map demonstrates a gradual
convergence pattern. When the number of stochastic simulations
reaches 200 (as shown in Figure 7D), the degree of variation

TABLE 1 The geometric features of WCZs with various K-fields.

Various K-field Farthest point Area (m2)

Distance (m) Direction angle

Homogeneous K 69.33 West 3208

Realization 1 102.67 NW51.19° 3377

Realization 2 124.12 NW66.04° 6044

Realization 3 78.67 NW66.25° 3217

Realization 4 75.22 SW86.42° 3467
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diminishes significantly, rendering the disparities from Figure 6F
practically negligible.

4.3 Impact of strong heterogeneity level on
WCZs

Based on the results in Section 4.1 and 4.2, it becomes evident that
an increased number of KL-terms yields more effective stochastic
modeling results. For the case of moderate heterogeneity, as detailed

in Section 4.1 and 4.2, employing KL-terms number of 400 is adequate
to preserve 93.49% of the total variance inherent in the K-field. In the
case characterized by strong heterogeneity, the calculations derived
from equation (4) indicate that, with KL-terms numbers of 400 and 800,
they can preserve 88.76% and 95.16% of the total variance within the
K-field, respectively.

Figure 8 illustrates the statistical attributes of different KL-terms
numbers in the case of strong heterogeneity. Within this context,
subfigures labelled (a), (c), and (e) depict sample means, sample
variances, and correlation coefficients under KL-terms number of

FIGURE 7
Probabilistic WCZs map based on different number of realizations in the stochastic simulations.
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400, and subfigures labelled (b), (d), and (f) describe sample means,
sample variances, and correlation coefficients under KL-terms
number of 800.

For two different levels of heterogeneity, in Figure 8A, the light lime
region (values: 2.90–3.00) and pale yellow region (values: 3.00–3.10)
appear notably smaller compared to the cases in Figure 2D with the
same KL-terms number (=400). The statistical variance (in Figure 8C,
Figure 4D) and correlation coefficient (in Figure 8E, Figure 5D) exhibit
similar trends, indicating that under stronger heterogeneity, a greater
number of KL-terms are required to characterize sufficient uncertainty.

Comparing Figures 8A, B for KL-terms numbers 400 and 800,
the sample means are closely comparable, with Figure 8B slightly
superior. Transitioning to Figures 8C, D, it is evident that when the
KL-terms number is 400, the pale yellow region (values: 2.25–2.50)
and light copper region (values: 2.50–2.75) are noticeably smaller
compared to the cases with higher KL-terms (800). Figures 8E, F
highlights a discernible trend where the spatial correlation between
sample points and the pumping well gradually attenuates as the
distance increases. Figure 8F’s correlation coefficients are more

robust. Additionally, with the increase in the number of KL-
terms from 400 to 800, a discernible decrease is observed in the
extent of correlation coefficients exceeding 0.15 within the region
outside the red ellipse.

These findings indicate that insufficient KL-terms may result in
an incomplete characterization of the K-field, particularly in terms
of variance and correlation coefficients. Even with an extensive
number of Monte Carlo simulations, obtaining precise results may
prove challenging as the generated K-fields cannot accurately reflect
the spatial variability of the site’s permeability.

Figure 9 depicts probabilistic WCZs maps generated using
varying numbers of stochastic simulations, applied to two distinct
heterogeneous conditions. In these subfigures, the left column
corresponds to the case of moderate heterogeneity (KL-terms
number = 400), while the right column corresponds to the case
of strong heterogeneity (KL-terms number = 800). From Figure 9, it
can be observed that as the number of stochastic simulations
increases, the probabilistic WCZs maps progressively display a
tendency toward convergence. However, in the case of moderate

FIGURE 8
Statistical characteristics for different KL-terms numbers in the case of strong heterogeneity (Left: 400 KL-terms; Right: 800 KL-terms).
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heterogeneity, 200 simulations are required to attain this
convergence. In contrast, for the case of strong heterogeneity,
even with an increased number of KL-terms, a greater number of
stochastic simulations (400 realizations) are still essential to achieve

a convergent probabilistic WCZs map. It can be anticipated that
using a lower number of KL-terms might lead to inadequate
preservation of total variance and also impose a heightened
demand for a greater number of stochastic simulations.

FIGURE 9
Probabilistic WCZ map based on different number of stochastic simulations (Left: moderate heterogeneity; Right: strong heterogeneity).
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5 Conclusion

1) We employed a combination of the Karhunen-Loève Expansion
(KLE) and Monte Carlo stochastic simulation method to
delineate the probabilistic WCZ map in heterogeneous
aquifers. For heterogeneous aquifers, the Monte Carlo
stochastic simulation method proves effective in assessing
WCZs while considering uncertainties. Furthermore, as an
efficient Principal Component Analysis (PCA) method, the
KLE method was adopted to reduce the dimensionality of
hydraulic conductivity fields.

2) Compared to the WCZ obtained through the deterministic
model, there are significant variations in the resulting WCZs
for different random realizations. The conventional
deterministic model yields deterministic WCZs with
substantial uncertainty.

3) With the increasing KL-terms number, there is a noticeable
improvement in the statistical characteristics of the samples. In
Section 4.1, the statistical characteristics achieved with 400 KL-
terms outperform cases with fewer KL-terms. Furthermore, the
sampling performance for 100 KL-terms is unsatisfactory.

4) In comparison to the case of moderate heterogeneity, for the
scenario of strong heterogeneity, a greater number of KL-terms
(800 KL-terms) and a higher number of stochastic simulations
(400 realizations) are required to achieve a convergent
probabilistic WCZ map.
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