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The risk assessment of rockburst intensity is significant for tunnel construction
safety. First, the depth of the rockburst (X1), the uniaxial compressive strength of
the rocks (X2), the brittleness coefficient of the rocks (X3), the stress coefficients of
the rocks (X4), and the elastic energy index (X5) are adopted as the evidence body,
and their essential certainty and reliability is determined using the entropy-gray
correlation theory. Second, the synthetic certainty reliability of other samples is
calculated based on the evidence theory. Relatively to the traditional gray
extension model, it can improve the predictive accuracy and determine the
certainty and reliability of different evidence bodies. The difference of
importance between other evidence bodies can be reflected; and an interval
scale can be taken into consideration in the evaluation process, so the proposed
theory can reasonably predict the grade criterion which is interval form.
Conclusion demonstrated that the suggested approach is entirely consistent
with the actual investigation. The proposed model not only considers the
unreliability or reliability of the problem but also solves some degrees of
uncertainty and ambiguity of the datum; it enhances the predictive efficiency
and provides a new way and thought for future risk assessment of rockburst
intensity.
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1 Introduction

When the energy accumulated at the high-stress position in deep rock mass is greater
than the energy consumed by rock failure, the stress field redistributes in the rock mass due
to the excavation and unloading of rock mass engineering, so hard or brittle rock masses
suddenly release large amounts of energy; this phenomenon is called rockburst (Zhou
et al., 2021). If a rockburst occurs, it will bring economic loss to underground engineering,
such as mines, highways, railways, nuclear power, and so on, and even bring disastrous
consequences (Gu et al., 2021a). For example, Western Gold Mine is a typical deep gold
mine in South Africa; the mortality rate of workers caused by rockburst reached 0.1%/a,
which accounted for 46% of the mortality rate of the mine (Gu andWu, 2019); the depth of

OPEN ACCESS

EDITED BY

Yi Xue,
Xi’an University of Technology, China

REVIEWED BY

Danqing Song,
South China University of Technology,
China
Han Du,
Tsinghua University, China
Zhengzheng Cao,
Henan Polytechnic University, China

*CORRESPONDENCE

Xin-Bao Gu,
15823405952@163.com

RECEIVED 28 August 2023
ACCEPTED 17 November 2023
PUBLISHED 28 December 2023

CITATION

Zhang X-J and Gu X-B (2023), The
application of evidence-entropy weight
gray incidence theory on the risk
assessment of rockburst intensity in the
Daxiangling tunnel.
Front. Earth Sci. 11:1284243.
doi: 10.3389/feart.2023.1284243

COPYRIGHT

© 2023 Zhang and Gu. This is an open-
access article distributed under the terms
of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Earth Science frontiersin.org01

TYPE Original Research
PUBLISHED 28 December 2023
DOI 10.3389/feart.2023.1284243

https://www.frontiersin.org/articles/10.3389/feart.2023.1284243/full
https://www.frontiersin.org/articles/10.3389/feart.2023.1284243/full
https://www.frontiersin.org/articles/10.3389/feart.2023.1284243/full
https://www.frontiersin.org/articles/10.3389/feart.2023.1284243/full
https://www.frontiersin.org/articles/10.3389/feart.2023.1284243/full
https://crossmark.crossref.org/dialog/?doi=10.3389/feart.2023.1284243&domain=pdf&date_stamp=2023-12-28
mailto:15823405952@163.com
mailto:15823405952@163.com
https://doi.org/10.3389/feart.2023.1284243
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2023.1284243


the ore body in the Hongtoushan copper mine, Liaoning province,
China reaches 1047 m. From 1995 to 2004, there were 49 rock
burst monitoring records. Therefore, it is essential to forecast the
rockburst intensity to reduce the damage caused by rock bursts and
diminish the threat to construction personnel and equipment (Gu
et al., 2021b).

Since the first rock burst occurred in a Laibixi coal mine in
1738, foreign and domestic scholars alike have discussed the
problem of rockburst classification prediction from different
viewpoints (Gu et al., 2021c). For example, (Fujii et al., 1997),
analyzed the three-dimensional elastic stress, and realized the
prediction of rock burst based on the micro-crack of ore and
rock; (Wang and Park, 2001); put forward that the accumulation
of strain energy in rock mass is one of the critical factors affecting
the occurrence of rock burst, and analyzed the strain energy,
ultimately leading to rock burst prediction with the aid of a
numerical analysis model; (Chen and Li, 2008); combined the
systems engineering decision-making method with the fuzzy
mathematics evaluation method and put forward the analytic
hierarchy process-fuzzy mathematics method for comprehensive
prediction of rockburst; (Chang-ping, 2008); established the
attribute recognition model of rockburst prediction and
intensity classification based on the theory of attribute
mathematics; (Zhu et al., 2008); found a rock burst prediction
method based on an improved Support vector machine
algorithm; (Xie and Chang-liang, 2007); regard the
relationship between rockburst and its influencing factors as a
gray system, and propose a gray whitening weight function
clustering method to predict rock burst disasters; (Gong et al.,
2007); established a distance discriminant analysis model for
tunnel rockburst prediction; (Chen et al., 2002); established an
artificial neural network model for rock burst prediction; (Fu and
Dong, 2009); applied Bayes discriminant theory to predict rock
bursts of deep hard rock mass; (Zhou and Gu, 2004); established
a fuzzy self-organizing neural network analysis model of rock
burst tendency based on GIS; the optimal support vector
machine is provided by (Zhou et al., 2012) to prove the
higher accuracy of SVM on the prediction of rockburst
intensity; the theory of intelligent rock mechanics is suggested
by (Feng, 2000) based on the artificial intelligence methods
combined to investigate the rockburst phenomenons
systematically. (Gu et al., 2022). performed a risk assessment
of rockburst intensity in a hydraulic tunnel based on an
intuitionistic fuzzy sets-TOPSIS model; (Wang, 2023); predict
the intensity level of rockburst using the SSA-BP neural network,
and predictive accuracy was improved; (Long-fei, 2023);
analyzed the reliability grade of rockburst intensity in the
highway tunnel based on entropy-LGBM algorithm. These
methods promote the development of predictive theory about
rockburst intensity.

Although the above methods predict rock bursts from different
viewpoints and have achieved a specific prediction effect, they still
need to be improved (Dong et al., 2022; Dong et al., 2023; Song
et al., 2023). For example, they suffer variously from complex
calculation processes, neglected randomness, and low efficiency,
etc. To overcome the insufficiency of the above methods, the
evidence-entropy weight gray incidence theory is introduced to
assess the risk level of rock burst intensity; the technique applies

the entropy weight method to determine the weights of each
evaluation index, and then the gray comprehensive correlation
method is used to calculate the certainty and uncertainty reliability
of each index. Finally, a fundamental probable distribution
function matrix is constructed, and the rock burst intensity risk
level is determined. Its results have higher reliability and efficiency
than the above method, so it has much room for application in civil
engineering.

The paper is organized as follows: in Section 2, the engineering
overview is first introduced; in Section 3, theory and methodology
based on the Evidence-Entropy weight gray incidence theory are
presented; in Section 4, the assessment model of the rock burst
intensity is constructed, and the assessment results are analyzed; in
Section 5, discussions and comparative analysis are performed; in
Section 6, conclusions are drawn.

2 Engineering overview

Daxiangling Tunnel is the control project of the Ya’an-Lugu
section of the Beijing-Kunming expressway in Sichuan, China; its
location is plotted in Figure 1. It is distributed in the northeast
direction and separated across the northwest-southeast ridge. The
distance between the tunnel’s left and right lines is approximately
40 m, the length of the left line is 9946 m, and one of the right lines
is 10,007 m. The maximum buried depth of the tunnel crossing
section is 1701 m; it belongs to the deep-buried and super-long
crossing-ridge tunnel. The landform of the tunnel site is
characterized by significant undulation, steep terrain, and vast
differences in elevation, and it is called a high Zhongshan
landform.

In this area, the gully is well-developedand narrow, with an
average slope of 30°~45°, and the gully bed is large. Many cliff falls
and small waterfalls can be found. The stratum of the tunnel site is
complex, including Sinian, Cambrian, and Quaternary. The
surrounding rock of the tunnel is mainly volcanic rock (rhyolite,
andesite); only the outlet section has clastic rock and carbonate rock,
and the cover thickness of the export surface is more significant.
Daxiangling is a natural climate boundary, and the climate
difference between the south and north slopes is noticeable. The
annual rainfall is approximately 1,650 mm at the north and 650 mm
at the south slopes. The specific picture of the tunnel is shown in
Figure 2.

3 Methodology

3.1 The determination of the evaluation
index

Based on the problem of rock burst in deep-buried tunnel
engineering, a thorough analysis of the mechanism of rock burst
and a correct understanding of the main controlling factors, the
depth of rock burst H (X1), the uniaxial compressive strength of
rocks σc (X2), the brittleness coefficient of rocks σc/σt (X3), the
stress coefficients of rocks σθ/σc (X4), and the elastic energy
index Wet (X5) are selected as the assessment index in the
manuscript.
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According to the relevant specifications, the five evaluation
indexes can be classified into four levels in Table 1; they are
respectively level I (no rockburst intensity), level II (weak
rockburst intensity), level III (medium rockburst intensity),
and level IV (strong rockburst intensity). The monitoring
value of rock burst samples in the Daxiangling tunnel is
shown in Table 2.

3.2 The evidence theory

If the questions to be assessed are q, a collection of all
possible results is Θ � F1, F2, F3, ...,Fd{ }; where, Θ is the
identification framework; the set of factors that determine
the result is E � E1, E2, E3, ...,Ed{ }, Ei is the evidence body;
assuming that a set function m: 2Θ → [0, 1] meets with

FIGURE 1
The location of the survey area.

FIGURE 2
A picture of the tunnel.
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m(Φ)� 0, ∑
A⊆Θ

m(F)� 1 and Bel(F) � ∑
B⊆F

m(B), then m is defined

as a basic probability distribution function. m(F) is the basic
reliability of proposition F; Bel(F) is called as the reliability of
proposition F.

So the basic reliabilitym(F) of F under the action of all body of
evidence is (Zhou et al., 2016):

m F( ) � m1 F( ) +m2 F( )+...+mn F( ) �
1
k

∑
F1∩F2∩...∩Fn�F

m1 F1( )m2 F2( )...mn Fn( ) (1)

Where,

k � ∑
F1∩F2∩...∩Fn≠φ

m1 F1( )m2 F2( )...mn Fn( )
k� 1− ∑

F1∩F2∩...∩Fn�φ
m1 F1( )m2 F2( )...mn Fn( )

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (2)

Where, k is the normalization coefficient.

3.2.1 Construction of basic reliability distribution
function

The reliability of the evidence body is influenced by the
reliability of the information source and its value. The reliability
of the information source can be reflected based on its certainty
reliability si and uncertainty reliability mi(δ); among them, the
certainty reliability represents the probability that the object is
identified. The greater the certainty reliability is, the more
reliable the information source is, and the higher the overall
reliability is. The evidence body is divided into the positive index

and negative index; the characteristic of the positive index
demonstrates that with the increase of index value, the
probability of an event is greater, and the reliability is higher; the
inverse index has the opposite characteristic, as the probability of the
event is more negligible, the reliability becomes lower.

Suppose there are n categories of a problem, and the classification
results are influenced by d-type evidence. R(+) is a matrix composed
of upper limits of evaluation index intervals corresponding to different
classifications, R(−) is the matrix of the lower limit of the evaluation
index interval, their expression is listed as follows:

R +( ) �

x1+
1 x1+

2 x1+
3 ... x1+

d

x2+
1 x2+

2 x2+
3 ... x2+

d

x3+
1 x3+

2 x3+
3 ... x3+

d

... ... ... ... ...
xn+
1 xn+

2 xn+
3 ... xn+

d

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (3)

R −( ) �

x1−
1 x1−

2 x1−
3 ... x1−

d

x2−
1 x2−

2 x2−
3 ... x2−

d

x3−
1 x3−

2 x3−
3 ... x3−

d

... ... ... ... ...
xn−
1 xn−

2 xn−
3 ... xn−

d

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (4)

Let Pi be the reliability generated by evidence xi, and the basic
reliability distribution is

mi Fi( ) � sipi

mi δ( )� 1−si{ (5)

Where, the corresponding positive indicator is

pi �

0, pi ≤ 0

0.5 + xi − x1+
i

2 xn+
i − x1+

i( ) , 0<pi < 1

1, pi ≥ 1

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(6)

The corresponding inverse index is

pi �

0, pi ≤ 0

0.5 + x1−
i − xi

2 x1−
i − xn−

i( ) , 0<pi < 1

1, pi ≥ 1

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(7)

3.2.2 The construction of assessment systems
By substituting the corresponding indexes at the critical points

of the classification grades in Eq. 3 and Eq. 4 into Eq. 5, the reliability
of the classification limits of the indexes M is obtained as follows
(Gu et al., 2022; Wang et al., 2023a; Wei et al., 2023):

M �

m1 F1( ) m2 F1( ) m3 F1( ) ... md F1( )
m1 F2( ) m2 F2( ) m3 F2( ) ... md F2( )
m1 F3( ) m2 F3( ) m3 F3( ) ... md F3( )

... ... ... ... ...
m1 Fn−1( ) m2 Fn−1( ) m3 Fn−1( ) ... md Fn−1( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (8)

All row vectors and uncertainty reliability
m1(δ),m2(δ),m3(δ), ...,md(δ){ } in matrix M are substituted into
formula (1), and the critical reliability of each grade is obtained as follows:

p � p1, p2, p3, ...,pn−1{ } (9)
Finally, the subjects were classified according to the different

intervals of the synthetic reliability of q.

TABLE 1 Level classification of rock burst.

Rock burst level X1/m X2/MPa X3 X4 X5

I [0 50] [0 80] >40 [0 0.3] [0 2]

II (50,200] (80,120] (26.7 40] (0.3 0.5] (2
3.5]

III (200,700] (120,180] (14.5
26.7]

(0.5 0.7] (3.5
5]

IV >700 >180 (0 14.5] >0.7 >5

TABLE 2 The monitoring value of rock burst samples.

Sample serial number X1/m X2/MPa X3 X4 X5

1 374 62.8 29.9 0.42 2.4

2 775 72.1 34.3 0.56 1.9

3 811 71.4 21 0.53 3.6

4 816 69.1 21.5 0.66 4.1

5 841 67.8 17.8 0.52 4.3

6 798 66.2 30.2 0.61 2.2

7 401 63.2 27.9 0.39 2.3

8 832 66.1 19.6 0.5 3.4

9 839 62.6 13.9 0.59 4.5
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3.2.3 The calculation of determination reliability
based on the entropy weight gray correlation
method

The entropy weight gray correlation method is used to
determine its reliability objectively and reasonably. Firstly, the
weight of each index is calculated by entropy theory, and then
the reliability of each index is determined by the gray correlation
method.

(1) The determination of weight coefficients

The membership index gij of the target i under index j is first
determined, and the objective membership degree matrix G �
(gij)m×n is constructed; the normalized target membership matrix
G � (gij)m×n is obtained as (Wang et al., 2023b):

Y � yij( )
m×n

� gij

∑m
i�1
gij

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (10)

The entropy of index j is

Ej� −1/ ln n∑m
i�1
yij

⎛⎝ ⎞⎠ lnyij( )⎡⎢⎢⎣ ⎤⎥⎥⎦ (11)

The weight of indicator j is

ωj � 1 − Ej( )/n −∑n
j�1
Ej (12)

Where, 0≤ωj ≤ 1 and ∑n
j�1

ωj� 1, then the weight ωj(j� 1, 2, ...,n) of
index j is substituted into (yij)m×n, the weighted membership degree
matrix is obtained as follows:

X � xij( )
m×n

� ωj · yij( )
m×n

(13)

(2) Determination of basic reliability distribution function

Let Rij be the comprehensive gray correlation coefficient. In this
paper, the comprehensive correlation method is used to calculate the
correlation coefficient to avoid the distortion results obtained by
using the optimal and the worst correlation alone. The calculation of
rij is listed as follows:

The optimal correlation coefficient r+ij is (Gu and Wu, 2016;
Zhou et al., 2017; Chen and Zhou, 2019)

r+ij �
min

i
min

j
xij −X+∣∣∣∣ ∣∣∣∣ + ξmax

i
max

j
xij −X+∣∣∣∣ ∣∣∣∣

xij −X+∣∣∣∣ ∣∣∣∣ + ξmax
i

max
j

xij −X+∣∣∣∣ ∣∣∣∣ (14)

The worst correlation coefficient r−ij is

r−ij �
min

i
min

j
xij −X−∣∣∣∣ ∣∣∣∣ + ξmax

i
max

j
xij −X−∣∣∣∣ ∣∣∣∣

xij −X−∣∣∣∣ ∣∣∣∣ + ξmax
i

max
j

xij −X−∣∣∣∣ ∣∣∣∣ (15)

Where, X+ � max
1≤ i≤m
1≤ j≤ n

xij � x+
1 , ...,x

+
n{ } is the ideal optimal sequence;

X− � max
1≤ i≤m
1≤ j≤ n

xij � x−
1 , ...,x

−
n{ } is the ideal worst sequence; it is

adopted as ξ� 0.5, the comprehensive gray correlation coefficient is

rij � 1

1 + r+ij
r−ij

( )2 (16)

Substituting rij into formula (17), the uncertainty reliability
D(Ij) of each index can be obtained, and the corresponding
certainty reliability is 1 −D(Ij).

The q-order uncertainty reliability of the indicator j is

D Ij( ) � 1
m

∑m
i�1

rij( )
∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣ 1
q (17)

Where, q� 2.
The basic reliability distribution function for different targets of

each index is

mj i( ) � 1 −D Ij( )[ ]yij (18)

Where, mj(i) is the basic reliability distribution function of target i

under the action of the index j, and∑m
i�1
mj(i)< 1, that is to say, there

is certainty and uncertainty of the whole cognition. Then this
part of the basic reliability assignment function is assigned to
the recognition framework Θ, that is the degree of certainty
about all the goals. Therefore, the certainty reliability and
uncertainty reliability of the indicator j can be obtained
respectively as follows:

si � ∑m
i�1
mj i( ) (19)

mi δ( ) � mj i+1( )� 1−∑m
i�1
mj i( ) (20)

4 The construction of an assessment
model

4.1 The construction of the evaluation frame

A new suggested model is constructed to evaluate the rock burst
intensity in the Daxiangling tunnel; its schematic diagram is plotted
in Figure 3. At first, the different evidence body of classification
standard is collected, then according to the above evidence body, the
essential reliability can be determined by using the Entropy-Weight
gray theory; secondly, according to the relevant basic reliability, the
synthetic rule of evidence theory is performed, their results are
regarded as the identification framework; thirdly, the actual
monitoring data is analyzed, and the decision making is
performed in the identification framework; finally, the model of
rock burst prediction is established and evaluation results are
obtained.

4.2 Determining the risk level of rock burst
intensity in the Daxiangling tunnel

It can be found in Table 1 that the rock burst intensity increases
gradually as the magnitude of σc/σt decreases, so the index σc/σt
belongs to the inverse indicator, and the rest indexes belong to
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positive indicators; according to Eqs. 3, 4, and in combination with
Table 1, the classification matrix of rock burst intensity can be
expressed as:

R +( ) �
50 80 53.3 0.3 2
200 120 40 0.5 3.5
700 180 26.7 0.7 5
1200 240 14.5 0.9 6.5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

R −( ) �
0 0 40 0 0
50 80 26.7 0.3 2
200 120 14.5 0.5 3.5
700 180 0 0.7 5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

4.2.1 The construction of certainty reliability
Based on Table 2, and in combination with the Eqs. (10–12), the

weight coefficients of different indicators can be obtained as:

ω � 0.2851 0.0097 0.2497 0.0855 0.37( )
According to Eq. 13, the weighted membership degree matrix

can be expressed as

X �

0.0295 0.0018 0.06 0.0133 0.0545
0.0611 0.002 0.0688 0.0178 0.0431
0.0639 0.002 0.0421 0.0168 0.0817
0.0643 0.0019 0.0431 0.021 0.0931
0.0663 0.0019 0.0357 0.0165 0.0976

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The ideal optimal sequence is

X+ � 0.0663 0.002 0.0688 0.021 0.0976( )
The ideal worst sequence is

X− � 0.0295 0.0018 0.0357 0.0133 0.0431( )
The maximum difference and minimum difference

respectively are:

max
i

max
j

xij −X+∣∣∣∣ ∣∣∣∣� 0.0545

min
i

min
j

xij −X+∣∣∣∣ ∣∣∣∣� 0

max
i

max
j

xij −X−∣∣∣∣ ∣∣∣∣� 0.0545

min
i

min
j

xij −X−∣∣∣∣ ∣∣∣∣� 0

Based on Eq. 16, the gray correlation coefficient matrix can be
obtained as follows:

rij �

0.4921 0.2518 0.1694 0.3157 0.4166
0.1263 0.2482 0.0968 0.2397 0.5625
0.1055 0.2482 0.3793 0.2557 0.1567
0.1026 0.2482 0.3654 0.1919 0.0848
0.0891 0.25 0.4746 0.2606 0.0625

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

According to Eq. 17, the uncertainty reliability of different
indices is

Obtained as

DOI I1( )� 0.1073

DOI I2( )� 0.1115

DOI I3( )� 0.1471

DOI I4( )� 0.1144

DOI I5( )� 0.145

According to Eq. 18, the Mass function of different indicators
can be expressed as:

M �

0.0923 0.1626 0.2049 0.1382 0.1259
0.1913 0.1867 0.235 0.1844 0.0997
0.2001 0.1848 0.1439 0.1745 0.1889
0.2014 0.1789 0.1473 0.2173 0.215
0.2076 0.1756 0.122 0.1712 0.2256

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

FIGURE 3
Schematic diagram of rock burst prediction based on the suggested model.

TABLE 3 The reliability of evidence body.

Evidence body X1/m X2/MPa X3 X4 X5

si 0.8927 0.8885 0.853 0.8856 0.855

mi(δ) 0.1073 0.1115 0.147 0.1144 0.145
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Based on Eq 19 and Eq.20, the total certainty and uncertainty
reliability can be shown in Table 3.

4.2.2 The calculation of the identification frame
Substituting the data in Table 1 and the index value in the

classification boundary into Eq. 5, the distribution function of basic
reliability is constructed, and then the synthesis between different
confidence intervals is performed. Their results are shown in
Table 4.

4.2.3 Determining the risk level of the rock burst
intensity

The data of 1# sample is adopted as an example, substituting this
datum into Eq. 1 and Eq 2, the basic reliability distribution of 1#
gully can be shown in Table 5.

Similarly, the synthetic reliability of the 2–5# sample can be
calculated in Table 6, respectively.

The Evidence-Entropy weight gray incidence theory is applied to
evaluate the rock burst intensity. The assessment results are
respectively depicted in Table 6. It can be found from Table 6
that the risk levels of the rock burst intensity from 1 to 9# samples

are different. The risk level of rockburst intensity at 1#, 2#, 6#, and 7#
samples is II; one of the rest samples is III. It means that the risk level
of rock burst intensity at 1#, 2#, 6#, and 7# samples is weak. One of
the remaining samples is medium, and the qualified rate of rock
burst intensity in all gullies is 56%. So for 3–5# and 8–9# samples, the
necessary consolidation measurement should be taken to prevent
the occurrence of rock burst intensity; for example, the rock bolt
should be fixed in the surrounding rocks, etc.

According to the comparative results of the assessment model in
Table 6, conclusions can be drawn that the results obtained by the
suggested method are entirely consistent with the investigation for
five different samples. Its accuracy reaches 100% for the proposed
approach, which is higher than the results from the fuzzy
comprehensive method (78%) (Zhang et al., 2022). So, the
conclusion demonstrates that it is feasible to estimate rockburst
intensity using the Evidence-Entropy weight gray incidence theory
model. The method can provide more details for assessing rockburst
intensity; for example, the depth of rock burst of the 3# sample is
811, which should belong to level IV based on Table 2. In addition,
the basic reliability distribution of the other indicators obtained
using the suggested model belongs to level III, so the quality level
probability of the 3# sample at level III is higher than that of groups
I, II, and IV. So, the rock burst intensity of the 3# sample only
belongs to level III and almost impossibly to levels I, II, and IV.
Furthermore, the risk level of the 4# sample is more likely to be level
III than that of the 3# gully because the synthetic reliability (0.9920)
of the 4# sample for level III is higher than that of the 3# sample

TABLE 4 Classification standard of identification frame.

Grade I II III IV

Reliability intervals <0.4996 [0.4995 0.9471] [0.9471 0.9993] >0.9993

TABLE 5 The basic reliability distribution of 1# sample.

Basic reliability distribution Rock burst No rock burst Uncertainty reliability

m1 0.5721 0.3206 0.1073

m2 0.3965 0.492 0.1115

m3 0.5342 0.3188 0.147

m4 0.5314 0.3542 0.1144

m5 0.4655 0.3895 0.145

m12345 0.8114 0.1878 0.0008

TABLE 6 The predicted result of rockburst

The serial number of the
samples

Synthetic
reliability

The suggested
method

Fuzzy comprehensive
method

Actual
investigation

1 0.8114 II II II

2 0.9319 II II II

3 0.9828 III II III

4 0.9920 III III III

5 0.9905 III III III

6 0.9208 II II II

7 0.8021 II III II

8 0.9701 III III III

9 0.9822 III III III
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(0.9828). The results obtained using the suggested model accurately
demonstrate the risk level of rockburst intensity and further
determine the risk grade ranking for different samples at the
same level.

5 Discussions

The evidence theory is applied to fuse the evidence body of
different information resources; the assessment results demonstrate
the interaction of other factors. Relatively to the gray extension
model, it can improve the predictive accuracy and determine the
certainty reliability of different evidence bodies; the difference of
importance between other evidence bodies can be reflected. An
interval scale can be taken into consideration in the evaluation
process, the proposed theory can well predict the grade criterion
which is in interval form. The proposed model not only considers
the unreliability or reliability of the problem but also solves some
degrees of uncertainty and ambiguity of the datum. So, the suggested
model enhances the predictive efficiency of rock burst intensity.

6 Conclusion

Considering the depth of rock burst (X1), the uniaxial compressive
strength of rocks (X2), the brittleness coefficient of rocks (X3), the stress
coefficients of rocks (X4), as well as the elastic energy index (X5), a new
evaluation method is introduced in this paper to assess the risk level of
rockburst intensity based on the Evidence-Entropy weight gray
incidence theory. The five different evidence bodies are determined
at first. Then, the entropy weight-gray correlation method calculates
other evidence bodies’ certainty reliability. Finally, the synthetic
reliability of rock burst intensity is calculated using the evidence
theory, and the risk level of rock burst intensity is determined.

The proposed method is applied to assess the risk level of rock
burst intensity; final conclusions can be drawn that the results
obtained by the suggested method are entirely consistent with the
actual investigation for five different samples. Its accuracy reaches
100% for the proposedmethod, which is higher than the results from
the fuzzy comprehensive approach. The final risk level of rock burst
intensity at 1#, 2#, 6#, and 7# samples is II; one of the rest samples is
III. It means that the risk level of rockburst intensity at 1#, 2#, 6#,
and 7# samples is weak. One of the remaining samples is medium,
and the qualified rate of rockburst intensity in all gullies is 60%. So
for samples 3–5# and 8–9#, the necessary consolidation
measurement should be taken to prevent the occurrence of
rockburst intensity. Relatively to the traditional fuzzy
comprehensive method, its assessment result has higher reliability
and efficiency, and an interval scale can be taken into consideration
in the evaluation process. Therefore, the suggested theory can well
predict the grade criterion which is interval form.

In total, the results obtained using the suggested model not only
demonstrate the risk level of rockburst intensity accurately but also

further determine the risk grade ranking for different samples at the
same level.

However the provided model still has some shortcomings, such
as complicated calculation, and multiple variable parameters with
the degree of difference that needs to be considered, which limit its
application. Due to the comprehensiveness of assessment indexes,
the assessment method strongly relies on actual data. In future work,
gray incidence theory should be updated, only a small amount of
data is required to predict the assessment results accurately.
Therefore, the method still has great room for improvement in
the future.
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