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A method for estimating
particulate organic carbon at
the sea surface based on
geodetector and
machine learning
Huisheng Wu, Long Cui*, Lejie Wang,
Ruixue Sun and Zhi Zheng

College of Oceanography and Space Informatics, China University of Petroleum (East China),
Qingdao, Shandong, China
Particulate organic carbon (POC) is an essential component of the carbon

pump within marine organisms. Exploring estimation methods for POC holds

substantial significance for understanding the marine carbon cycle. In this

study, we investigated the spatial heterogeneity of 30 factors and POC

concentrations using geodetector to account for nonlinearity, diversity,

and complexity. Ultimately, 20 factors including sea surface temperature,

sea surface salinity, and chlorophyll-a were selected as modeling variables.

Six machine learning models—backpropagation neural network,

convolutional neural network, attention-based neural network, random

forest (RF), adaptive boosting, and extreme gradient boosting were used to

compare their performance. The results indicate that among the six machine

learning algorithms, RF exhibits the strongest performance, with a root mean

square error of 0.11 [log(mg/m3)] and an average percentage deviation of

2.73%. Global annual average sea surface POC concentrations were

estimated for 2007 and compared to NASA’s POC product. The outcomes

indicate that the RF model-based estimation method displays enhanced

accuracy in estimating POC concentrations within intricate coastal

environments, while the backpropagation neural network performed better

in estimating POC concentrations in open ocean areas. Leveraging the RF

model, global sea surface POC concentrations were estimated for the years

2007 through 2016, enabling a spatiotemporal analysis. The analysis unveils

heightened POC concentrations in coastal regions and lower levels in open

ocean areas. Furthermore, POC concentrations were greater in high-latitude

regions compared to mid and low latitude counterparts. In conclusion, the

global sea surface POC product in this study exhibits heightened spatial

resolution and improved data completeness in contrast to other products. It

enhances the accuracy of conventional POC estimation methods,

particularly within coastal regions.
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1 Introduction

Marine particulate organic carbon (POC) refers to the organic

particles in the ocean that are generated through the metabolic

processes of marine organisms, resuspension of sediments, and

input from land sources. These particles include phytoplankton

cells, bacteria, and organic debris, among other substances (Brewin

et al., 2021). POC accounts for approximately 10% of ocean organic

carbon reservoirs (Jahnke and Richard, 1996; Loisel et al., 2002).

Although POC accounts for a small proportion of the open ocean, it

is an essential component of biological pumps with a high carbon

turnover rate and significant carbon flux (Sarmiento, 2006; Kim

et al., 2022; Lao et al., 2023a). Therefore, analyzing spatiotemporal

variations in the stock and flux of POC in the ocean is of great

significance for studying the marine carbon cycle. Remote sensing

data offer significant advantages in terms of temporal and spatial

resolution (Sawaya et al., 2003; Devi et al., 2015). By utilizing remote

sensing techniques, it is possible to provide additional methods for

estimating the POC stock in the ocean (Stramski et al., 1999). POC

does not possess optical activity, making it challenging to directly

retrieve POC information from remote sensing signals (Wang et al.,

2017). Researchers, both domestically and internationally, have

conducted a series of studies on the factors influencing POC and

found correlations between POC and inherent optical properties

(IOPs), apparent optical properties (AOPs), and water constituents

(Stramski et al., 1999; Stramski et al., 2008). Based on these findings,

scientists proposed a range of POC retrieval algorithms.

Stramski et al. (1999) were the first to estimate the distribution

of POC using the IOPs of water. Based on measured POC data, they

established an empirical relationship between POC and the particle

backscattering coefficient (bbp). This relationship was then used to

quantitatively estimate POC concentrations in the Southern Ocean

(Stramski et al., 1999). Loisel et al. (2001) discovered a near-linear

relationship between POC and bbp in the Southern Ocean. Based

on this relationship, they derived the global spatial distribution and

seasonal variations of POC using bbp (Loisel et al., 2001).

According to the measured POC data, Gardner et al. (2006)

established an empirical relationship between the particle

attenuation coefficient (cp) and POC. Using this relationship, they

developed a Two-Step algorithm (Gardner et al., 2006). However,

accurately deducing IOPs from AOPs is crucial for a POC retrieval

model based on IOPs (Jiang et al., 2015; Hayley et al., 2017;

Liu et al., 2021).

In addition, some algorithms directly estimate POC based on

AOPs. For instance, Stramski et al. (2008) proposed a blue-to-green

band ratio algorithm based on the relationship between POC

concentrations and remote sensing reflectance (Rrs) in the blue

and green bands (Stramski et al., 2008). Currently, the NASA

standard POC algorithm belongs to this category. O'Reilly and

Werdell (2019) proposed a maximum band ratio-OCx (MBR-OCx)

algorithm for chlorophyll estimation. Stramski et al. (2022) tested

the performance of the Maximum Band Ratio for POC estimation

(O'Reilly, 2000; O'Reilly and Werdell, 2019; Stramski et al., 2022).

Le et al. (2017) established a POC estimation method using a color

index (CI) based on satellite Rrs data and matched POC

measurements (Le et al., 2017). Son et al. (2009) proposed the
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estimation of POC using the normalized difference carbon index

(NDCI) inspired by the normalized difference vegetation index. The

results showed high accuracy (R2 = 0.97, N=58). Furthermore, Son

et al. (2009) introduced the maximum normalized difference carbon

index (MNDCI) based on the NDCI, demonstrating even higher

accuracy than the previous NDCI (Son et al., 2009; Wang et al.,

2017). The algorithms mentioned above are suitable for open-ocean

Type I waters, whereas the others are more suitable for coastal Type

II waters (Morel and Prieur, 1977). Several scholars have

comprehensively tested the algorithms above and developed a

series of hybrid algorithms. Stramski et al. (2022) combined the

band ratio difference index (BRDI) algorithm with the MBR-OC4

algorithm based on POC concentration. The final hybrid algorithm

achieved good accuracy in both Type I and Type II waters,

significantly improving the universality of POC estimation

algorithms. Cai et al. (2022) developed a hybrid algorithm for the

East China Sea based on the CI and band ratio algorithms. Using

this algorithm, they conducted a long-term time-series estimation

and achieved satisfactory accuracy (Cai et al., 2022; Stramski

et al., 2022).

Owing to the improved fitting capability of machine learning

for nonlinear data, its application in water color remote sensing has

become increasingly widespread. Scholars have already explored the

use of machine learning methods for estimating POC. Liu et al.

(2021) trained three machine learning models: extreme gradient

boosting (XGBoost), support vector machine (SVM), and Artificial

Neural Networks (ANN). They compared these models with the

traditional blue-to-green band ratio algorithm for POC estimation.

The results showed that the performance of the machine learning

algorithms was superior to that of traditional algorithms.

Additionally, machine learning algorithms better estimate the

POC in marginal seas and optically complex estuarine waters (Liu

et al., 2021). Sauzède et al. (2016) developed the “Satellite Ocean-

Color merged with Argo data to infer bio-optical properties to

depth” (SOCA) method, a neural network-based method trained

using the Biogeochemical-Argo database, for estimating the vertical

distribution of bbp. SOCA was improved by Sauzède et al. (2020),

and the new SOCA2020 model improved the accuracy of POC

estimation and additionally estimated chlorophyll-a (Sauzède et al.,

2021; Sauzède et al., 2020). However, owing to the complex optical

conditions in coastal areas, the distribution of POC exhibits

significant spatial heterogeneity, which results in uncertainty in

POC estimation, even when using machine learning methods.

Geodetector is a novel statistical method for detecting

spatial heterogeneity and identifying the underlying driving

factors. This approach does not assume linearity and can be

used to measure spatial differentiation, detect explanatory

factors, or analyze the interactions between variables. It has

been applied in various fields of the natural and social sciences

(Wang and Xu, 2017). In this study, to improve the

performance of machine learning in estimating the global

ocean POC, geodetector was used to detect the spatial

correlation between POC and 30 factors. Six machine

learning models were trained: backpropagation neural

network (BPNN), convolutional neural network (CNN),

attention-based neural network (ABNN), random forest (RF),
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adaptive boosting (AdaBoost), and extreme gradient boosting

(XGBoost). The performances of these models were compared

and evaluated. This study estimated the annual average surface

POC concentration globally from 2007 to 2017 and compared it

with NASA’s POC product. This study contributes to the

development of global high-precision POC products by

addressing the uncertainty caused by the significant spatial

heterogeneity of POC in coastal areas.
2 Materials and methods

2.1 In situ data

This study utilized data from three publicly available datasets:

1) The NASA Bio-Optical Marine Algorithm Dataset, which is a

global, high-quality dataset for in situ bio-optical measurements;

it is used to develop ocean color algorithms and validate satellite

products (Werdell and Bailey, 2005). 2) The SeaWiFS Bio-optical

Archive and Storage System (SeaBASS) website (https://

seabass.gsfc.nasa.gov/) provides access to the in situ POC

measurement data. SeaBASS is an oceanic and atmospheric

measurement database maintained by the NASA Ocean Biology

Processing Group; it collects in situ measurement data from

various global cruise missions and observation sites (Werdell

and Bailey, 2005). 3) Martiny et al. (2014) collected 60,811 in

situ data points from 70 global cruise missions (Martiny et al.,

2014). To establish a global surface POC estimation model in their

study, the downloaded POC data were standardized, and data at

depths of less than 20 m were retained as shallow surface POC

concentrations. In cases where multiple measurements were

available for the same spatiotemporal coordinates, the average

value was considered the measured POC value for that particular

point. In total, 21,955 surface POC data points were obtained.
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2.2 Matching of satellite and reanalysis
data with in situ data

Moderate Resolution Imaging Spectroradiometer (MODIS)

data was downloaded from the NASA OCEAN COLOR website

(https://oceancolor.gsfc.nasa.gov/), and remote sensing reanalysis

data from multiple databases downloaded from the Copernicus

Marine Service (https://marine.copernicus.eu/) (Lavergne et al.,

2019; Merchant et al., 2019; Good et al., 2020). The statistical

information on the remote sensing and reanalysis data is presented

in Supplementary Table S1. According to the collected in situ POC

measurement data, remote sensing, and reanalysis data covering

2007 to 2017 were used. The temporal resolution was standardized

at monthly intervals. The ArcGIS mapping tool was used to match

the POC measurement data with satellite data using a monthly time

window, which reduces the time lag in the correlation between POC

and influencing factors and improves the stability of the matching

results (Bonelli et al., 2022). Finally, 14,067 matched points were

obtained for the 2007–2017 period. The geographic distribution of

the matching points is shown in Figure 1. The maximum POC

concentration observed was 4743 mg/m3, the minimum was 1.45

mg/m3, and the average was 156.59 mg/m3.
2.3 Dataset segmentation

Suspended particulate matter (SPM) refers to the solid particles

suspended in water, including organic and inorganic particles.

Therefore, the ratio of POC to SPM (POC/SPM) can be used to

measure the contribution of organic particles to total suspended

particles (Stramski et al., 2008; Woźniak et al., 2010; Tran et al.,

2019). According to the POC/SPM ratio, waters can be classified

into three types (Woźniak et al., 2010): if POC/SPM< 0.06, the

particles in the water are predominantly mineral-based; if POC/
FIGURE 1

Geographic distribution of matching points for particulate organic carbon (POC) and remote sensing data, where the color of the point represents
the magnitude of the POC concentration.
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SPM > 0.25, the particles in the water are predominantly organic-

based; if 0.06< POC/SPM< 0.25, it is considered a mixed water. This

study compiled the POC concentration ranges for the three types of

waters in the dataset, as shown in Table 1 and illustrated in the box

plot in Figure 2.

As shown in Table 1, there were 947 observations of mineral

water type in the dataset, with an average POC concentration of

31.06 mg/m3 and a median of 23.20 mg/m3. For the mixed water

type, there were 12,162 observations with an average POC

concentration of 42.14 mg/m3 and a median of 30.60 mg/m3.

Finally, for the organic water type, there were 958 observations

with an average POC concentration of 296.23 mg/m3 and a median

of 220.09 mg/m3. The standard error of POC for all three water

types was less than 10 mg/m3, indicating a relatively concentrated

distribution of data within each group. From Figure 2, it is evident

that there are significant differences among the three groups. Thus,

using POC/SPM as a classification criterion for waters effectively

represented the differences in POC concentrations within this

research dataset.

The dataset was divided into three parts according to the water

type to train and evaluate the machine learning model. Each part

was further split into training, validation, and test datasets at a

ratio of 6:2:2, as shown in Figure 2. The resulting dataset

contained approximately equal proportions of the three water

types, with distributions of approximately 7% mineral, 86%

mixed, and 7% organic water. This data partitioning method

ensures that the POC measured data in the training, validation,

and test datasets have similar distribution patterns, which can

enhance the effectiveness of the subsequent machine learning

model training and evaluation.
2.4 Feature selection method

The objective of feature selection is to find the features most

relevant to the target variable while excluding those that do not

contribute to the model’s performance. This is an important step in

machine learning that helps reduce data redundancy and noise and

improves the model’s generalization and interpretability (Liu et al.,

2021). Geodetector was employed to select features for the model.

Its theoretical foundation is spatial autocorrelation, which breaks

the assumption of independent and identically distributed data in
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classical statistics (Elhorst, 2010). The core idea is that if an

independent variable significantly influences a dependent variable,

the spatial distribution of the independent variable should be

similar to that of the dependent variable (Wang and Hu, 2012).

Geodetector is adept at analyzing categorical variables, and for

ordinal, ratio, or interval variables, they can also be subjected to

appropriate discretization for statistical analysis using geodetector

(Cao et al., 2013). Geodetector consist of four detectors, where the

q-value in factor detection represents the extent to which factor

explains the spatial variation in attribute POC. The formula used is

as Equation 1:

q = 1�WSS
TSS

(1)

In the equation, WSS represents the within sum of squares, and

TSS represents the total sum of squares. Interaction detection

assesses whether the interaction between two factors increases or

decreases the explanatory power of the dependent variable or

whether the effects of these factors on POC are independent of

each other.

The spatial distribution of POC at a global scale is uneven. This

study utilized geodetector analysis to identify the factors influencing

POC concentration, ensuring that the spatial distribution of each

factor is similar to that of POC. By validating the spatial correlation

between each factor and POC, the model can better represent the

spatial distribution characteristics of POC.
2.5 Machine learning methods

Six machine learning models were trained in this study,

including the BPNN, CNN, ABNN, RF, AdaBoost, and XGBoost,

to estimate POC on the ocean surface. The performance of each

model was tested individually.

ANN consist of a complex network structure that includes an

input layer, hidden layer(s), and an output layer (Mcculloch and

Pitts, 1990). The ANN learns and adapts to tasks through

continuous training and weights (Lecun et al., 2015). Popular

training algorithms for ANN include backpropagation and

gradient descent algorithms. This study’s BPNN model consisted

of one input layer, ten hidden layers, and one output layer. The first

hidden layer contained 89 neurons, and the remaining hidden

layers contained 52 neurons. The activation function used

between the input and hidden layers and between the output and

hidden layers is ReLU. The mean squared error (MSE) was used as a

loss function to train the model.

CNN is widely used in image recognition and computer vision

tasks. Compared with traditional fully connected neural networks,

CNNs have the characteristics of local connectivity and weight

sharing, which enable them to effectively extract spatial features

from images (Lecun et al., 1998). The core components of a CNN

are the convolutional and pooling layers. The CNN model used in

this study consisted of a one-dimensional convolutional layer with

one input channel, 16 output channels, and three convolutional

kernels. It also included a fully connected layer and an output layer.

The ReLU activation function was applied to the nonlinear
TABLE 1 Statistical data table of measured points for mineral, organic,
and mixed water.

Type Mineral Mixed Organic

amount 947 12162 958

average(mg/m3) 31.06 42.14 296.23

median(mg/m3) 23.20 30.60 220.09

min(mg/m3) 1.46 22.12 93.51

max(mg/m3) 428.58 2207.18 4743.84

SD* 1.06 0.41 9.96
* SD, Standard Deviation.
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transformations between each layer. The MSE was used as a loss

function to train the model.

The ABNN enhances the model’s performance for specific tasks

by introducing attention mechanisms; it can automatically learn

and select important features from input data and model their

correlations using a special weight allocation method (Yang et al.,

2019). In this study, we first used fully connected layers for the

feature transformation. The softmax function was used to calculate

attention weights, which were used to weigh the features. The

weighted features were summed. Similarly, the ReLU activation

function was used for nonlinear transformations between layers.

AdaBoost builds a robust classifier by combining multiple weak

classifiers, such as decision stumps (decision trees with only one

split node) or simple linear classifiers. One characteristic of

AdaBoost is that in each training round, it assigns higher weights

to samples misclassified in the previous round. This allows weak

classifiers to focus on misclassified samples, improving their overall

performance and robustness (Freund and Schapire, 1995). This

study used the sklearn library for python to build Adaboost.

Decision trees were used as weak regressors, and the total number

of iterations in the ensemble was set to 100.

XGBoost is an ensemble learning method based on a gradient-

boosting algorithm used to solve classification and regression

problems. This is an extension of the boosting algorithm and is

known for its efficiency and accuracy, making it widely applicable

across various domains. In the context of quantitative watercolor

remote sensing, XGBoost is primarily used to predict and estimate

water quality parameters of water (Krishnapuram et al., 2016;

Massari et al., 2018; Zou et al., 2021). In this study, we

implemented XGBoost using sklearn library for python with 100

decision trees in the ensemble and a 0.1 learning rate.

Random Forest (RF) is also an ensemble learning algorithm that

combines multiple decision trees for classification and regression.
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This improves the robustness and generalizability of the model by

utilizing random sampling and feature selection to combine multiple

decision trees (Breiman, 2001; Verde et al., 2018; Shi et al., 2019).
2.6 Statistical indicators used for model
development, validation and test

This research model performance assessment metrics include

coefficient of determination (R2), root mean square error (RMSE),

mean absolute percentage error (MAPE), bias, and variance.

R2 is a statistical measure used to assess the degree to which a

model fits the data. The formula is as Equation 2:

R2 = 1 −
SSR
SS

(2)

SSR represents the sum of squares due to regression, and SS

represents the sum of squares.

The RMSE is a statistical measure that assesses the error

between predicted and true values in a model. The calculation

formula is as Equation 3:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
�o(POCpred − POCtrue)

2
� �s

(3)

The MAPE is a statistical measure that assesses the average

relative error between a model’s predicted and true values. The

formula is as Equation 4:

MAPE =
1
n
�o

POCpred − POCtrue

POCtrue

����
����

� �
� 100 (4)

Bias measured the overall error direction of the model. Variance

measures the sensitivity and volatility of the model to the samples.

The formulas for the bias and variance are as Equations 5, 6:
A B

FIGURE 2

(A) Statistics of the particulate organic carbon concentration ranges of organic water, mineral water, and mixed water in the dataset; (B) Statistics of
the number of measured data belonging to the three types of waters in the training, validation, and test datasets.
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Bias =
1
n
�o(POCpred − POCtrue) (5)

Variance =
1
n
�o(POCpred − POCmean)

2 (6)

In the formulas above, n represents the number of samples,

POCpred represents the model’s predicted value, POCtrue represents

the true value, POCmean represents the mean predicted value, and S
denotes the summation.
3 Results and discussion

3.1 Feature selection

This study utilized factor and interaction detection in a

geodetector to select features for pre-model training. The

candidate features can be divided into three parts.

The first part comprises the apparent optical properties (AOPs)

and their mathematical combination. The AOPs is a product of the

interaction between the incident light flux inside the water and

the intrinsic optical properties of the water, which varies with the

distribution and intensity of the incident light field. These quantities

include downward irradiance (Ed), upward irradiance (Eu), water-

leaving radiance (LW), Rrs, and the diffuse attenuation coefficients

of these variables (Zaneveld and Mobley, 1995). In this study, the

diffuse attenuation coefficient (kd) at 490 nm from the MODIS

sensor was collected, as well as the Rrs at wavelengths of 412 nm,

443 nm, 469 nm, 488 nm, 547 nm, 555 nm, 645 nm, and 667 nm.

This encompassed the wavelength ranges of red, green, and blue

light. Based on the AOPs (mainly Rrs), this study combined band

ratios (red-green, red-blue, and blue-green), normalized difference

carbon index (NDCI), color index (CI), and band ratio difference

index (BRDI) as candidate features.

The second part consists of Inherent optical properties (IOPs),

which are solely related to the internal composition of water and do

not vary with changing illumination conditions. IOPs are typically

used to describe seawater’s absorption and scattering processes,

including the absorption, scattering, and attenuation coefficients of

various components within the water (Maritorena et al., 2010). POC

is an important component of organic particulate matter.

Therefore, this study used the backscattering coefficient of

particles (bbp) as a candidate feature.

The third part included other features that may be related to

POC, including sea surface temperature (SST), sea surface salinity

(SSS), Chlorophyll-a (CHL), suspended particulate matter (SPM)

concentration, euphotic zone depth (EZD), mixed layer depth

(MLD), and photosynthetically active radiation (PAR). These

parameters are closely related to marine biological activity and

the ocean carbon cycle. Spatial and temporal variations in

temperature and salinity directly and indirectly affect marine

plants’ and animals’ growth, reproduction, distribution, and

ecological functions. Chlorophyll concentration is an essential

indicator of plant biomass and photosynthetic activity in the

ocean. SPM reflects the concentration of particulate matter in

water, and the scattering and absorption effects of suspended
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particles on light can affect the conditions for photosynthesis and

growth of marine organisms. EZD and PAR are closely associated

with marine plants’ growth and photosynthetic activity. Changes in

MLD can cause variations in the distribution of different nutrients,

dissolved oxygen, and light, thereby affecting marine organisms’

distribution and ecological processes (Bopp et al., 2002; Sarmiento,

2006; Doney et al., 2009). These parameters were all considered

candidate features for training the model in this study.

The geodetector analysis was performed using the GD software

package developed by Song (Song et al., 2020). Because the

geodetector tool only accepts discrete variables as inputs, it is

necessary to discretize the continuous variables for analysis. The

GD package supports data discretization. This study used four

methods: equal intervals, natural breakpoints, quantiles, and

geometric intervals. The selected features were then subjected to

factor and interaction detection. The results of factor detection are

shown in Figure 3, whereas the results of interaction detection are

shown in Figure 4. In factor analysis, considering the important

influence of bbp on POC in other scholars’ research, and the weak

correlation between remote sensing reflectance in the purple band

and POC (Stramski et al., 1999; Tran et al., 2019), we used a

threshold of q=0.3 for bbp to determine the strength of its

correlation with POC. Specifically, variables with q<0.3 are

considered weakly correlated with POC, while variables with

q>0.3 are considered strongly correlated with POC. Variables that

showed nonlinear attenuation in both factor and interaction

detection were excluded. NDCI and CI have two categories: one

based on 443 nm and the other based on 488 nm. The factor

detection results for these four features had q values greater than

0.3, indicating a significant impact on the POC. In interaction

detection, there was no nonlinear or single-factor nonlinear

attenuation with other factors. However, building a model using

two identical factors is not meaningful. Therefore, in this study,

NDCI (443) and CI (443) with lower q values were excluded from

the analysis. Finally, 20 variables were selected to train the POC

estimation model, and the results are listed in Supplementary

Table S2.
3.2 Machine learning methods
development and validation

3.2.1 Accuracy of the model on different datasets
The observed dataset was divided into training, validation, and

test datasets. These datasets were used for the machine learning

model training, hyperparameter tuning, and model performance

validation. Hyperparameter tuning was performed using Bayesian

optimization, as described by Shahriari and Swersky (Shahriari

et al., 2016).

In this study, the six trained machine learning models were divided

into two categories: BPNN, CNN, and ABNN, which are artificial

neural networks (ANN), whereas AdaBoost, RF, and XGBoost are

ensemble algorithms. These models can achieve high accuracy in

multivariate regression tasks and exhibit good fitting performance for

nonlinear functions. However, the large differences in data quantities

for mineral, mixed, and organic water in the dataset are unfavorable for
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FIGURE 3

Geodetector factor detection results.
FIGURE 4

Heat map of geodetector interaction results.
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model training. They may lead to an increase in model variance. To

enhance the generalization performance of the models, we applied a

logarithmic transformation with a base of 10 to both the observed and

estimated POC values. Table 2 shows the accuracy of the six machine

learning models in estimating the log10(POC) for the three datasets.

Bold accuracy indicators represent the best performance for the

corresponding dataset. Among the six models, the ensemble

algorithms outperformed the neural network algorithms. The RF

model achieved the best performance with an R2 of 0.85, RMSE of

0.11 log10(mg/m3), MAPE of 2.73%, variance of 0.09, and bias of 0.003

on the test dataset. This indicates that the RFmodel for estimating POC

has good fitting and generalization capabilities.

Normalized residuals were used to evaluate the fit of the statistical

model and detect outliers. By observing the distribution of the

normalized residuals, we can assess the model’s fit and identify

outliers, which can help improve the model or clean the data. The

normalized residuals of the predictions made by the six models on the

test dataset was calculated. Figure 5 shows a scatterplot comparing

the predicted and true values, where each point’s color represents the

normalized residual’s magnitude. It can be visually observed that the

BPNN performed the best among the neural network algorithms,

with a MAPE of 3.471%. Among the ensemble algorithms, the RF

performed the best. In contrast, the CNN, ABNN, and AdaBoost

algorithms have a relatively poorer fit than the other models, and they

have many data points with larger normalized residuals at high POC

concentrations. This indicates that these three models have lower
Frontiers in Marine Science 08
accuracy in estimating high POC concentrations. The BPNN,

XGBoost, and RF algorithms exhibited a better fit, and RF

performed well in predicting low and high POC concentrations.

This is related to the strong noise immunity of RF, which can

effectively reduce the effects of randomness and noise by means of

multiple training and averaging predictions (Breiman, 2001), thus

improving the robustness of the model and increasing the estimation

accuracy of the POC.

3.2.2 Accuracy of the model on different waters
To investigate the performance of the machine learning models in

estimating POC for different water types, 200 matched POC data

points belonging to mineral, organic, and mixed water were randomly

sampled from the observed dataset. These data points were used to

predict and assess the accuracy of the six trained machine-learning

models. Table 3 presents the performance of the models in estimating

log10(POC) for the three water types. The bold indicators in the table

represent the best performance of each machine learning model in

estimating log10(POC) for the three water types. It can be observed that

all six machine learning models performed best in estimating the POC

for mixed water. The RMSE is less than 0.1 log10(mg/m3), the MAPE is

less than 4%, the variance is less than 0.008, and the absolute value of

the bias is less than 0.03. Figure 2 illustrates the significant differences in

the POC concentration distributions in mineral, mixed, and organic

water. These three water types represent low and high POC

concentrations, respectively.
TABLE 2 Model accuracy on training, validation, and test datasets.

Dataset R2 RMSE MAPE Variance bias

Training

BPNN 0.99 0.09 2.45% 0.97 0.012

CNN 0.80 0.13 4.58% 0.09 -0.009

ABNN 0.78 0.14 5.67% 0.09 0.029

AdaBoost 0.78 0.14 5.56% 0.09 0.022

RF 0.98 0.04 1.02% 0.09 0.0004

XGboost 0.95 0.07 2.73% 0.09 0.003

Validation

BPNN 0.82 0.43 3.27% 0.92 0.003

CNN 0.80 0.13 4.74% 0.09 -0.012

ABNN 0.77 0.14 5.67% 0.09 0.029

AdaBoost 0.76 0.15 5.76% 0.09 0.022

RF 0.87 0.11 2.61% 0.09 -0.001

XGboost 0.86 0.11 3.29% 0.09 -0.003

Test

BPNN 0.79 0.14 3.47% 0.08 0.004

CNN 0.78 0.14 4.77% 0.09 -0.006

ABNN 0.77 0.14 5.53% 0.09 0.032

AdaBoost 0.75 0.15 5.83% 0.09 0.025

RF 0.85 0.11 2.73% 0.09 0.003

XGboost 0.84 0.12 3.45% 0.09 0.0015
BPNN, Backpropagation Neural Network; CNN, Convolutional Neural Network; ABNN, Attention-Based Neural Network; RF, Random Forest; AdaBoost, Adaptive Boosting; XGBoost,
eXtreme Gradient Boosting; RMSE, Root Mean Square Error; MAPE, mean absolute percentage error.
Bold values represent the best performance for the corresponding dataset.
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FIGURE 5

Scatterplot comparing model predicted and true values, where the color of the points represents the magnitude of the normalized residuals. (A–F)
represent Backpropagation Neural Network, Convolutional Neural Network, Attention Neural Network, Adaptive Boosting, Extreme Gradient
Boosting and Random Forest, respectively.
TABLE 3 Model performance for particulate organic carbon estimation in mineral, mixed, and organic water.

Model RMSE MAPE bias Variance

BPNN

Mineral 0.16 4.78% -0.03 0.02

Mixed 0.07 1.53% -0.005 0.004

Organic 0.19 4.92% 0.08 0.03

CNN

Mineral 0.26 9.91% -0.17 0.04

Mixed 0.09 3.62% -0.006 0.008

Organic 0.31 10.24% 0.19 0.06

ABNN

Mineral 0.27 11.3% -0.19 0.04

Mixed 0.09 3.98% -0.03 0.007

Organic 0.32 11.14% 0.22 0.06

AdaBoost

Mineral 0.25 11.33% -0.18 0.03

Mixed 0.08 3.83% -0.03 0.006

Organic 0.34 13.72% 0.28 0.036

RF

Mineral 0.16 6.19% 0.06 0.02

Mixed 0.05 1.06% 0.006 0.002

Organic 0.09 4.67% -0.11 0.03

XGboost

Mineral 0.17 5.80% -0.08 0.02

Mixed 0.04 1.76% -0.002 0.002

Organic 0.22 6.70% 0.13 0.03
F
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BPNN, Backpropagation Neural Network; CNN, Convolutional Neural Network; ABNN, Attention-Based Neural Network; RF, Random Forest; AdaBoost, Adaptive Boosting; XGBoost,
eXtreme Gradient Boosting; RMSE, Root Mean Square Error; MAPE , mean absolute percentage error.
The bold indicators in the table represent the best performance of each machine learning model in estimating log10(POC) for the three water types.
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As shown in Table 3, except for the RF algorithm, the other five

machine learning algorithms had higher prediction accuracies for

mineral water than organic water, indicating that these five

algorithms performed better in estimating low POC values. The RF

algorithm had better estimation accuracy for organic water than

mineral water, indicating that the RF model can better estimate high

POC concentrations. Figure 6 normalizes the RMSE, MAPE, variance,

and bias metrics, allowing for a visual comparison of the performance

of each model for the three water types. The BPNN performed the best

in mineral water, RF performed the best in mixed water, and RF

demonstrated a significantly higher accuracy in estimating organic

water than the other models. In contrast, CNN, ABNN, and AdaBoost

performed relatively poorly for all three water types.

In summary, the six machine learning models had good

estimation performances for the moderate POC concentration

range represented by mixed water (30 mg/m3–100 mg/m3). The

BPNN achieved higher estimation accuracy for low POC

concentrations represented by mineral water (10 mg/m3–30 mg/

m3). In comparison, RF performed better in estimating high POC

concentrations represented by organic water (>100 mg/m3).
3.3 Model application

3.3.1 Comparison with NASA’s POC products in
space and time

This study compared global POC estimation products using RF

and BPNN and band-ratio algorithms in terms of spatial and

temporal analysis. The National Aeronautics and Space

Administration (NASA) has utilized the blue-to-green band ratio

algorithm to estimate POC concentrations in global oceans. This

algorithm used the ratio of Rrs(443nm) to Rrs(555nm) from

MODIS (Stramski et al., 2008). This study obtained NASA global

POC products from the NASA OCEAN COLOR, spanning 2007 to

2017, for spatial and temporal analyses. Products from 2007 to 2016

were used for interannual POC variation analysis, whereas products

from 2017 were used for spatial distribution analysis.

Figure 7 shows the spatial distribution of the global POC

concentrations estimated using the RF, BPNN, and NASA standard

POC product for 2017. Figure 7 shows that the spatial distributions of

POC concentrations estimated by the three algorithms were similar
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worldwide. In global oceans, POC concentrations are mostly below

100 mg/m3 in the Atlantic, Pacific and Indian Oceans, but above 100

mg/m3 in the Arctic Ocean. Additionally, POC concentrations in

coastal waters were significantly higher than in open ocean waters,

because of the abundant land-based input of nutrients to coastal

waters, and the intense water mass movements that cause bottom

nutrients to be transported to the surface layer, which promotes

phytoplankton growth and increases the efficiency of POC

production (Lao et al., 2023b).

Figure 8 presents the deviation and percentage deviation of the

global POC concentrations estimated by the RF and BPNN compared

to NASA standard POC product. In the Arctic Ocean, the BPNN

estimated significantly higher POC concentrations than the NASA

standard POC product, with deviations exceeding 75 mg/m3 and

percentage deviations exceeding 50%. However, the RF algorithm

showed little deviation from the NASA standard POC product in the

Arctic Ocean, with some regions showing lower POC concentrations

of more than 50 mg/m3 and a percentage deviation exceeding 30%. In

the Pacific, Atlantic, and Indian Oceans, the RF algorithm showed

minimal deviation from the NASA standard POC product, with the

Atlantic region having slightly lower POC concentrations and the

Pacific and Indian Oceans having slightly higher POC

concentrations. The deviation was less than 15 mg/m3, and the

percentage deviation was less than 40%. In contrast, the BPNN

exhibited lower POC concentrations than the NASA standard POC

product in the central Atlantic, central Pacific, and northern Indian

Oceans. Although the deviation was within 25 mg/m3, the percentage

deviation exceeded 50%, indicating that the BPNN can improve the

estimation of POC concentrations in part of the open ocean. In the

Antarctic Ocean, the RF algorithm and the BPNN estimated higher

POC concentrations than the NASA standard POC product, with a

deviation exceeding 50 mg/m3 and, in some regions, even exceeding

100 mg/m3, with a variance exceeding 50%. The NASA reference

product uses the blue-green band ratio algorithm, which only

considers Rrs and cannot effectively represent the influence of

water components such as chlorophyll on POC. In polar ocean, the

melting of glaciers increases the input of nutrient-rich water,

promoting the growth of surface phytoplankton, leading to

significantly higher chlorophyll-a concentrations compared to low-

latitude seas (Babin et al., 2003; Arrigo, 2005; Steinacher et al., 2008).

The RF and BPNN estimation models utilize Chl-a, which can
A B C

FIGURE 6

Radar plots of the performance of machine learning models for estimating particulate organic carbon in: (A) mineral water; (B) mixed water; (C)
organic water.
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FIGURE 7

The global POC concentration distribution in 2017, estimated using three algorithms: (A) band ratio, (B) backpropagation neural network, and (C)
random forest.
A B

DC

FIGURE 8

Deviation and percentage deviation between the 2017 global POC concentration estimated by random forest and backpropagation neural network
algorithms and NASA’s particulate organic carbon standard algorithm. (A) Deviation of the back propagation neural network from the NASA standard
algorithm for estimating POC. (B) Percentage deviation of the back propagation neural network from the NASA standard algorithm for estimating
POC. (C) Deviation of the random forest from the NASA standard algorithm for estimating POC. (D) Percentage deviation of the random forest from
the NASA standard algorithm for estimating POC.
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effectively reflect the relationship between Chl-a and POC. Therefore,

it is reasonable for RF and BPNN to exhibit certain differences from

the NASA reference product in polar ocean. Moreover, in the Persian

Gulf, Red Sea, and Arabian Sea, the RF algorithm showed

significantly higher results than the reference products, with a

deviation exceeding 100 mg/m3 and a percentage deviation

exceeding 50%. These waters are strongly influenced by the

monsoon winds of the Indian Ocean, which cause upwelling of

deep water to the sea surface, promoting the mixing and transport of

nutrients. Additionally, certain areas may also be affected by nutrient-

rich water inputs from the Red Sea and the Persian Gulf, leading to

possible occurrences of eutrophication in some sea areas (Kumar

et al., 2000). The abundant nutrients facilitate the growth of

phytoplankton in these waters, further promoting the production

of POC and resulting in elevated POC concentrations.

Overall, the BPNN performed better than the RF algorithm in

estimating open ocean POC concentrations. The RF algorithm

showed a minor difference from the NASA standard POC product

in the open ocean regions, with a percentage deviation of

approximately 20%. However, in some coastal areas, the RF

algorithm estimates higher POC concentrations than the NASA

standard POC product, which helps improve the underestimation

of POC concentrations by the band ratio algorithm in coastal waters.

Figure 9 shows the annual average variations in global POC

concentrations estimated by the NASA standard POC product, the

random forest (RF) algorithm, and the BPNN between 2007 and

2016. The annual average values estimated by the NASA standard

POC product range from 85 mg/m3 to 100 mg/m3. In contrast, the

annual average POC concentrations estimated using the BPNN and

RF algorithm ranged from 60 mg/m3 to 70 mg/m3. The average

percentage deviation of the BPNN from the NASA standard POC

product is 27.15%. In comparison, the RF algorithm has an average
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deviation of 25.33% from the NASA standard POC product. This

deviation can be attributed to two factors.

First, the NASA global standard POC product includes estimates

of POC concentrations in inland waters. Although inland waters have

smaller surface areas than oceans, they may have higher POC

contents. This is because inland waters are usually shallower,

making it easier for light to penetrate to the bottom of the water.

This promotes active photosynthesis and higher biological

productivity. At the same time, inland waters are influenced by

input substances, organisms, and human activities from land, such

as organic matter, nutrients, and pollutants carried by rivers, which

may result in relatively higher POC content (Yang et al., 2016). This

affected the average value of the NASA global POC product to some

extent. Second, POC concentrations can exceed 10,000 mg/m3

(Steinacher et al., 2008). The measured POC values collected in this

study range from 1.46 mg/m3 to 4743 mg/m3, and there are relatively

few measured points with high POC concentrations. This caused the

trained model to underestimate the values of high POC

concentrations. Combining these two factors, the machine learning

model estimates global average annual POC value is lower than the

average annual POC value in NASA’s standard POC product.

Figure 9 shows that, from 2007 to 2011, the global mean POC

estimated by the RF algorithm and the NASA standard product

increased. From 2011 to 2014, there was a slight decrease in global

mean POC; from 2014 to 2016, there was a subsequent increase. In

contrast, the BPNN estimated an increase in global POC from 2007 to

2009, a decrease from 2009 to 2013, and an increase from 2013 to

2017. Regarding the annual trends, the RF estimation of the global

mean POC showed better consistency with the NASA standard

product than with the BPNN, and the RF-estimated POC product

can be used to investigate the spatial and temporal trends in POC in

various global ocean areas.
FIGURE 9

Annual changes in global POC from 2007 to 2016 as estimated by the blue-to-green band ratio, backpropagation neural network, and random
forest algorithm.
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3.3.2 Results of the random forest algorithm for
estimating global surface POC

The BPNN and random forest algorithm performed well in

estimating global surface POC concentrations. However, the

Random Forest algorithm provides a better estimate of POC in

coastal waters. This study estimated the global surface POC

concentration from 2007 to 2016 using the random forest

algorithm and discussed the variations in POC in different ocean

regions during this period.

Figure 10 illustrates the distribution of global surface POC

concentrations from 2007 to 2016, which indicates a consistent

spatial distribution of POC over the 10-year period. The global

biomass of zooplankton is higher in the coastal zone than in the
Frontiers in Marine Science 13
open ocean due to sufficient land inputs, abundant sunlight and

nutrient-rich currents. The distribution of surface POC is higher in

the coastal zone than in the open ocean. Figure 10 shows that

surface POC concentrations are significantly higher in nearshore

areas (e.g., the Arabian Sea, off China and off Angola) than in other

areas. Indeed, the distribution of surface POC concentrations is also

related to latitude. Figure 10 shows that high-latitude regions, such

as the Arctic Ocean, Antarctic waters, North and South Atlantic,

and North and South Pacific, have higher surface POC

concentrations than middle and low-latitude regions. This was

related to several factors.

First, nutrients provided by water transport have a significant

impact on the growth of phytoplankton (Sardessai et al., 2010; Xu
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FIGURE 10

(A–J) Represent global particulate organic carbon distribution from 2007 to 2016 estimated using the random forest algorithm.
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et al., 2019; Lao et al., 2023b), including enhanced vertical mixing

(Lao et al., 2023c), which directly affects the distribution of organic

matter content in the ocean (Yamashita et al., 2019; Wang

et al., 2021).

Water masses are more strongly mixed at high latitudes due to

cold water, glacial melt, polar eddies, and boundary currents, and

these fluid movements bring deep organic matter (e.g., dead

organisms and detritus) to the surface of the oceans, which

increases the organic content of the surface layer, enhances the

productivity of marine organisms, and increases the production of

POC. Secondly, high latitudes have relatively weak sunlight, especially

in winter. This limits the photosynthesis of phytoplankton. As a

result, they focus on growth and reproduction during the shorter

summer months, leading to higher surface POC concentrations

(Babin et al., 2003; Arrigo, 2005; Steinacher et al., 2008).

Figure 11 shows the results of classifying the POC products

estimated using RF into mineral water, mixed water and organic

water for the period 2007-2016. Mineral water is mainly found in

the Arctic Ocean, Antarctic waters, and regions between 20° and 40°

north and south latitudes. Mixed water is predominantly found in

equatorial regions and the North and South Atlantic and Pacific

waters. Organic water was distributed along the continental

margins. Although the POC concentration is higher in the Arctic

Ocean, intense ocean currents and glacial melting in polar regions

result in higher concentrations of suspended particles. This

classification implies that the Arctic Ocean region falls under the

mineral water category.

Fifty sampling points were selected from the three waters

mentioned above. POC concentrations at the sampling points

collected between 2007 and 2016 were extracted. The average

value of these 50 concentrations represented the average POC

concentration of the corresponding waters in the current year. A

line graph was plotted to examine the variations in POC

concentrations over time in different waters. Figure 12 shows that

the POC concentrations in the mineral and mixed water remained

relatively stable over the 10-year period. However, the POC
Frontiers in Marine Science 14
concentration in organic water decreased from 2009 to 2010,

increased from 2010 to 2012, and decreased again from 2015 to

2016. POC concentrations at the sea surface may be related to the El

Niño phenomenon. El Niño leads to an increase in the sea surface

temperature in the equatorial Pacific. The stratification of the water

column become more pronounced with the increase in sea surface

temperature, inhibiting the upwelling of deep eutrophic water to the

upper layers, thus affecting phytoplankton growth, which further

led to a decrease in primary productivity and a decrease in the

concentration of POC in the surface layer of the ocean.

Additionally, El Niño can cause changes in wind patterns and

ocean circulation, which may alter the distribution of nutrients in

the ocean and affect phytoplankton (Chavez et al., 1999; Behrenfeld

et al., 2006; Dore et al., 2009; Lao et al., 2023b). Indeed, El Niño

events in both 2009-2010 and 2015-2016 can partially explain the

variations in POC concentrations observed in organic waters, as

shown in Figure 12.
3.4 Limitations

This study compared the performances of six machine learning

algorithms in estimating POC on the ocean surface. The RF

algorithm improved the estimation of POC in areas with complex

optical conditions near the coast. A brief discussion was also

conducted on the spatiotemporal distribution of the global POC

based on RF. However, this study still has some limitations that

need to be addressed. These limitations are listed below:

1) The data collected were unevenly distributed in terms of

spatial coverage. Most data points are concentrated in the Atlantic,

Pacific, and Mediterranean Seas. There is a lack of sufficient

measured data in the Indian Ocean and the Arctic Ocean, as well

as in some eutrophic regions, such as the Red Sea, Arabian Sea, and

Persian Gulf. This can affect the accuracy of the machine-learning

model and result in an underestimation of POC concentrations in

areas with complex optical conditions near the coast. In the future,
FIGURE 11

Distribution of mineral, mixed, and organic water according to particulate organic carbon/suspended particulate matter.
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more POC data should be collected on a global scale, and the

accuracy of the data should be controlled to improve the

model’s accuracy.

2) This study only produced annual POC products from 2007 to

2016. However, the POC exhibited strong seasonal variability.

Therefore, conducting monthly POC estimation in the future

would be beneficial, allowing for a more accurate investigation of

the spatiotemporal characteristics of global POC.
4 Conclusions

This article is based on a large amount of open-source data

and has created a large in-situ POC dataset distributed in

various oceans around the world. By using geodetector,

twenty factors closely related to oceanic POC concentration

were screened. The dataset was partitioned based on the POC/

SPM to ensure the training, validation, and test datasets had

similar data distributions. Six machine learning methods were

used to construct POC estimation models, with the accuracy

being evaluated. By comparing the performances of six different

machine learning models and their performances in different

water types, it was found that the random forest algorithm

achieved the highest accuracy on the test dataset. The RMSE was

measured at 0.11 log10(g/m3), the MAPE was 2.73%, the

variance reached 0.09, and the bias was only 0.003. The RF

estimation of POC had the highest accuracy in organic waters,

and the BPNN had the highest accuracy in mineral waters.

Furthermore, the RF estimation results showed better

consistency with NASA standard products, thereby enhancing

the accuracy of POC estimation in optically complex seas. In
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future research, a high-precision POC estimation model should

be constructed based on a large amount of measured data in all

types of waters.

Based on the RF model, POC products from 2007 to 2017 were

generated, and the spatio-temporal distribution characteristics of

global POC during this 10-year period were investigated. The

results indicated that the POC concentration in high-latitude seas

was higher than that in mid-latitude and low-latitude seas. This

could be attributed to the strong fluid motions in high-latitude

regions, such as polar eddies and boundary currents, which

intensify the mixing of water masses and bring organic materials

from deeper layers to the ocean surface, thereby promoting the

growth of phytoplankton and increasing the concentration of

surface POC. Additionally, the El Niño phenomenon may be

associated with interannual variations in POC, as higher sea

surface temperatures and increased seawater stratification during

the El Niño period reduce the upwelling of nutrients from the

seafloor, restricting phytoplankton growth and thus lowering the

concentration of POC in the surface layer. El Niño events in both

2009-2010 and 2015-2016 can partially explain the variations in

POC concentrations observed in organic waters. In future studies,

seasonal-scale variations in POC should be investigated, and the

relevant drivers of changes in POC concentrations should be

studied in greater depth.
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Heidelberg: Springer) 55 (1), 119–139. doi: 10.1007/3-540-59119-2_166

Gardner, W. D., Mishonov, A. V., and Richardson, M. J. (2006). Global POC
concentrations from in-situ and satellite data. Deep Sea Res. Part II: Topical Stud.
Oceanogr. 53 (5), 718–740. doi: 10.1016/j.dsr2.2006.01.029

Good, S., Fiedler, E., Mao, C., Martin, M. J., and Worsfold, M. (2020). The current
configuration of the OSTIA system for operational production of foundation sea
surface temperature and ice concentration analyses. Remote Sens. 12 (4), 720–.
doi: 10.3390/rs12040720

Hayley, E. K., Victor, M. V., Brewin, R. J. W., Giorgio, D., Hickman, A. E., Thomas, J.,
et al. (2017). Validation and intercomparison of ocean color algorithms for estimating
particulate organic carbon in the oceans. Front. Mar. Sci. 4. doi: 10.3389/
fmars.2017.00251

Jahnke,, and Richard, A. (1996). The global ocean flux of particulate organic carbon:
Areal distribution and magnitude. Global Biogeochem. Cycles. 10 (1), 71–88.
doi: 10.1029/95GB03525

Jiang, G., Loiselle, S. A., Cai, W., Yang, J., and Duan, (2015). Remote sensing of
particulate organic carbon dynamics in a eutrophic lake (Taihu Lake, China). Sci. Total
Environ. 532, 245–254. doi: 10.1016/j.scitotenv.2015.05.120

Kim, M., Hwang, J., Kim, G., Na, T., Kim, T., and Hyun, J. (2022). Carbon cycling in
the East Sea (Japan Sea): A review. Front. Mar. Sci. 9. doi: 10.3389/fmars.2022.938935
frontiersin.org

https://oceancolor.gsfc.nasa.gov/
https://seabass.gsfc.nasa.gov/
https://marine.copernicus.eu/
https://marine.copernicus.eu/
https://www.frontiersin.org/articles/10.3389/fmars.2023.1295874/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmars.2023.1295874/full#supplementary-material
https://doi.org/10.1038/nature04265
https://doi.org/10.4319/lo.2003.48.2.0843
https://doi.org/10.1038/nature05317
https://doi.org/10.1016/j.rse.2022.113227
https://doi.org/10.1029/2001GB001445
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.earscirev.2021.103604
https://doi.org/10.3390/rs14133220
https://doi.org/10.1080/15481603.2013.778562
https://doi.org/10.1126/science.286.5447.2126
https://doi.org/10.1016/j.aqpro.2015.02.075
https://doi.org/10.1073/pnas.0906044106
https://doi.org/10.1146/annurev.marine.010908.163834
https://doi.org/10.1146/annurev.marine.010908.163834
https://doi.org/10.1007/978-3-642-03647-7_19
https://doi.org/10.1007/978-3-642-03647-7_19
https://doi.org/10.1007/3-540-59119-2_166
https://doi.org/10.1016/j.dsr2.2006.01.029
https://doi.org/10.3390/rs12040720
https://doi.org/10.3389/fmars.2017.00251
https://doi.org/10.3389/fmars.2017.00251
https://doi.org/10.1029/95GB03525
https://doi.org/10.1016/j.scitotenv.2015.05.120
https://doi.org/10.3389/fmars.2022.938935
https://doi.org/10.3389/fmars.2023.1295874
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Wu et al. 10.3389/fmars.2023.1295874
Krishnapuram, B., Shah, M., Smola, A., Aggarwal, C., Shen, D., and Rastogi, R.
(2016). KDD '16: The 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (San Francisco, California, USA: Association for
Computing Machinery). doi: 10.1145/2939672

Kumar, S. P., Madhupratap, M., Kumar, M. D., Gauns, M., Muraleedharan, P. M.,
Sarma, V. V. S. S., et al. (2000). Physical control of primary productivity on a seasonal
scale in central and eastern Arabian Sea. J. Earth Syst. Sci. 109, 433–441. doi: 10.1007/
BF02708331

Lao, Q., Chen, F., Jin, G., Lu, X., Chen, C., Zhou, X., et al. (2023a). Characteristics and
mechanisms of typhoon-induced decomposition of organic matter and its implication
for climate change. J. Geophysical Research: Biogeosciences 128 (6), e2023JG007518.
doi: 10.1029/2023JG007518

Lao, Q., Liu, S., Ling, Z., Jin, G., Chen, F., Chen, C., et al. (2023b). External dynamic
mechanisms controlling the periodic offshore blooms in Beibu gulf. J. Geophysical
Research: Oceans 128 (6), e2023JC019689. doi: 10.1029/2023JC019689

Lao, Q., Lu, X., Chen, F., Jin, G., Chen, C., Zhou, X., et al. (2023c). Effects of upwelling
and runoff on water mass mixing and nutrient supply induced by typhoons: Insight from
dual water isotopes tracing. Limnology Oceanogr. 68 (1), 284–295. doi: 10.1002/lno.12266

Lavergne, T., Srensen, A. M., Kern, S., Tonboe, R., and Pedersen, L. T. (2019).
Version 2 of the EUMETSAT OSI SAF and ESA CCI sea-ice concentration climate data
records. Cryosphere. 13 (1), 49–78. doi: 10.5194/tc-13-49-2019

Le, C., Lehrter, J. C., Hu, C., Macintyre, H., and Beck, M. W. (2017). Satellite
observation of particulate organic carbon dynamics on the Louisiana continental shelf.
J. Geophysical Research: Oceans. 122 (1), 555–569. doi: 10.1002/2016JC012275

Lecun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature 521 (7553), 436–
444. doi: 10.1038/nature14539

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proc. IEEE. 86 (11), 2278–2324. doi: 10.1109/5.726791

Liu, H., Li, Q., Bai, Y., Yang, C., Wang, J., Zhou, Q., et al. (2021). Improving satellite
retrieval of oceanic particulate organic carbon concentrations using machine learning
methods. Remote Sens. Environ. 256, 112316. doi: 10.1016/j.rse.2021.112316

Loisel, H., Bosc, E., Stramski, D., Oubelkheir, K., and Deschamps, P. Y. (2001). Seasonal
variability of the backscattering coefficient in the Mediterranean Sea based on satellite
SeaWiFS imagery. Geophys. Res. Lett. 28 (22), 4203–4206. doi: 10.1029/2001GL013863

Loisel, H., Nicolas, J., Deschamps, P., and Frouin, R. (2002). Seasonal and inter-
annual variability of particulate organic matter in the global ocean. Geophys. Res. Lett.
29 (24), 49. doi: 10.1029/2002GL015948

Maritorena, S., D'Andon, O. H. F., Mangin, A., and Siegel, D. A. (2010). Merged
satellite ocean color data products using a bio-optical model: Characteristics, benefits
and issues. Remote Sens. Environ. 114 (8), 1791–1804. doi: 10.1016/j.rse.2010.04.002

Martiny, A. C., Vrugt, J. A., and Lomas, M. W. (2014). Concentrations and ratios of
particulate organic carbon, nitrogen, and phosphorus in the global ocean. Sci. Data. 1
(1), 140048. doi: 10.1038/sdata.2014.48

Massari, C., Camici, S., Ciabatta, L., and Brocca, L. (2018). Exploiting satellite-based
surface soil moisture for flood forecasting in the Mediterranean area: state update
versus rainfall correction. Remote Sensing. 10 (2), 292. doi: 10.3390/rs10020292

Mcculloch, W. S., and Pitts, W. (1990). A logical calculus of the ideas immanent in
nervous activity. Bull. Math. Biol. 52 (1), 99–115. doi: 10.1007/BF02459570

Merchant, C. J., Embury, O., Bulgin, C. E., Block, T., and Donlon, C. (2019). Satellite-
based time-series of sea-surface temperature since 1981 for climate applications. Sci.
Data. 6 (1), 223. doi: 10.1038/s41597-019-0236-x

Morel, A., and Prieur, L. (1977). Analysis of variations in ocean color. Limnol.
Oceanogr. 22 (4), 709–722. doi: 10.4319/lo.1977.22.4.0709

O'Reilly, J. E. (2000). Ocean color chlorophyll algorithms for SeaWiFS, OC2, and
OC4 : Ver 4. SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3. NASA
Tech. Memo. 11, 9–27. Available at: https://cir.nii.ac.jp/crid/1570572701233940096.

O'Reilly, J. E., and Werdell, P. J. (2019). Chlorophyll algorithms for ocean color
sensors-OC4, OC5 & OC6. Remote Sens. Environ.: Interdiscip. J. 229, 32–47.
doi: 10.1016/j.rse.2019.04.021

Sardessai, S., Shetye, S., Maya, M. V., Mangala, K. R., and Prasanna Kumar, S. (2010).
Nutrient characteristics of the water masses and their seasonal variability in the eastern
equatorial Indian Ocean. Mar. Environ. Res. 70 (3), 272–282. doi: 10.1016/
j.marenvres.2010.05.009

Sarmiento, J. L. (2006). Ocean Biogeochemical Dynamics. Princeton University Press.
doi: 10.1515/9781400849079

Sauzède, R., Claustre, H., Uitz, J., Jamet, C., Dall'Olmo, G., D'Ortenzio, F., et al. (2016).
A neural network-based method for merging ocean color and Argo data to extend surface
bio-optical properties to depth: Retrieval of the particulate backscattering coefficient. J.
Geophysical Research: Oceans. 121 (4), 2552–2571. doi: 10.1002/2015JC011408

Sauzède, R., Johnson, J. E., Claustre, H., Camps-Valls, G., and Ruescas, A. B. (2020).
ESTIMATION OF OCEANIC PARTICULATE ORGANIC CARBON WITH
MACHINE LEARNING. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. 2,
949–956. doi: 10.5194/isprs-annals-V-2-2020-949-2020

Sauzède, R., Claustre, H., , R., Remanan, P., Uitz, J., Guinehut, S., et al. (2021). New
global vertical distribution of gridded particulate organic carbon and chlorophyll-a
concentration using machine learning for cmems. 9th EuroGOOS International
conference. Shom and Ifremer and EuroGOOS AISBL. (Brest, France), 313–320.
https://hal.science/hal-03335370v2.
Frontiers in Marine Science 17
Sawaya, K. E., Olmanson, L. G., Heinert, N. J., Brezonik, P. L., and Bauer, M. E.
(2003). Extending satellite remote sensing to local scales: land and water resource
monitoring using high-resolution imagery. Remote Sens. Environ. 88 (1), 144–156.
doi: 10.1016/j.rse.2003.04.006

Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., and De Freitas, N. (2016). Taking
the human out of the loop: A review of Bayesian optimization. Proc. IEEE. 104 (1), 148–
175. doi: 10.1109/JPROC.2015.2494218

Shi, Y., Zhang, D., Ji, H., and Dai, R. (2019). Application of synchrosqueezed
wavelet transform in microseismic monitoring of mines. IOP Conference Series:
Earth and Environmental Science 384 (01), 012075. doi: 10.1088/1755-1315/384/1/
012075

Son, Y. B., Gardner, W. D., Mishonov, A. V., and Richardson, M. J. (2009).
Multispectral remote-sensing algorithms for particulate organic carbon (POC): The
Gulf of Mexico. Remote Sens. Environ. 113 (1), 50-61. doi: 10.1016/j.rse.2008.08.011

Song, Y., Wang, J., Ge, Y., and Xu, C. (2020). An optimal parameters-based
geographical detector model enhances geographic characteristics of explanatory
variables for spatial heterogeneity analysis: cases with different types of spatial data.
GISci. Remote Sens. 57 (5), 593–610. doi: 10.1080/15481603.2020.1760434

Steinacher, M., Joos, F., Frölicher, T. L., P., G. K., and Doney, S. C. (2008).
Imminent ocean acidification projected with the NCAR global coupled carbon cycle-
climate model. Biogeosciences Discussions 5 (4), 4353–4393. doi: 10.5194/bgd-5-
4353-2008

Stramski, D., Joshi, I., and Reynolds, R. A. (2022). Ocean color algorithms to estimate
the concentration of particulate organic carbon in surface waters of the global ocean in
support of a long-term data record from multiple satellite missions. Remote Sens.
Environ. 269, 112776. doi: 10.1016/j.rse.2021.112776

Stramski, D., Reynolds, R. A., Babin, M., Kaczmarek, S., Lewis, M. R., Röttgers, R.,
et al. (2008). Relationships between the surface concentration of particulate organic
carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans.
Biogeosciences 5 (1), 171–201. doi: 10.5194/bg-5-171-2008

Stramski, D., Reynolds, R. A., and Kahru, M. (1999). Estimation of particulate
organic carbon in the ocean from satellite remote sensing. Science 285 (5425), 239–242.
doi: 10.1126/science.285.5425.239

Tran, T. K., Duforêt-Gaurier, L., Vantrepotte, V., Jorge, D. S. F., Mériaux, X., Cauvin,
A., et al. (2019). Deriving particulate organic carbon in coastal waters from remote
sensing: inter-comparison exercise and development of a maximum band-ratio
approach. Remote Sens. 11 (23), 2849. doi: 10.3390/rs11232849

Verde, N., Mallinis, G., Tsakiri-Strati, M., Georgiadis, C., and Patias, P. (2018).
Assessment of radiometric resolution impact on remote sensing data classification
accuracy. Remote Sensing. 10 (8), 1267. doi: 10.3390/rs10081267

Wang, J., and Hu, Y. (2012). Environmental health risk detection with GeogDetector.
Environ. Modell. Software 33, 114–115. doi: 10.1016/j.envsoft.2012.01.015

Wang, C., Li, Y., Li, Y., Zhou, H., Stubbins, A., Dahlgren, R. A., et al. (2021).
Dissolved organic matter dynamics in the epipelagic northwest pacific low-latitude
western boundary current system: insights from optical analyses. J. Geophysical
Research: Oceans 126 (9), e2021JC017458. doi: 10.1029/2021JC017458

Wang, Y., Wang, F., and Chen, Y. (2017). Research progress on remote sensing
inversion of ocean particulate organic carbon. J. Hangzhou Normal Univ. (Natural Sci.
Edition). 16 (2), 205–212. doi: 10.3969/j.issn.1674-232X.2017.02.015

Wang, J., and Xu, C. (2017). Geodetector: principle and prospective. Acta
Geographica Sinica. 72 (01), 116–134. doi: 10.11821/dlxb201701010

Werdell, P. J., and Bailey, S. W. (2005). An improved bio-optical data set for ocean
color algorithm development and satellite data product variation. Remote Sens.
Environ. 98 (1), 122–140. doi: 10.1016/j.rse.2005.07.001
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