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Abstract: In the present paper, we study a submonoid of the symmetric inverse semigroup In. Specifically,
we consider the monoid of all order-, fence-, and parity-preserving transformations of In. While the rank and
a set of generators of minimal size for this monoid are already known, we will provide a presentation for this
monoid.
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1. Introduction

Let n be a finite chain with n elements, where n is a positive integer, denoted by
n = {1 < 2 < · · · < n}. We denote by PTn the monoid (under composition) of all partial transfor-
mations on n. A partial transformation α on the set n is a mapping from a subset A of n into n.
The domain (respectively, image or range) of α is denoted by dom(α) (respectively, im(α)). The
empty transformation is denoted by ε. A transformation α ∈ PTn is called order-preserving if x < y
implies xα ≤ yα for all x, y ∈ dom(α). It is worth noting that we write mappings on the right of
their arguments and perform composition from left to right. Furthermore, an α ∈ PTn is called a
partial injection when α is injective. The set of all partial injections forms a monoid, the symmetric
inverse semigroup In, as introduced by Wagner [17]. We denote by POIn the submonoid of In,
consisting of all order-preserving partial injections on n. This monoid has already been well-studied
(see e.g., [6]).

A non-linear order that is closed to a linear order in some sense is the so-called zig-zag order.
The pair (n,�) is called a zig-zag poset or fence if

1 ≺ 2 ≻ · · · ≺ n− 1 ≻ n if n is odd and 1 ≺ 2 ≻ · · · ≻ n− 1 ≺ n if n is even, respectively.

The definition of the partial order � is self-explanatory. A transformation α ∈ PTn is referred
to as fence-preserving if it preserves the partial order �, meaning that for all x, y ∈ dom(α) with
x ≺ y, we have xα � yα. The set of fence-preserving transformations on n was initially explored by
Currie, Visentin, and Rutkowski. In [2, 14], the authors investigated the number of order-preserving
maps of a finite fence. In particular, a formula for the number of order-preserving self-mappings
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of a fence was introduced. It is noteworthy that every element of a fence is either minimal or
maximal. For all x, y ∈ n with x ≺ y, we have y ∈ {x − 1, x + 1}. We denote by PFIn the
submonoid of In, consisting of all fence-preserving partial injections of n. We denote by IFn the
inverse submonoid of PFIn of all regular elements in PFIn. It is easy to see that IFn is the set
of all α ∈ PFIn with α−1 ∈ PFIn. It is worth mentioning that several properties of a variety of
monoids of fence-preserving transformations were studied [3, 7, 9, 11, 12, 16].

In the present paper, we focus on a submonoid of IOFn = IFn
⋂

POIn. Let a ∈ dom(α) for
some α ∈ IOFn. If a + 1 ∈ dom(α) or a − 1 ∈ dom(α) then it is easy to verify that a and aα
have the same parity. In other words, a is odd if and only if aα is odd. However, if a − 1 and
a + 1 are not in dom(α), then a and aα can have different parity. In order to exclude this case,
we require that the image of any a ∈ dom(α) has the same parity as aα. In this context, we refer
to α as parity-preserving. In our paper, we consider the monoid IOF par

n of all parity-preserving
transformations of IOFn. Notably, for any α ∈ IOF par

n , the inverse partial injection α−1 exists
and possesses order-preserving, fence-preserving, and parity-preserving. This observation implies
that IOF par

n is an inverse submonoid of In, as explained in [15]. Furthermore, in the same paper
[15], the authors provided a characterization of the monoid IOF par

n :

Proposition 1 [15]. Let p ≤ n and let

α =

(

d1 < d2 < · · · < dp
m1 m2 · · · mp

)

∈ In.

Then α ∈ IOF par
n if and only if the following four conditions hold :

(i) m1 < m2 < ... < mp;

(ii) d1 and m1 have the same parity ;

(iii) di+1 − di = 1 if and only if mi+1 −mi = 1 for all i ∈ {1, ..., p − 1};
(iv) di+1 − di is even if and only if mi+1 −mi is even for all i ∈ {1, ..., p − 1}.

Also in [15], a set of generators of IOF par
n of minimal size is given. This leads to the question of a

presentation of IOF par
n . In this paper, we will exhibit a monoid presentation for IOF par

n . A monoid
presentation is represented as an ordered pair 〈X |R〉, where X is a set, referred to as the alphabet
(a set whose elements are called letters), and R is a binary relation on the free monoid generated by
X, denoted by X∗. A pair (u, v) ∈ X∗×X∗ is represented by u ≈ v and is called relation. We state
that u ≈ v, for u, v ∈ X∗, is a consequence of R if (u, v) ∈ ρR, where ρR denotes the congruence
on X∗ generated by R. We say that the momoid IOF par

n has (monoid) presentation 〈X |R〉 if
IOF par

n is isomorphic to the factor semigroup X∗/ρR. For a more comprehensive understanding of
semigroups, presentations, and standard notation see [1, 8, 10, 13].

Given that IOF par
n is a finite monoid, we can always exhibit a presentation for it. A usual

method to establish a good presentations is the Guess and Prove Method, which is described by
the following theorem, adapted to monoids from Ruškuc (1995, Proposition 3.2.2).

Theorem 1 [13]. Let X be a generating set for IOF par
n , let R ⊆ X∗ ×X∗ be a set of relations

and let W ⊆ X∗ that the following conditions are satisfied :

1. The generating set X of IOF par
n satisfies all the relations from R;

2. For each word w ∈ X∗, there exists a word w′ ∈ W such that the relation w ≈ w′ is a

consequence of R;

3. |W | ≤ |IOF par
n |.

Then IOF par
n is defined by the presentation 〈X |R〉.
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In the next section, we introduce the alphabet (generating set) denoted as Xn and the binary
relation R on X∗

n. Furthermore, we will demonstrate that Xn fulfills all the relations in R as
outlined in Theorem 1, item 1. Following the guidance of item 2 in Theorem 1, we will establish
a set of forms, denoted as P , in Section 3. Finally, in the last section, we will provide a proof for
item 3 of Theorem 1.

2. The generator and relations

In this section, we will define the alphabet Xn and introduce a binary relation R on X∗
n. We

will also demonstrate that the corresponding generating set satisfies all the relations in R. Let vi
be the partial identity with the domain n\{i} for all i ∈ {1, ..., n}. Additionally, let us define

ui =

(

1 · · · i i+ 1 i+ 2 i+ 3 i+ 4 · · · n
3 · · · i+ 2 − − − i+ 4 · · · n

)

and xi = (ui)
−1 for all i ∈ {1, ..., n − 2}. By Proposition 1, it is easy to verify that ui

as well as xi, i ∈ {1, ..., n − 2}, belong to IOF par
n . In [15], the authors have shown that

{v1, v2, ..., vn, u1, u2, ..., un−2, x1, x2, ..., xn−2} is a generating set of IOF par
n . In order to use Theo-

rem 1, we define an alphabet

Xn = {v1, v2, ..., vn, u1, u2, ..., un−2, x1, x2, ..., xn−2},

which corresponds to the set of generators of IOF par
n . For w = w1...wm with w1, ..., wm ∈ Xn,

where m being a positive integer, we write w−1 for the word w−1 = wm...w1.
We fix a particular sequence of letters as follows: xi,j = xixi+2...xi+2j−2 and

ui,j = uiui+2...ui+2j−2 for i ∈ {1, ..., n − 2}, j ∈ {1, ..., ⌊(n − i)/2⌋} and obtain the following sets of
words:

Wx =
{

xi,j : i ∈ {1, ..., n − 2}, j ∈
{

1, ...,
⌊n− i

2

⌋}}

,

W−1
x =

{

x−1
i,j : xi,j ∈ Wx

}

,

Wu =
{

ui,j : i ∈ {1, ..., n − 2}, j ∈
{

1, ...,
⌊n− i

2

⌋}}

.

Let w be any word of the form w = w1...wm with w1, ..., wm ∈ Wx∪Wu and m is a positive integer.
For k ∈ {1, ...,m}, the word wk is of the form

wk =

{

uik,jk if wk ∈ Wu;

xik,jk if wk ∈ Wx

for some ik ∈ {1, ..., n−2}, jk ∈ {1, ..., ⌊(n − i)/2⌋}. We observe jk = |wk|, i.e. jk is the length of the
word wk. We define two sequences 1x, 2x, ...,mx and 1u, 2u, ...,mu of indicators: for k ∈ {1, ...,m}
let

kx =

{

ik + 2|wk|+ 2|W k
u | − 2|W k

x | if wk ∈ Wu;

ik if wk ∈ Wx

and

ku =

{

ik + 2|wk| − 2|W k
u |+ 2|W k

x | if wk ∈ Wx;

ik if wk ∈ Wu,
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where W s
u (respectively, W s

x) means the word ws+1...wm without the letters in {x1, ..., xn−2} re-
spectively, in {u1, ..., un−2}) for s ∈ {0, 1, ...,m − 1} and Wm

u = Wm
x = ǫ, where ǫ is the empty

word. Let Q0 be the set of all words w = w1...wm with w1, ..., wm ∈ Wx ∪ Wu and m being a
positive integer such that:

(1q) If wk, wl ∈ Wx then ik + 2jk + 1 < il for k < l ≤ m;
(2q) If wk, wl ∈ Wu then ik + 2jk + 1 < il for k < l ≤ m;
(3q) If wk ∈ Wu then ik + 2jk + 2 ≤ (k + 1)u for k ∈ {1, ...,m − 1} and (k + 1)x − kx ≥ 2;
(4q) If wk ∈ Wx then ik + 2jk + 2 ≤ (k + 1)x for k ∈ {1, ...,m − 1} and (k + 1)u − ku ≥ 2.

Let now w = w1...wm ∈ Q0 and let w∗ = W 0
u (W

0
x )

−1. Further, we define recursively a set Aw:

(5q) If mu > mx and mu + 2 ≤ n then Am = {mu + 2, ..., n},
if mu < mx and mx + 2 ≤ n then Am = {mx + 2, ..., n},
otherwise Am = ∅;

(6q) If wk ∈ Wu then Ak = Ak+1 ∪ {ik + 2jk + 2, ..., (k + 1)u − 1} for k ∈ {1, ...,m − 1},
if wk ∈ Wx then Ak = Ak+1 ∪ {ku + 2, ..., (k + 1)u − 1)} for k ∈ {1, ...,m − 1};

(7q) If 1 ∈ {1x, 1u} then Aw = A1,
if 1 < 1u ≤ 1x then Aw = A1 ∪ {1, ..., 1u − 1},
if 1 < 1x < 1u then Aw = A1 ∪ {1u − 1x + 1, ..., 1u − 1}.

For a set A = {i1 < i2 < · · · < ik} ⊆ n, let vA = vi1vi2 ...vik for some k ∈ {1, ..., n}. Note that v∅
means the empty word ǫ. For convenience, we put vi = ǫ for i ≥ n+ 1. Let

Wn = {vAw
∗ : w ∈ Q0, A ⊆ Aw} ∪ {vA : A ⊆ n}.

On the other hand, we will define now a set of relations. For this, let Wt be the set of all words of
the form ui0ui1 ...uilxj1 ...xjmxjm+1

with the following four properties:

(i) l ∈ {0, ..., n − 2}, and m ∈ {0, ..., n − 3};
(ii) i0 < i1 < · · · < il ∈ {1, ..., n − 2};
(iii) j1 > j2 > · · · > jm > jm+1 ∈ {1, ..., n − 2};
(iv) if k ∈ {i0, ..., il−1} (respectively, k ∈ {j2, ..., jm+1}) then k+1, k+3 /∈ {i1, ..., il} (respectively,

k + 1, k + 3 /∈ {j1, ..., jm}) for all k ∈ {1, ..., n − 3}.

Then we define a sequence R of relations on X∗
n as follows: for i, j ∈ {1, ..., n} and k = i+ 2j − 2,

let

(E) xiuj ≈



















































v1v2vi+3...vj+3, if i < j, j − i = 2, 3;

v1v2vj+3...vi+3, if i > j, i− j = 2, 3;

v1v2vj+3vj+4, if i > j, i− j = 1;

v1v2vj+2vj+3, if i < j, j − i = 1;

v1v2vi+3, if i = j;

v1v2ujxi+2, if i < j, j − i ≥ 4;

v1v2uj+2xi, if i > j, i− j ≥ 4;

(L1) u2u1 ≈ u1u2 ≈ x1x2 ≈ x2x1 ≈ u22 ≈ x22 ≈ v1v2v3v4v5;

(L2) u3u2 ≈ x2x3 ≈ v1v2v3v4v5v6;

(L3) uiu1 ≈ v1v2ui and x1xi ≈ v3v4xi, i ≥ 3;

(L4) uiu2 ≈ v1v2v3ui and x2xi ≈ v3v4v5xi, i ≥ 4;

(L5) uiui−1 ≈ vi+3ui−3ui−1 and xi−1xi ≈ vi+3xi−1xi−3, i ≥ 4;

(L6) uiuj ≈ uj−2ui and xjxi ≈ xixj−2, i > j ≥ 3, i − j ≥ 2;
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(R1) v2i ≈ vi, i ∈ {1, ..., n};
(R2) vivj ≈ vjvi, i, j ∈ {1, ..., n}, i 6= j;

(R3) viuj ≈ ujvi and vixj ≈ xjvi, i ∈ {j + 4, ..., n};
(R4) viuj ≈ ujvi+2 and vi+2xj ≈ xjvi, 1 ≤ i ≤ j;

(R5) viuj ≈ uj and xjvi ≈ xj , i ∈ {j + 1, j + 2, j + 3};
(R6) ujvi ≈ uj and vixj ≈ xj , i ∈ {1, 2, j + 3};
(R7) u21 ≈ x21 ≈ v1...v4;

(R8) u2i ≈ ui−2ui and x2i ≈ xixi−2, i ≥ 3;

(R9) uiui+1 ≈ ui−1ui+1 and xi+1xi ≈ xi+1xi−1, i ∈ {2, ..., n − 5};
(R10) uiui+3 ≈ vi+6uiui+2 and xi+3xi ≈ vi+6xi+2xi, i ≤ n− 5;

(R11) w ≈ vi0+1vi0+2vi0+3ui1 ...uilxj1 ...xjm , w = ui0ui1 ...uilxj1 ...xjmxjm+1
∈ Wt

with jm+1 = i0 + 2l − 2m;

(R12) w ≈ vi0vi0+1vi0+2vi0+3ui1 ...uilxj1 ...xjm , w = ui0ui1 ...uilxj1 ...xjmxjm+1
∈ Wt

with jm+1 = i0 + 2l − 2m− 1;

(R13) w ≈ vi0+1vi0+2vi0+3vi0+4ui1 ...uilxj1 ...xjm , w = ui0ui1 ...uilxj1 ...xjmxjm+1
∈ Wt

with jm+1 = i0 + 2l − 2m+ 1;

(R14) w ≈ ui0ui1 ...uilxj1 ...xjm , w = ui0ui1 ...uilxj1 ...xjmxjm+1
∈ Wt with jm+1 < 2l − 2m;

(R15) w ≈ ui1 ...uilxj1 ...xjmxjm+1
, w = ui0ui1 ...uilxj1 ...xjmxjm+1

∈ Wt with i0 < 2m− 2l;

(R16) v1...viui,j ≈ v1...vk+3, i ∈ {1, ..., n − 2};
(R17) vk−i+3...vk+2x

−1
i,j ≈ v1...vk+3, i ∈ {1, ..., n − 2};

(R18) viui,j ≈ vk+3ui−1,j , i ∈ {2, ..., n − 2};
(R19) vk+2x

−1
i,j ≈ vk+3x

−1
i−1,j, i ∈ {2, ..., n − 2}.

Lemma 1. The relations from R hold as equations in IOF par
n , when the letters are replaced

by the corresponding transformations.

P r o o f. We show the statement diagrammatically. This method was also used in [4, 5]. We
give an example calculation for the relation (R10) uiui+3 ≈ vi+6uiui+2, i ≤ n−5, in Figures 1 and 2
below. Note we can show xi+3xi ≈ vi+6xi+2xi in a similar way. �

By Figures 1 and 2, we have that uiui+3 = vi+6uiui+2.

ui

ui+3

uiui+3

1 i i + 7 n

5 i + 4

1

3

i i + 4

=

n

i + 7

Figure 1. uiui+3.

ui

ui+2

vi+6

1 i i + 7 n

5 i + 4

vi+6uiui+2

1

3

i

i + 7

=

n

Figure 2. vi+6uiui+2.
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Next, we will verify consequences of R, which are important by technical reasons.

Lemma 2. (i) For w = ui0ui1 ...uilxj1 ...xjmxjm+1
∈ Wt with jm+1 = 2l − 2m, we have

w ≈ v1ui0ui1 ...uilxj1 ...xjm .
(ii) For w = ui0ui1 ...uilxj1 ...xjmxjm+1

∈ Wt with i0 = 2m− 2l, we have

w ≈ vi0+3ui1 ...uilxj1 ...xjmxjm+1
.

P r o o f. (i) We have

ui0ui1 ...uilxj1 ...xjmxjm+1

(R14)
≈ ui0ui1 ...uilxj1 ...xjmxjm+1−1xjm+1

.

Suppose jm+1 = 2l − 2m ≥ 4. Then

ui0ui1 ...uilxj1 ...xjmxjm+1−1xjm+1

(L5)
≈ ui0ui1 ...uilxj1 ...xjmvjm+1+3xjm+1−1xjm+1−3

(R4)
≈ v1ui0ui1 ...uilxj1 ...xjmxjm+1−1xjm+1−3

(R14)
≈ v1ui0ui1 ...uilxj1 ...xjm .

Suppose jm+1 = 2l − 2m < 4, i.e. jm+1 = 2. We prove that

ui0ui1 ...uilxj1 ...xjmxjm+1
≈ v1ui0ui1 ...uilxj1 ...xjm

by using (L1) and (R4)–(R6) in a similar way.
(ii) The proof is similar to (i), by using (R15) and (L5) if i0 ≥ 4 and (R15), (L1), and (R4)–(R6)

if i0 = 2. �

3. Set of forms

In this section, we introduce an algorithm, which transforms any word w ∈ X∗
n to a word

in Wn using R, with other words, we show that for all w ∈ X∗
n, there is w

′ ∈ Wn such that w ≈ w′

is a consequence of R. First, the algorithm transforms each w ∈ X∗
n to a “new” word w′. All

these “new” words will be collected in a set. Later, we show that this set belongs to Wn. Let
w ∈ X∗

n\{ǫ}.

• Using (R1)–(R6), we can move any vi for i ∈ {1, 2, ..., n}, at the beginning of the word or we
can cancel it. So we obtain w ≈ ṽw̃, where ṽ ∈ {v1, ..., vn}

∗ and w̃ ∈ {u1, u2, ..., un−2, x1, x2,
..., xn−2}

∗.

• Moreover, we separate the ui’s and xi’s for i ∈ {1, ..., n − 2} by (E) and (R1)–(R6). Then
ṽw̃ ≈ vBC, where v ∈ {v1, ..., vn}

∗, B ∈ {u1, u2, ..., un−2}
∗, and C ∈ {x1, x2, ..., xn−2}

∗.

• By (L1)–(L6) and (R1)–(R6), we get vBC ≈ v′B′C ′, where v′ ∈ {v1, ..., vn}
∗,

B′ ∈ {u1, u2, ..., un−2}
∗, and C ′ ∈ {x1, x2, ..., xn−2}

∗ such that the indices of the letters in
the word B′ are ascending and in the word C ′ are descending (reading from the left to the
right).

• By (L1), (R7)–(R10), and (R1)–(R6), we replace subwords of B′C ′ of the form
xi+3xi, xi+1xi, x

2
i , u

2
i , uiui+3, and uiui+1 until v′B′C ′ ≈ v′′w1...wp with v′′ ∈ {v1, ..., vn}

∗

and w1, ..., wp ∈ W−1
x ∪Wu such that

if ui ∈ var(w1...wp) (respectively, xi ∈ var(w1...wp)) then ui+1, ui+3 /∈ var(w1...wp)
(respectively, xi+1, xi+3 /∈ var(w1...wp)) for all i ∈ {1, ..., n − 2} and each letter in
w1...wp is unique. (∗)

Note that this is possible since each of the relations (L1), (R7)–(R10), and (R1)–(R6) does
not increase the index of any letter in {u1, u2, ..., un−2, x1, x2, ..., xn−2} in the “new” word.
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• Using (R11)–(R15), Lemmas 2, and (R1)–(R6), we remove letters xi and ui, respectively,
until one can not more remove a letter xi or ui for i ∈ {1, 2, ..., n−2}. We obtain v′′w1...wp ≈
v′′′w′

1...w
′
p′ , where v

′′′ ∈ {v1, ..., vn}
∗ and w′

1, ..., w
′
p′ ∈ W−1

x ∪Wu. Note that is possible since
each of the relations (R11)–(R15) as well as Lemmas 2 only removes letters (and add letters
in {v1, ..., vn}, respectively).

• We decrease the indices of the letters in {u1, u2, ..., un−2, x1, x2, ..., xn−2} (if possible) by
(R16)–(R19) as well as (R1)–(R6) and obtain v′′′w′

1...w
′
p′ ≈ v∗B∗C∗ with v∗ ∈ {v1, ..., vn}

∗,
B∗ ∈ {u1, u2, ..., un−2}

∗, and C∗ ∈ {x1, x2, ..., xn−2}
∗. Note that the indices of the letters in

B∗ (respectively, in C∗) are ascending (respectively, are descending).

We repeat all steps. The procedure terminates if the word will not change more in all steps. We
obtain v∗B∗C∗ ≈ vAŵ1...ŵp̂, where ŵ1, ..., ŵp̂ ∈ W−1

x ∪ Wu and A ⊆ n such that no vj (j ∈ A)
can be canceled by using (R1)–(R6). This case has to happen since the number of the letters from
{u1, u2, ..., un−2, x1, x2, ..., xn−2, v1, ..., vn} decreases or is kept and the indices of the ui’s and xi’s
decrease or are kept in each step.

We denote by P the set of all words obtained from w ∈ X∗
n by that algorithm.

By (∗), we obtain immediately from the algorithm.

Remark 1. Let ŵ = vAŵ1...ŵm ∈ P and let 1 ≤ k < k′ ≤ m.

If ŵk, ŵk′ ∈ Wu then ik + 2|ŵk|+ 2 ≤ ik′ .

If ŵk, ŵk′ ∈ Wx then ik′ + 2|ŵk′ |+ 2 ≤ ik.

Let fix a word ŵ = vAŵ1...ŵm ∈ P . There are a, b ∈ {0, ..., n} with a + b = m, t1, ..., ta+b ∈
{1, ...,m}, wt1 , ..., wta ∈ Wu and wta+1

, ..., wta+b
∈ Wx such that

ŵ = vAŵ1...ŵm = vAwt1 ...wtaw
−1
ta+1

...w−1
ta+b

,

where {wt1 , ..., wta} = ∅ or {wta+1
, ..., wta+b

} = ∅ (i.e. a = 0 or b = 0) is possible. We observe that

{ŵ1, ..., ŵm} = {wt1 , ..., wta , w
−1
ta+1

, ..., w−1
ta+b

} and {t1, ..., ta, ta+1, ..., ta+b} = {1, ...,m}. We define
an order on {t1, ..., ta, ta+1, ..., ta+b} by t1 < · · · < ta and ta+b < · · · < ta+1. If a, b ≥ 1, the order
between t1, ..., ta and ta+1, ..., ta+b is given by the following rule:

Let k ∈ {1, ..., a} and l ∈ {1, ..., b}
if itk + 2|wtk | − 2 + 2|wtk+1

...wta | − 2|w−1
ta+1

...w−1
ta+l−1

| < ita+l
+ 2|w−1

ta+l
| − 2 then tk < ta+l and

if itk + 2|wtk | − 2 + 2|wtk+1
...wta | − 2|w−1

ta+1
...w−1

ta+l−1
| > ita+l

+ 2|w−1
ta+l

| − 2 then tk > ta+l.

The case

itk + 2|wtk | − 2 + 2|wtk+1
...wta | − 2|w−1

ta+1
...w−1

ta+l−1
| = ita+l

+ 2|w−1
ta+l

| − 2

is not possible, since otherwise we can cancel uitk+2|wtk
|−2 and xita+l

+2|w−1
ta+l

|−2 in ŵ by (R11). Our

next aim is to describe the relationships between ku, (k+1)u and kx, (k+1)x for all k ∈ {1, ...,m−1}
for the word w = w1...wm.

Lemma 3. For all k ∈ {1, ...,m − 1}, we have ku < (k + 1)u and kx < (k + 1)x.

P r o o f. Let k ∈ {1, ...,m − 1}. Suppose wk, wk+1 ∈ Wu. We obtain ku < (k + 1)u and

kx = ik + 2|wk|+ 2|W k
u | − 2|W k

x |,

(k + 1)x = ik+1 + 2|wk+1|+ 2|W k+1
u | − 2|W k+1

x |.
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By Remark 1, we have ik + 2|wk|+ 2 ≤ ik+1. This gives

ik + 2|wk|+ 2|W k
u | − 2|W k

x | < ik+1 + 2|W k
u | − 2|W k

x | = ik+1 + 2|wk+1|+ 2|W k+1
u | − 2|W k+1

x |

(since wk+1 ∈ Wu implies 2|W k
x | = 2|W k+1

x | ). Then kx < (k + 1)x. For the case wk, wk+1 ∈ Wx,
we can show that ku < (k + 1)u and kx < (k + 1)x in a similar way.

Suppose wk ∈ Wu and wk+1 ∈ Wx. First, we will show ku < (k + 1)u. We have ku = ik and

(k + 1)u = ik+1 + 2|wk+1|+ 2|W k+1
x | − 2|W k+1

u |.

Since k ∈ {t1, ..., ta} and k + 1 ∈ {ta+1, ..., ta+b}, we obtain

ik + 2|wk| − 2 + 2|W k
u | − 2|W k+1

x | < ik+1 + 2|wk+1| − 2.

Then
ik < ik + 2|wk| < ik+1 + 2|wk+1|+ 2|W k+1

x | − 2|W k+1
u |

(since wk+1 ∈ Wx implies |W k
u | = |W k+1

u |). Then ku < (k + 1)u. Moreover, we prove kx < (k + 1)x
similarly. The case wk ∈ Wx and wk+1 ∈ Wu can be shown in a similar way as above. �

Of course, the next goal should be the proof of w = w1...wm ∈ Q0, i.e. we will show that w
satisfies (1q)–(4q).

Lemma 4. We have w = w1...wm ∈ Q0.

P r o o f. Exactly, w satisfies (1q) and (2q). This is trivially checked by Remark 1.
Let k ∈ {1, ...,m − 1} and let wk ∈ Wu, wk+1 ∈ Wx. This provides k ∈ {t1, ..., ta}, k + 1 ∈

{ta+1, ..., ta+b}. We have

ik + 2|wk| − 2 + 2|W k
u | − 2|W k+1

x | < ik+1 + 2|wk+1| − 2.

Since wk+1 ∈ Wx, we have
2|W k

u | = 2|W k+1
u |.

So
ik + 2|wk| − 2 + 2|W k+1

u | − 2|W k+1
x | < ik+1 + 2|wk+1| − 2.

We observe that

ik + 2|wk| − 2 + 2|W k+1
u | − 2|W k+1

x |+ 1 ≤ ik+1 + 2|wk+1| − 2.

If
ik + 2|wk| − 2 + 2|W k+1

u | − 2|W k+1
x |+ 1 = ik+1 + 2|wk+1| − 2,

we can cancel uik+2|wk|−2, xik+1+2|wk+1|−2 by (R13) in ŵ. This contradicts ŵ ∈ P . Then

ik + 2|wk| − 2 + 2|W k+1
u | − 2|W k+1

x |+ 2 ≤ ik+1 + 2|wk+1| − 2,

i.e.
ik + 2|wk|+ 2 ≤ ik+1 + 2|wk+1| − 2|W k+1

u |+ 2|W k+1
x | = (k + 1)u.

Next, to show that (k + 1)x − kx ≥ 2. Lemma 3 gives (k + 1)x − kx ≥ 1.
If (k + 1)x − kx = 1 then

ik+1 − ik − 2|wk| − 2|W k
u |+ 2|W k

x | = 1.
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This implies
ik+1 + 2|wk+1| − 2 = ik + 2|wk| − 2 + 2|W k

u | − 2|W k+1
x |+ 1

since
2|W k

x | = 2|Wk+1|+ 2|W k+1
x |.

We can cancel uik+2|wk|−2, xik+1+2|wk+1|−2 in ŵ by (R13). This contradicts ŵ ∈ P . Thus,
(k + 1)x − kx ≥ 2. In case wk, wk+1 ∈ Wu, by using Remark 1, we easily get

ik + 2|wk|+ 2 ≤ (k + 1)u.

To show (k + 1)x − kx ≥ 2, it is routine to calculate directly. Together with Remark 1, we will get
that (k+1)x − kx ≥ 2. Altogether, w satisfies (3q). We prove that w satisfies (4q) in a similar way.
Therefore, w ∈ Q0. �

We have shown w ∈ Q0. This leads us to the next step, showing that A ⊆ Aw. First, we point
out subsets of n, which do not contain any element of A.

Lemma 5. Let q ∈ {1, ..., a} and let

ρ ∈ {itq + 1, ..., itq + 2|wtq |+ 1} ∩ n.

Then ρ /∈ A.

P r o o f. Assume ρ ∈ A. Then

vρwt1 ...wtq ...wtaw
−1
ta+1

...w−1
ta+b

(R3)
≈ wt1 ...vρwtq ...wtaw

−1
ta+1

...w−1
ta+b

.

If ρ ∈ {itq + 1, itq + 2, itq + 3} ∩ n then

vρuitq
(R5)
≈ uitq .

If ρ = itq + h+ t for some h ∈ {2, 4, ..., 2|wtq | − 2} and t ∈ {2, 3} then

wt1 ...vρwtq ...wtaw
−1
ta+1

...w−1
ta+b

= wt1 ...vρuitquitq+2...uitq+2|wtq |−2wtq+1
...wtaw

−1
ta+1

...w−1
ta+b

(R3)
≈ wt1 ...uitq ...v(itq+h+t)uitq+h...uitq+2|wtq |−2wtq+1

...wtaw
−1
ta+1

...w−1
ta+b

(R5)
≈ wt1 ...uitq ...uitq+h...uitq+2|wtq |−2wtq+1

...wtaw
−1
ta+1

...w−1
ta+b

,

i.e. we can cancel vρ in ŵ using (R3) and (R5), a contradiction. �

Lemma 6. Let ρ ∈ A and let q ∈ {1, ..., a} such that tq 6= m. If ρ ∈ {(tq)u+1, ..., (tq +1)u−1}
then

ρ ∈
{

(tq)u + 2|wtq |+ 2, ..., (tq + 1)u − 1
}

⊆ Aw.

P r o o f. We have (tq)u = itq . It is a consequence of Lemma 5 that

ρ ∈
{

itq + 2|wtq |+ 2, ..., (tq + 1)u − 1
}

and by (6q), we have
{

itq + 2|wtq |+ 2, ..., (tq + 1)u − 1
}

⊆ Aw.

�
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Lemma 7. Let ρ ∈ A, if ta = m and ρ ∈ {im + 1, ..., n} then ρ ∈ {mx + 2, ..., n} ⊆ Aw.

P r o o f. Assume ρ ∈ {im + 1, ...,mx + 1}. We have mx + 1 = ita + 2|wta | + 1. Then
ρ ∈ {ita +1, ..., ita +2|wta |+1}. By Lemma 5, we have ρ /∈ A. Therefore, ρ ∈ {mx+2, ..., n} ⊆ Aw

by (5q). �

Lemma 8. Let ρ ∈ A, then ρ 6= (ta+l)u + 1 for all l ∈ {1, ..., b}.

P r o o f. Let l ∈ {1, ..., b}. Assume ρ = (ta+l)u + 1. Suppose that there exists q ∈ {1, ..., a}
with tq > ta+l. Then

vρwt1 ...wtq ...wtaw
−1
ta+1

...w−1
ta+b

(R3)
≈ wt1 ...vρwtq ...wtaw

−1
ta+1

...w−1
ta+b

(R4)
≈ wt1 ...wtq ...wtavρ+2|wtq ...wta |

w−1
ta+1

...w−1
ta+b

.

Since
(ta+l)u + 1 = ita+l

+ 2|w−1
ta+1

...w−1
ta+l

| − 2|wtq ...wta |+ 1,

we have
ρ+ 2|wtq ...wta | = ita+l

+ 2|w−1
ta+1

...w−1
ta+l

|+ 1.

Suppose tq < ta+l for all q ∈ {1, ..., a}. Then we have

(ta+l)u + 1 = ita+l
+ 2|w−1

ta+1
...w−1

ta+l
|+ 1,

i.e.

vρwt1 ...wtq ...wtaw
−1
ta+1

...w−1
ta+b

(R3)
≈ wt1 ...wtq ...wtavρw

−1
ta+1

...w−1
ta+b

.

Both cases imply

wt1 ...wtq ...wtavita+l
+2|w−1

ta+1
...w−1

ta+l
|+1w

−1
ta+1

...w−1
ta+b

(R4)
≈ wt1 ...wtq ...wtaw

−1
ta+1

...vita+l
+2|w−1

ta+l
|+1w

−1
ta+l

...w−1
ta+b

(R6)
≈ wt1 ...wtq ...wtaw

−1
ta+1

...w−1
ta+l

...w−1
ta+b

,

i.e. we can cancel vρ in ŵ using (R3), (R4), and (R6), a contradiction. �

Lemma 9. Let ρ∈A and let l∈{1, ..., b} such that ta+l 6=m. If ρ∈{(ta+l)u+1, ..., (ta+l+1)u−1}
then

ρ ∈
{

(ta+l)u + 2, ..., (ta+l + 1)u − 1
}

⊆ Aw.

P r o o f. It is a consequence of Lemma 8 that ρ ∈ {(ta+l)u + 2, ..., (ta+l + 1)u − 1} and by
(6q), we have {(ta+l)u + 2, ..., (ta+l + 1)u − 1} ⊆ Aw. �

Lemma 10. Let ρ ∈ A. If ta+1 = m and ρ ∈ {mu + 1, ..., n} then ρ ∈ {mu + 2, ..., n} ⊆ Aw.

P r o o f. Suppose ρ = mu + 1 = (ta+1)u + 1. By Lemma 8, we have ρ /∈ A. Therefore,
ρ ∈ {mu + 2, ..., n} ⊆ Aw by (5q). �
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Lemma 11. If 1 < 1x < 1u then ρ /∈ A for all ρ ∈ {1, ..., 1u − 1x}.

P r o o f. Let ρ ∈ {1, ..., 1u − 1x}. Assume ρ ∈ A. We observe that

1u − 1x = 2|w−1
ta+b

...w−1
ta+1

| − 2|wt1 ...wta | = 2k

for some positive integer k. We put U = wt1 ...wta and X = w−1
ta+b

...w−1
ta+1

, i.e. 2k = 2|X | − 2|U| and
|X | = |U|+ k. Let

w−1
ta+1

...w−1
ta+b

= y1...y|U|y|U|+1...y|U|+k,

where y1, ..., y|U|+k ∈ {x1, ..., xn−2}. Then

vρwt1 ...wtay1...y|U|y|U|+1...y|U|+k

(R4)
≈ wt1 ...wtavρ+2|wt1 ...wta |

y1...y|U|y|U|+1...y|U|+k.

Using Remark 1, it is routine to calculate that

2|w−1
ta+b

...w−1
ta+1

| < ita+1
+ 2|w−1

ta+1
|,

i.e.

(1u − 1x) + 2|wt1 ...wta | = 2|w−1
ta+b

...w−1
ta+1

| < ita+1
+ 2|w−1

ta+1
|.

This implies
ρ+ 2|wt1 ...wta | ≤ ita+1

+ 2|w−1
ta+1

|.

Then

wt1 ...wtavρ+2|wt1 ...wta |
y1...y|U|y|U|+1...y|U|+k

(R4)
≈ wt1 ...wtay1...y|U|vρy|U|+1...y|U|+k.

Note that 1u − 1x is even and there is i ∈ {2, 4, ..., 1u − 1x} such that ρ ∈ {i − 1, i}. If ρ = i − 1
then

ρ− 2|y|U|+1...y|U|+i/2−1| = 1.

If ρ = i then
ρ− 2|y|U|+1...y|U|+i/2−1| = 2.

Thus,

wt1 ...wtay1...y|U|vρy|U|+1...y|U|+k

(R4)
≈ wt1 ...wtay1...y|U|y|U|+1...vρ−2|y|U|+1...y|U|+i/2−1|y|U|+i/2...y|U|+(1u−1x)/2

= wt1 ...wtay1...y|U|y|U|+1...vρ̂y|U|+i/2...y|U|+(1u−1x)/2

(where ρ̂ ∈ {1, 2})
(R6)
≈ wt1 ...wtay1...y|U|y|U|+1...y|U|+i/2...y|U|+(1u−1x)/2,

i.e. we can cancel vρ in ŵ using (R4) and (R6), a contradiction. �

Lemma 12. Let ρ ∈ A with ρ ∈ {1, ..., 1u − 1}. If 1 < 1u ≤ 1x then ρ ∈ {1, ..., 1u − 1} ⊆ Aw

and if 1 < 1x < 1u then ρ ∈ {1u − 1x + 1, ..., 1u − 1} ⊆ Aw.

P r o o f. If 1 < 1u ≤ 1x then {1, ..., 1u − 1} ⊆ Aw by (7q). If 1 < 1x < 1u, it is a consequence
of Lemma 11 that ρ ∈ {1u − 1x +1, ..., 1u − 1} and by (7q), we have {1u − 1x +1, ..., 1u − 1} ⊆ Aw.

�
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Lemma 13. We have (tq)u /∈ A for all q ∈ {1, ..., a}.

P r o o f. Let q ∈ {1, ..., a}. We have

wtq = uitquitq+2...uitq+2|wtq |−2

and (tq)u = itq . Assume (tq)u ∈ A. If itq ≥ 2 then

vitqwt1 ...wtq ...wtaw
−1
ta+1

...w−1
ta+b

(R3)
≈ wt1 ...vitquitquitq+2...uitq+2|wtq |−2wtq+1

...wtaw
−1
ta+1

...w−1
ta+b

(R18)
≈ wt1 ...vitq+2|wtq |+1uitq−1uitq+1...uitq+2|wtq |−3wtq+1

...wtaw
−1
ta+1

...w−1
ta+b

.

If itq = 1 then q = 1 and

vit1wt1wt2 ...wtaw
−1
ta+1

...w−1
ta+b

= v1u1u3...u1+2|wt1 |−2wt2 ...wtaw
−1
ta+1

...w−1
ta+b

(R16)
≈ v1v2...v1+2|wt1 |+1wt2 ...wtaw

−1
ta+1

...w−1
ta+b

.

We observe that we can replace several letters in ŵ by letters with decreasing index by (R18) and
the letters u1, u3, ..., u1+2|wt1 |−2 were canceled in ŵ by (R16), respectively, a contradiction. �

Lemma 14. We have (ta+l)u /∈ A for all l ∈ {1, ..., b}.

P r o o f. Let l ∈ {1, ..., b}. Now assume that (ta+l)u ∈ A. We will have the following two
cases. In the first case, we suppose that there exists q ∈ {1, ..., a} with tq > ta+l and, of course, for
the trivial second case is supposed tq < ta+l for all q ∈ {1, ..., a}. Using (R3) and (R4) in the first
case and (R4) in the second case, together with a few tedious calculations, both cases imply

v(ta+l)uwt1 ...wtq ...wtaw
−1
ta+1

...w−1
ta+b

≈ wt1 ...wtavita+l
+2|w−1

ta+1
...w−1

ta+l
|w

−1
ta+1

...w−1
ta+b

.

It is routine to calculate that

wt1 ...wtavita+l
+2|w−1

ta+1
...w−1

ta+l
|w

−1
ta+1

...w−1
ta+b

(R4)
≈ wt1 ...wtaw

−1
ta+1

...vita+l
+2|w−1

ta+l
|w

−1
ta+l

...w−1
ta+b

.

If ita+l
+ 2|w−1

ta+l
| > 3 then

wt1 ...wtaw
−1
ta+1

...vita+l
+2|w−1

ta+l
|w

−1
ta+l

...w−1
ta+b

= wt1 ...wtaw
−1
ta+1

...vita+l
+2|w−1

ta+l
|xita+l

+2|wta+l
|−2xita+l

+2|wta+l
|−4...xita+l

w−1
ta+l+1

...w−1
ta+b

(R19)
≈ wt1 ...wtaw

−1
ta+1

...vita+l
+2|w−1

ta+l
|+1xita+l

+2|wta+l
|−3xita+l

+2|wta+l
|−5...xita+l

−1w
−1
ta+l+1

...w−1
ta+b

.

If ita+l
+ 2|w−1

ta+l
| = 3 then w−1

ta+b
= x1. Thus,

wt1 ...wtavita+l
+2|w−1

ta+1
...w−1

ta+l
|w

−1
ta+1

...w−1
ta+b

(R4)
≈ wt1 ...wtaw

−1
ta+1

...w−1
ta+b−1

v3x1
(R17)
≈ wt1 ...wtaw

−1
ta+1

...w−1
ta+b−1

v1v2v3v4.

We observe that we can replace several letters in ŵ by letters with decreasing index by (R19) and
the letter x1 can be canceled in ŵ by (R17), respectively, a contradiction. �

If we summarize the previous lemmas, then we obtain:
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Lemma 15. We have A ⊆ Aw.

P r o o f. Let ρ ∈ A. Then it is easy to verify that ρ ∈ {1, ..., 1u} or ρ ∈ {ku + 1, ..., (k + 1)u}
for some k ∈ {1, ....,m − 1} or ρ ∈ {mu + 1, ..., n}. Suppose that ρ ∈ {ku + 1, ..., (k + 1)u − 1}
for some k ∈ {1, ...,m − 1}. Lemmas 13 and 14 show that ku /∈ A. Then we can conclude that
ρ ∈ Aw by Lemmas 6 and 9. Suppose ρ ∈ {mu + 1, ..., n}. Then we can conclude that ρ ∈ Aw by
Lemmas 7 and 10. Finally, we suppose that ρ ∈ {1, ..., 1u − 1}. Then we can conclude that ρ ∈ Aw

by Lemma 12. Eventually, we have ρ ∈ Aw for all ρ ∈ A. Therefore, A ⊆ Aw. �

Lemmas 4 and 15 prove that ŵ = vAŵ1...ŵm ∈ Wn. Consequently, we have:

Proposition 2. P ⊆ Wn.

By the definition of the set P and Proposition 2, it is proved:

Corollary 1. Let w ∈ X∗
n. Then there is w′ ∈ P ⊆ Wn with w ≈ w′.

4. A presentation for IOF par
n

In this section, we exhibit a presentation for IOF par
n . Concerning the results from the previous

sections, it remains to show that |Wn| ≤ |IOF par
n |. For this, we construct a word wα, for all

α ∈ IOF par
n , in the following way.

Let

α =

(

d1 < d2 < · · · < dp
m1 m2 · · · mp

)

∈ IOF par
n \{ε}

for a positive integer p ≤ n. There are a unique l ∈ {0, 1, ..., p − 1} and a unique set {r1, ..., rl} ⊆
{1, ..., p − 1} such that (i)–(iii) are satisfied:

(i) r1 < ... < rl;
(ii) dri+1 − dri 6= mri+1 −mri for i ∈ {1, ..., l};
(iii) di+1 − di = mi+1 −mi for i ∈ {1, ..., p − 1}\{r1, ..., rl}.

Note that l = 0 means {r1, ..., rl} = ∅. Further, we put rl+1 = p. For i ∈ {1, ..., l}, we define

wi =

{

xmri ,((mri+1−mri)−(dri+1−dri))/2
if mri+1 −mri > dri+1 − dri ;

udri ,((dri+1−dri)−(mri+1−mri))/2
if mri+1 −mri < dri+1 − dri .

Obviously, we have wi ∈ Wx∪Wu for all i ∈ {1, ..., l}. If mp = dp then we put wl+1 = ǫ. If mp 6= dp,
we define additionally

wl+1 =

{

xmp,(dp−mp)/2 if dp > mp;

udp,(mp−dp)/2 if dp < mp.

Clearly, wl+1 ∈ Wx ∪Wu. We consider the word

w = w1...wl+1.

From this word, we construct a new word w∗
α by arranging the subwords s ∈ Wx in reverse order

at the end, replacing s by s−1. In other words, we consider the word

w∗
α = ws1 ...wsaw

−1
sa+1

...w−1
sa+b
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such that ws1 , ..., wsa ∈ Wu, wsa+1
, ..., wsa+b

∈ Wx and

{ws1 , ..., wsa , wsa+1
, ..., wsa+b

} = {w1, ..., wa+b},

where s1 < ... < sa, sa+b < ... < sa+1, and a, b ∈ n ∪ {0} with

a+ b =

{

l if dp = mp;

l + 1 if dp 6= mp.

For convenience, a = 0 means w∗
α = w−1

sa+1
...w−1

sa+b
and b = 0 means w∗

α = ws1 ...wsa . Now, we add
recursively letters from the set {v1, ..., vn} ⊆ Xn to the word w∗

α, obtaining new words λ0, λ1, ..., λp.

(1) For dp ≤ n− 2:

(1.1) if mp < dp then λ0 = vdp+2...vnw
∗
α;

(1.2) if n− 1 > mp > dp then λ0 = vmp+2...vnw
∗
α;

(1.3) if mp = dp then λ0 = vmp+1...vnw
∗
α;

otherwise λ0 = w∗
α.

(2) If dp = mp = n− 1 then λ0 = vnw
∗
α. Otherwise λ0 = w∗

α.

(3) For k ∈ {2, ..., p}:

(3.1) if 2 ≤ mk −mk−1 = dk − dk−1 then λp−k+1 = vdk−1+1...vdk−1λp−k;
(3.2) if 2 < mk −mk−1 < dk − dk−1 then λp−k+1 = vdk−(mk−mk−1−2)...vdk−1λp−k;
(3.3) if mk −mk−1 > dk − dk−1 > 2 then λp−k+1 = vdk−1+2...vdk−1λp;

otherwise λp−k+1 = λp−k.

(4) If d1 = 1 or m1 = 1 then λp = λp−1.

(5) If 1 < d1 ≤ m1 then λp = v1...vd1−1λp−1.

(6) If 1 < m1 < d1 then λp = vd1−m1+1...vd1−1λp−1.

The word λp induces a set A = {a ∈ n : va is a letter in λp} and it is easy to verify that ρ /∈ A for
all ρ ∈ dom(α). We put wα = λp. The word wα has the form wα = vAw

∗
α.

Our next aim is to present the relationship between cardinality of Wn and IOF par
n . This

leads us to assume the existence of a map f : IOF par
n \{ε} → Wn\{vn}, where f(α) = wα for all

α ∈ IOF par
n \{ε}. We start by constructing the transformation αvAw∗ for any vAw

∗ ∈ Wn, different
from vn. Let vAw

∗ ∈ Wn\{vn}. We have w ∈ Q0, A ⊆ Aw, and there are w1, ..., wm ∈ Wu ∪ Wx

such that w = w1...wm for some positive integer m. For k ∈ {1, ...,m}, we define ak = ku + 2
and bk = ik + 2jk + 2, whenever wk ∈ Wx. On the other hand, we define ak = ik + 2jk + 2 and
bk = kx + 2, whenever wk ∈ Wu. It is easy to verify that am = bm. We put

αvAw∗ = vA

(

1 + 1u −min{1u, 1x}...1u a1...2u · · · am−1...mu am...n
1 + 1x −min{1u, 1x}...1x b1...2x · · · bm−1...mx bm...n

)

.

For convenience, we also give

αvAw∗ =

(

d1 d2 · · · dp
m1 m2 · · · mp

)

for some positive integer p ≤ n. In the following, we show that αvAw∗ is well-defined in the sense
that the construction of αvAw∗ gives a transformation.

Lemma 16. αvAw∗ is well-defined.
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P r o o f. Let k ∈ {1, ...,m − 1}. Suppose wk, wk+1 ∈ Wu. We have

ku = ik, kx = ik + 2|wk|+ 2|W k
u | − 2|W k

x |,

(k + 1)u = ik+1, (k + 1)x = ik+1 + 2|wk+1|+ 2|W k+1
u | − 2|W k+1

x |,

and ak = ik + 2jk + 2, bk = kx + 2. Then

(k + 1)u − ak = ik+1 − (ik + 2jk + 2),

(k + 1)x − bk = ik+1 + 2|wk+1|+ 2|W k+1
u | − 2|W k+1

x | − kx − 2

= ik+1 + 2|wk+1|+ 2|W k+1
u | − 2|W k+1

x | − ik − 2|wk| − 2|W k
u |+ 2|W k

x | − 2

= ik+1 − ik − 2jk − 2 = ik+1 − (ik + 2jk + 2).

Therefore, (k + 1)u − ak = (k + 1)x − bk.
For the rest cases (wk ∈ Wu and wk+1 ∈ Wx, wk ∈ Wx and wk+1 ∈ Wu as well as

wk, wk+1 ∈ Wx), a proof similar as above will eventually show that (k + 1)u − ak = (k + 1)x − bk.
Furthermore, suppose dp = mp. Let k ∈ {1, ...,m} and wk ∈ Wu. We have

ak − ku = ik + 2jk + 2− ku = ik + 2jk + 2− ik = 2jk + 2,

bk − kx = kx + 2− kx = 2.

Thus, ak − ku 6= bk − kx.
For the case wk ∈ Wx, we can show ak − ku 6= bk − kx in the same way.
Continuously, suppose dp 6= mp. By the previous part of the proof, we have ak − ku 6= bk − kx

for all k ∈ {1, ...,m − 1}. Moreover, we observe that dp /∈ {am, ..., n} and mp /∈ {bm, ..., n} because
n− am = n− bm. This implies dp = mu and mp = mx. By any of the above, we can conclude that
αvAw∗ is well-defined. �

The proof of Lemma 16 shows (k + 1)u − ak = (k + 1)x − bk for all k ∈ {1, ...,m − 1}. Then
ak − ku 6= bk − kx for all k ∈ {1, ...,m}, whenever dp = mp, and ak − ku 6= bk − kx for all
k ∈ {1, ...,m − 1} and dp = mu,mp = mx, whenever dp 6= mp. Furthermore, observing by trivial
calculation, ak − ku ≥ 2 and bk − kx ≥ 2. Therefore, if there exists i ∈ {1, ..., p − 1}, where
di+1 − di 6= mi+1 −mi, then di ∈ {1u, ..., (m − 1)u}(∪{mu}), mi ∈ {1x, ..., (m − 1)x}(∪{mx}) and
we put ku = drk , kx = mrk for all k ∈ {1, ...,m − 1}(∪{m}) (we put rm = p, whenever dp 6= mp).
This gives the unique set {r1, ..., rm} as required by the definition of wαvAw∗ . Moreover, we need

to show that αvAw∗ ∈ IOF par
n \{ε} by checking (i)-(iv) of Proposition 1. We will now show that

αvAw∗ ∈ IOF par
n as well as wαvAw∗ = vAw

∗. This gives the tools to calculate that |Wn| ≤ |IOF par
n |.

Lemma 17. αvAw∗ ∈ IOF par
n \{ε}.

P r o o f. Clearly, αvAw∗ 6= ε. We will prove that αvAw∗ satisfies the conditions (i)–(iv) in
Proposition 1. We observe that d1 < d2 < · · · < dp and m1 < m2 < · · · < mp by definition of
αvAw∗. We have 1u − d1 = 1x −m1, i.e. 1u − 1x = d1 − m1. By the definition of ku and kx, for
k ∈ {1, ...,m}, we observe that 1u − 1x is even, i.e. d1 − m1 is even. Thus, d1 and m1 have the
same parity.

Let di+1−di = 1 for some i ∈ {1, ..., p−1}. Then di ∈ dom(α)\{1u, ...,mu} implies mi+1−mi =
di+1 − di = 1.

Let mi+1−mi = 1 for some i ∈ {1, ..., p−1}. Then mi ∈ im(α)\{1x, ...,mx} implies di+1−di =
mi+1 −mi = 1.

Let di+1 − di is even. Suppose di+1 − di 6= mi+1−mi. This gives di = ku and mi = kx for some
k ∈ {1, ...,m − 1}. By the definition of ku and kx, we observe that ku − kx is even.
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Moreover, (k + 1)u − di+1 = (k + 1)x − mi+1 since (k + 1)u − (k + 1)x is even, we have
di+1 − mi+1 is even. Then di+1, di and di, mi as well as di+1,mi+1 have the same parity. This
implies that mi+1,mi have the same parity, i.e. mi+1 −mi is even. Conversely, we can prove sim-
ilarly that, if mi+1−mi is even then di+1−di is even. By Proposition 1, we get αvAw∗ ∈ IOF par

n . �

We can construct f(αvAw∗) = wαvAw∗ , where wαvAw∗ = vÃŵ
∗
αvAw∗ with ŵ = ŵ1...ŵm for

ŵ1, ..., ŵm ∈ Wu ∪Wx and Ã ⊆ n. We will prove that f is surjective in the next lemma.

Lemma 18. Let vAw
∗ ∈ Wn\{vn}. Then there is α ∈ IOF par

n \{ε} with vAw
∗ = wα.

P r o o f. We have wαvAw∗ = vÃŵ
∗
αvAw∗ , where ŵ = ŵ1...ŵm with ŵ1, ..., ŵm ∈ Wu ∪Wx and

Ã ⊆ n. First, our goal is to show that ŵ = w. Suppose dp = mp and let k ∈ {1, ...,m} such that
bk − kx > ak − ku. By the definition of ŵk, we have ŵk = xkx,((bk−kx)−(ak−ku))/2 and kx = ik. Then

(bk − kx)− (ak − ku)

2
=

ik + 2jk + 2− ik − ku − 2 + ku
2

= jk,

i.e. ŵk = xik,jk = wk. For the case bk − kx < ak − ku, we can prove that ŵk = wk in a similar way.
This gives ŵ1...ŵm = w1...wm.

Suppose dp 6= mp. We have ak− ku 6= bk− kx for all k ∈ {1, ...,m− 1} and by a similar proof as
above, we have ŵ1...ŵm−1 = w1...wm−1. If mp < dp then ŵm = xmp,(dp−mp)/2 and mp = mx = im.
Then

dp −mp

2
=

mu −mx

2
=

im + 2jm − im
2

= jm,

i.e. ŵm = xim,jm = wm. For the case mp > dp, we can prove ŵm = wm in a similar way. Thus,
ŵ1...ŵm−1ŵm = w1...wm−1wm. Then w = ŵ, i.e. w∗ = ŵ∗

αvAw∗ . The next goal is to show that

A = Ã.

1) To show that A ⊆ Ã: let a ∈ A. We have A ⊆ Aw since vAw
∗ ∈ Wn. Therefore, we have the

following cases: a ∈ {am, ..., n} = A1 or a ∈ {ak, ..., (k + 1)u − 1} = A2 for some k ∈ {1, ...,m − 1}
or

a ∈ {1 + 1u −min{1u, 1x}, ..., 1u − 1} = A3.

If a ∈ A1 andmp 6= dp then a ∈ Ã since (1.1) and (1.2), respectively. If a ∈ A1 and a ∈ {dp+1, ..., n}
with mp = dp then a ∈ Ã since (1.3) and (2), respectively.

Suppose a ∈ A2 with a ∈ {ak, ..., drk+1 − 1}. If 2 < drk+1 − drk < mrk+1 −mrk then wk ∈ Wx.
Note that ak = ku + 2 = drk + 2. Thus, a ∈ Ã since (3.3). If 2 < mrk+1 −mrk < drk+1 − drk then
wk ∈ Wu.

Note

drk+1 − ak = mrk+1 − bk, bk = kx + 2,

ak = ak − bk + bk = drk+1 −mrk+1 + kx + 2 = drk+1 −mrk+1 +mrk + 2.

Thus, a ∈ Ã since (3.2).

Suppose a ∈ A3. If 1 < d1 ≤ m1 and a ∈ {1, ..., d1 − 1} then a ∈ Ã since (5). If 1 < m1 < d1
and a ∈ {d1 −m1 + 1, ..., 1u − 1} then a ∈ Ã since (6) (note that 1u − 1x = d1 −m1).

Suppose a ∈ A1 ∪A2 ∪A3 and there exists s ∈ {2, ..., p} such that ds − ds−1 = ms −ms−1 ≥ 2
with a ∈ {ds−1 + 1, ..., ds − 1}. Then a ∈ Ã since (3.1). By any of the above, we have A ⊆ Ã.
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2) To show that Ã ⊆ A: let

A1 = {1 + 1u −min{1u, 1x}, ..., 1u − 1},

A2 = {a1, ..., 2u − 1} ∪ {a2, ..., 3u − 1} ∪ ... ∪ {am−1, ...,mu − 1},

A3 = {am, ..., n}.

Because A ⊆ Aw, we have A ⊆ A1 ∪ A2 ∪ A3 and A ∩ {d1, ..., dp} = ∅. This implies A ⊆ A1 ∪
A2 ∪A3\{d1, ..., dp}. Conversely, we have A1 ∪A2 ∪A3\{d1, ..., dp} ⊆ A by the definition of αvAw∗.
Thus, A = A1 ∪A2 ∪A3\{d1, ..., dp}.

Let a ∈ Ã. By the definition of Ã, we can observe that a 6= di for all i ∈ {1, ..., p}.
Suppose a is given by (1.1) or (1.2) or (1.3) or (2). Then a ∈ A3\{d1, ..., dp}.
Suppose a is given by (3.1). Then a ∈ A1 ∪A2 ∪A3\{d1, ..., dp}.
Suppose a is given by (3.2), i.e. a ∈ {ds −ms +ms−1 + 2, ..., ds − 1} for some s ∈ {2, ..., p}.
We have already shown that there is k ∈ {1, ...,m − 1} such that ds − ms + ms−1 + 2 = ak.

Then a ∈ A2\{d1, ..., dp}.
Suppose a is given by (3.3). Then a ∈ A2\{d1, ..., dp}.
Suppose a is given by (5). Then a ∈ A1\{d1, ..., dp}.
Suppose a is given by (6). Then a ∈ A1\{d1, ..., dp} (note that d1 −m1 = 1u − 1x). Therefore,

we have a ∈ A, i.e. Ã ⊆ A.
By 1) and 2), we get A = Ã. This implies vAw

∗ = vÃŵ
∗ = wαvAw∗ . �

Lemma 18 establishes that f is surjective, which implies |Wn| ≤ |IOF par
n |. We will now adjust

our alphabet and relations to meet the requirements of Theorem 1. As mentioned previously,
Xn = {s : s ∈ Xn} is a generating set for the monoid IOF par

n . Building on the insights from
Lemma 1, we can conclude that Xn satisfies all the relations from R = {s1 ≈ s2 : s1 ≈ s2 ∈ R}.

Corollary 1 further shows that for any w ∈ X
∗
n, there exists a corresponding w′ ∈ Wn, for

which w ≈ w′ is a consequence of R. This implies that R ⊆ X
∗
n×X

∗
n and that Wn ⊆ X

∗
n meet the

conditions 1–3 in Theorem 1. We now possess all the necessary items to conclude our main result.

Theorem 2. 〈Xn |R〉 is a monoid presentation for IOF par
n .
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