# A PRESENTATION FOR A SUBMONOID OF THE SYMMETRIC INVERSE MONOID 

Apatsara Sareeto<br>Institute of Mathematics, University of Potsdam, Potsdam, 14476, Germany<br>channypooii@gmail.com

## Jörg Koppitz

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia, 1113, Bulgaria
koppitz@math.bas.bg


#### Abstract

In the present paper, we study a submonoid of the symmetric inverse semigroup $I_{n}$. Specifically, we consider the monoid of all order-, fence-, and parity-preserving transformations of $I_{n}$. While the rank and a set of generators of minimal size for this monoid are already known, we will provide a presentation for this monoid.


Keywords: Symmetric inverse monoid, Order-preserving, Fence-preserving, Presentation.

## 1. Introduction

Let $\bar{n}$ be a finite chain with $n$ elements, where $n$ is a positive integer, denoted by $\bar{n}=\{1<2<\cdots<n\}$. We denote by $P T_{n}$ the monoid (under composition) of all partial transformations on $\bar{n}$. A partial transformation $\alpha$ on the set $\bar{n}$ is a mapping from a subset $A$ of $\bar{n}$ into $\bar{n}$. The domain (respectively, image or range) of $\alpha$ is denoted by $\operatorname{dom}(\alpha)$ (respectively, $i m(\alpha)$ ). The empty transformation is denoted by $\varepsilon$. A transformation $\alpha \in P T_{n}$ is called order-preserving if $x<y$ implies $x \alpha \leq y \alpha$ for all $x, y \in \operatorname{dom}(\alpha)$. It is worth noting that we write mappings on the right of their arguments and perform composition from left to right. Furthermore, an $\alpha \in P T_{n}$ is called a partial injection when $\alpha$ is injective. The set of all partial injections forms a monoid, the symmetric inverse semigroup $I_{n}$, as introduced by Wagner [17]. We denote by $P O I_{n}$ the submonoid of $I_{n}$, consisting of all order-preserving partial injections on $\bar{n}$. This monoid has already been well-studied (see e.g., [6]).

A non-linear order that is closed to a linear order in some sense is the so-called zig-zag order. The pair ( $\bar{n}, \preceq$ ) is called a zig-zag poset or fence if
$1 \prec 2 \succ \cdots \prec n-1 \succ n$ if n is odd and $1 \prec 2 \succ \cdots \succ n-1 \prec n$ if n is even, respectively.
The definition of the partial order $\preceq$ is self-explanatory. A transformation $\alpha \in P T_{n}$ is referred to as fence-preserving if it preserves the partial order $\preceq$, meaning that for all $x, y \in \operatorname{dom}(\alpha)$ with $x \prec y$, we have $x \alpha \preceq y \alpha$. The set of fence-preserving transformations on $\bar{n}$ was initially explored by Currie, Visentin, and Rutkowski. In [2, 14], the authors investigated the number of order-preserving maps of a finite fence. In particular, a formula for the number of order-preserving self-mappings
of a fence was introduced. It is noteworthy that every element of a fence is either minimal or maximal. For all $x, y \in \bar{n}$ with $x \prec y$, we have $y \in\{x-1, x+1\}$. We denote by $P F I_{n}$ the submonoid of $I_{n}$, consisting of all fence-preserving partial injections of $\bar{n}$. We denote by $I F_{n}$ the inverse submonoid of $P F I_{n}$ of all regular elements in $P F I_{n}$. It is easy to see that $I F_{n}$ is the set of all $\alpha \in P F I_{n}$ with $\alpha^{-1} \in P F I_{n}$. It is worth mentioning that several properties of a variety of monoids of fence-preserving transformations were studied $[3,7,9,11,12,16]$.

In the present paper, we focus on a submonoid of $I O F_{n}=I F_{n} \bigcap P O I_{n}$. Let $a \in \operatorname{dom}(\alpha)$ for some $\alpha \in I O F_{n}$. If $a+1 \in \operatorname{dom}(\alpha)$ or $a-1 \in \operatorname{dom}(\alpha)$ then it is easy to verify that $a$ and $a \alpha$ have the same parity. In other words, $a$ is odd if and only if $a \alpha$ is odd. However, if $a-1$ and $a+1$ are not in $\operatorname{dom}(\alpha)$, then $a$ and $a \alpha$ can have different parity. In order to exclude this case, we require that the image of any $a \in \operatorname{dom}(\alpha)$ has the same parity as $a \alpha$. In this context, we refer to $\alpha$ as parity-preserving. In our paper, we consider the monoid $I O F_{n}^{p a r}$ of all parity-preserving transformations of $I O F_{n}$. Notably, for any $\alpha \in I O F_{n}^{p a r}$, the inverse partial injection $\alpha^{-1}$ exists and possesses order-preserving, fence-preserving, and parity-preserving. This observation implies that $I O F_{n}^{p a r}$ is an inverse submonoid of $I_{n}$, as explained in [15]. Furthermore, in the same paper [15], the authors provided a characterization of the monoid $I O F_{n}^{p a r}$ :

Proposition 1 [15]. Let $p \leq n$ and let

$$
\alpha=\left(\begin{array}{ccccccc}
d_{1} & < & d_{2} & < & \cdots & < & d_{p} \\
m_{1} & & m_{2} & \cdots & & m_{p}
\end{array}\right) \in I_{n}
$$

Then $\alpha \in I O F_{n}^{p a r}$ if and only if the following four conditions hold:
(i) $m_{1}<m_{2}<\ldots<m_{p}$;
(ii) $d_{1}$ and $m_{1}$ have the same parity;
(iii) $d_{i+1}-d_{i}=1$ if and only if $m_{i+1}-m_{i}=1$ for all $i \in\{1, \ldots, p-1\}$;
(iv) $d_{i+1}-d_{i}$ is even if and only if $m_{i+1}-m_{i}$ is even for all $i \in\{1, \ldots, p-1\}$.

Also in [15], a set of generators of $I O F_{n}^{p a r}$ of minimal size is given. This leads to the question of a presentation of $I O F_{n}^{p a r}$. In this paper, we will exhibit a monoid presentation for $I O F_{n}^{p a r}$. A monoid presentation is represented as an ordered pair $\langle X \mid R\rangle$, where $X$ is a set, referred to as the alphabet (a set whose elements are called letters), and $R$ is a binary relation on the free monoid generated by $X$, denoted by $X^{*}$. A pair $(u, v) \in X^{*} \times X^{*}$ is represented by $u \approx v$ and is called relation. We state that $u \approx v$, for $u, v \in X^{*}$, is a consequence of $R$ if $(u, v) \in \rho_{R}$, where $\rho_{R}$ denotes the congruence on $X^{*}$ generated by $R$. We say that the momoid $I O F_{n}^{p a r}$ has (monoid) presentation $\langle X \mid R\rangle$ if $I O F_{n}^{p a r}$ is isomorphic to the factor semigroup $X^{*} / \rho_{R}$. For a more comprehensive understanding of semigroups, presentations, and standard notation see $[1,8,10,13]$.

Given that $I O F_{n}^{p a r}$ is a finite monoid, we can always exhibit a presentation for it. A usual method to establish a good presentations is the Guess and Prove Method, which is described by the following theorem, adapted to monoids from Ruškuc (1995, Proposition 3.2.2).

Theorem 1 [13]. Let $X$ be a generating set for $I O F_{n}^{p a r}$, let $R \subseteq X^{*} \times X^{*}$ be a set of relations and let $W \subseteq X^{*}$ that the following conditions are satisfied:

1. The generating set $X$ of $I O F_{n}^{p a r}$ satisfies all the relations from $R$;
2. For each word $w \in X^{*}$, there exists a word $w^{\prime} \in W$ such that the relation $w \approx w^{\prime}$ is a consequence of $R$;
3. $|W| \leq\left|I O F_{n}^{p a r}\right|$.

Then IOF ${ }_{n}^{p a r}$ is defined by the presentation $\langle X \mid R\rangle$.

In the next section, we introduce the alphabet (generating set) denoted as $X_{n}$ and the binary relation $R$ on $X_{n}^{*}$. Furthermore, we will demonstrate that $X_{n}$ fulfills all the relations in $R$ as outlined in Theorem 1, item 1. Following the guidance of item 2 in Theorem 1, we will establish a set of forms, denoted as $P$, in Section 3. Finally, in the last section, we will provide a proof for item 3 of Theorem 1.

## 2. The generator and relations

In this section, we will define the alphabet $X_{n}$ and introduce a binary relation $R$ on $X_{n}^{*}$. We will also demonstrate that the corresponding generating set satisfies all the relations in $R$. Let $\bar{v}_{i}$ be the partial identity with the domain $\bar{n} \backslash\{i\}$ for all $i \in\{1, \ldots, n\}$. Additionally, let us define

$$
\bar{u}_{i}=\left(\begin{array}{ccccccccc}
1 & \cdots & i & i+1 & i+2 & i+3 & i+4 & \cdots & n \\
3 & \cdots & i+2 & - & - & - & i+4 & \cdots & n
\end{array}\right)
$$

and $\bar{x}_{i}=\left(\bar{u}_{i}\right)^{-1}$ for all $i \in\{1, \ldots, n-2\}$. By Proposition 1 , it is easy to verify that $\bar{u}_{i}$ as well as $\bar{x}_{i}, i \in\{1, \ldots, n-2\}$, belong to $I O F_{n}^{p a r}$. In [15], the authors have shown that $\left\{\bar{v}_{1}, \bar{v}_{2}, \ldots, \bar{v}_{n}, \bar{u}_{1}, \bar{u}_{2}, \ldots, \bar{u}_{n-2}, \bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n-2}\right\}$ is a generating set of $I O F_{n}^{\text {par }}$. In order to use Theorem 1, we define an alphabet

$$
X_{n}=\left\{v_{1}, v_{2}, \ldots, v_{n}, u_{1}, u_{2}, \ldots, u_{n-2}, x_{1}, x_{2}, \ldots, x_{n-2}\right\}
$$

which corresponds to the set of generators of $I O F_{n}^{p a r}$. For $w=w_{1} \ldots w_{m}$ with $w_{1}, \ldots, w_{m} \in X_{n}$, where $m$ being a positive integer, we write $w^{-1}$ for the word $w^{-1}=w_{m} \ldots w_{1}$.

We fix a particular sequence of letters as follows: $x_{i, j}=x_{i} x_{i+2} \ldots x_{i+2 j-2}$ and $u_{i, j}=u_{i} u_{i+2} \ldots u_{i+2 j-2}$ for $i \in\{1, \ldots, n-2\}, j \in\{1, \ldots,\lfloor(n-i) / 2\rfloor\}$ and obtain the following sets of words:

$$
\begin{aligned}
W_{x}=\left\{x_{i, j}:\right. & \left.i \in\{1, \ldots, n-2\}, j \in\left\{1, \ldots,\left\lfloor\frac{n-i}{2}\right\rfloor\right\}\right\}, \\
& W_{x}^{-1}=\left\{x_{i, j}^{-1}: x_{i, j} \in W_{x}\right\}, \\
W_{u}=\left\{u_{i, j}:\right. & \left.i \in\{1, \ldots, n-2\}, j \in\left\{1, \ldots,\left\lfloor\frac{n-i}{2}\right\rfloor\right\}\right\} .
\end{aligned}
$$

Let $w$ be any word of the form $w=w_{1} \ldots w_{m}$ with $w_{1}, \ldots, w_{m} \in W_{x} \cup W_{u}$ and $m$ is a positive integer. For $k \in\{1, \ldots, m\}$, the word $w_{k}$ is of the form

$$
w_{k}=\left\{\begin{array}{lll}
u_{i_{k}, j_{k}} & \text { if } & w_{k} \in W_{u} ; \\
x_{i_{k}, j_{k}} & \text { if } & w_{k} \in W_{x}
\end{array}\right.
$$

for some $i_{k} \in\{1, \ldots, n-2\}, j_{k} \in\{1, \ldots,\lfloor(n-i) / 2\rfloor\}$. We observe $j_{k}=\left|w_{k}\right|$, i.e. $j_{k}$ is the length of the word $w_{k}$. We define two sequences $1_{x}, 2_{x}, \ldots, m_{x}$ and $1_{u}, 2_{u}, \ldots, m_{u}$ of indicators: for $k \in\{1, \ldots, m\}$ let

$$
k_{x}= \begin{cases}i_{k}+2\left|w_{k}\right|+2\left|W_{u}^{k}\right|-2\left|W_{x}^{k}\right| & \text { if } \quad w_{k} \in W_{u} \\ i_{k} & \text { if } \quad w_{k} \in W_{x}\end{cases}
$$

and

$$
k_{u}=\left\{\begin{array}{lll}
i_{k}+2\left|w_{k}\right|-2\left|W_{u}^{k}\right|+2\left|W_{x}^{k}\right| & \text { if } & w_{k} \in W_{x} \\
i_{k} & \text { if } & w_{k} \in W_{u}
\end{array}\right.
$$

where $W_{u}^{s}$ (respectively, $W_{x}^{s}$ ) means the word $w_{s+1} \ldots w_{m}$ without the letters in $\left\{x_{1}, \ldots, x_{n-2}\right\}$ respectively, in $\left\{u_{1}, \ldots, u_{n-2}\right\}$ ) for $s \in\{0,1, \ldots, m-1\}$ and $W_{u}^{m}=W_{x}^{m}=\epsilon$, where $\epsilon$ is the empty word. Let $Q_{0}$ be the set of all words $w=w_{1} \ldots w_{m}$ with $w_{1}, \ldots, w_{m} \in W_{x} \cup W_{u}$ and $m$ being a positive integer such that:
$\left(1_{q}\right)$ If $w_{k}, w_{l} \in W_{x}$ then $i_{k}+2 j_{k}+1<i_{l}$ for $k<l \leq m$;
$\left(2_{q}\right)$ If $w_{k}, w_{l} \in W_{u}$ then $i_{k}+2 j_{k}+1<i_{l}$ for $k<l \leq m$;
$\left(3_{q}\right)$ If $w_{k} \in W_{u}$ then $i_{k}+2 j_{k}+2 \leq(k+1)_{u}$ for $k \in\{1, \ldots, m-1\}$ and $(k+1)_{x}-k_{x} \geq 2$;
$\left(4_{q}\right)$ If $w_{k} \in W_{x}$ then $i_{k}+2 j_{k}+2 \leq(k+1)_{x}$ for $k \in\{1, \ldots, m-1\}$ and $(k+1)_{u}-k_{u} \geq 2$.
Let now $w=w_{1} \ldots w_{m} \in Q_{0}$ and let $w^{*}=W_{u}^{0}\left(W_{x}^{0}\right)^{-1}$. Further, we define recursively a set $A_{w}$ :
$\left(5_{q}\right)$ If $m_{u}>m_{x}$ and $m_{u}+2 \leq n$ then $A_{m}=\left\{m_{u}+2, \ldots, n\right\}$, if $m_{u}<m_{x}$ and $m_{x}+2 \leq n$ then $A_{m}=\left\{m_{x}+2, \ldots, n\right\}$, otherwise $A_{m}=\emptyset$;
$\left(6_{q}\right)$ If $w_{k} \in W_{u}$ then $A_{k}=A_{k+1} \cup\left\{i_{k}+2 j_{k}+2, \ldots,(k+1)_{u}-1\right\}$ for $k \in\{1, \ldots, m-1\}$, if $w_{k} \in W_{x}$ then $\left.A_{k}=A_{k+1} \cup\left\{k_{u}+2, \ldots,(k+1)_{u}-1\right)\right\}$ for $k \in\{1, \ldots, m-1\}$;
$\left(7_{q}\right)$ If $1 \in\left\{1_{x}, 1_{u}\right\}$ then $A_{w}=A_{1}$, if $1<1_{u} \leq 1_{x}$ then $A_{w}=A_{1} \cup\left\{1, \ldots, 1_{u}-1\right\}$, if $1<1_{x}<1_{u}$ then $A_{w}=A_{1} \cup\left\{1_{u}-1_{x}+1, \ldots, 1_{u}-1\right\}$.

For a set $A=\left\{i_{1}<i_{2}<\cdots<i_{k}\right\} \subseteq \bar{n}$, let $v_{A}=v_{i_{1}} v_{i_{2}} \ldots v_{i_{k}}$ for some $k \in\{1, \ldots, n\}$. Note that $v_{\emptyset}$ means the empty word $\epsilon$. For convenience, we put $v_{i}=\epsilon$ for $i \geq n+1$. Let

$$
W_{n}=\left\{v_{A} w^{*}: w \in Q_{0}, A \subseteq A_{w}\right\} \cup\left\{v_{A}: A \subseteq \bar{n}\right\}
$$

On the other hand, we will define now a set of relations. For this, let $W_{t}$ be the set of all words of the form $u_{i_{0}} u_{i_{1}} \ldots u_{i_{l}} x_{j_{1}} \ldots x_{j_{m}} x_{j_{m+1}}$ with the following four properties:
(i) $l \in\{0, \ldots, n-2\}$, and $m \in\{0, \ldots, n-3\}$;
(ii) $i_{0}<i_{1}<\cdots<i_{l} \in\{1, \ldots, n-2\}$;
(iii) $j_{1}>j_{2}>\cdots>j_{m}>j_{m+1} \in\{1, \ldots, n-2\}$;
(iv) if $k \in\left\{i_{0}, \ldots, i_{l-1}\right\}$ (respectively, $k \in\left\{j_{2}, \ldots, j_{m+1}\right\}$ ) then $k+1, k+3 \notin\left\{i_{1}, \ldots, i_{l}\right\}$ (respectively, $\left.k+1, k+3 \notin\left\{j_{1}, \ldots, j_{m}\right\}\right)$ for all $k \in\{1, \ldots, n-3\}$.

Then we define a sequence $R$ of relations on $X_{n}^{*}$ as follows: for $i, j \in\{1, \ldots, n\}$ and $k=i+2 j-2$, let

$$
(E) x_{i} u_{j} \approx \begin{cases}v_{1} v_{2} v_{i+3} \ldots v_{j+3}, & \text { if } i<j, j-i=2,3 ; \\ v_{1} v_{2} v_{j+3} \ldots v_{i+3}, & \text { if } i>j, i-j=2,3 ; \\ v_{1} v_{2} v_{j+3} v_{j+4}, & \text { if } i>j, i-j=1 ; \\ v_{1} v_{2} v_{j+2} v_{j+3}, & \text { if } i<j, j-i=1 ; \\ v_{1} v_{2} v_{i+3}, & \text { if } i=j ; \\ v_{1} v_{2} u_{j} x_{i+2}, & \text { if } i<j, j-i \geq 4 ; \\ v_{1} v_{2} u_{j+2} x_{i}, & \text { if } i>j, i-j \geq 4 ;\end{cases}
$$

(L1) $u_{2} u_{1} \approx u_{1} u_{2} \approx x_{1} x_{2} \approx x_{2} x_{1} \approx u_{2}^{2} \approx x_{2}^{2} \approx v_{1} v_{2} v_{3} v_{4} v_{5}$;
(L2) $u_{3} u_{2} \approx x_{2} x_{3} \approx v_{1} v_{2} v_{3} v_{4} v_{5} v_{6}$;
(L3) $u_{i} u_{1} \approx v_{1} v_{2} u_{i}$ and $x_{1} x_{i} \approx v_{3} v_{4} x_{i}, i \geq 3$;
(L4) $u_{i} u_{2} \approx v_{1} v_{2} v_{3} u_{i}$ and $x_{2} x_{i} \approx v_{3} v_{4} v_{5} x_{i}, i \geq 4$;
(L5) $u_{i} u_{i-1} \approx v_{i+3} u_{i-3} u_{i-1}$ and $x_{i-1} x_{i} \approx v_{i+3} x_{i-1} x_{i-3}, i \geq 4$;
(L6) $u_{i} u_{j} \approx u_{j-2} u_{i}$ and $x_{j} x_{i} \approx x_{i} x_{j-2}, i>j \geq 3, i-j \geq 2$;
(R1) $v_{i}^{2} \approx v_{i}, i \in\{1, \ldots, n\}$;
(R2) $v_{i} v_{j} \approx v_{j} v_{i}, i, j \in\{1, \ldots, n\}, i \neq j$;
(R3) $v_{i} u_{j} \approx u_{j} v_{i}$ and $v_{i} x_{j} \approx x_{j} v_{i}, i \in\{j+4, \ldots, n\}$;
(R4) $v_{i} u_{j} \approx u_{j} v_{i+2}$ and $v_{i+2} x_{j} \approx x_{j} v_{i}, 1 \leq i \leq j$;
(R5) $v_{i} u_{j} \approx u_{j}$ and $x_{j} v_{i} \approx x_{j}, i \in\{j+1, j+2, j+3\}$;
(R6) $u_{j} v_{i} \approx u_{j}$ and $v_{i} x_{j} \approx x_{j}, i \in\{1,2, j+3\}$;
(R7) $u_{1}^{2} \approx x_{1}^{2} \approx v_{1} \ldots v_{4}$;
(R8) $u_{i}^{2} \approx u_{i-2} u_{i}$ and $x_{i}^{2} \approx x_{i} x_{i-2}, i \geq 3$;
(R9) $u_{i} u_{i+1} \approx u_{i-1} u_{i+1}$ and $x_{i+1} x_{i} \approx x_{i+1} x_{i-1}, i \in\{2, \ldots, n-5\}$;
(R10) $u_{i} u_{i+3} \approx v_{i+6} u_{i} u_{i+2}$ and $x_{i+3} x_{i} \approx v_{i+6} x_{i+2} x_{i}, i \leq n-5$;
(R11) $w \approx v_{i_{0}+1} v_{i_{0}+2} v_{i_{0}+3} u_{i_{1}} \ldots u_{i_{l}} x_{j_{1}} \ldots x_{j_{m}}, w=u_{i_{0}} u_{i_{1}} \ldots u_{i_{l}} x_{j_{1}} \ldots x_{j_{m}} x_{j_{m+1}} \in W_{t}$ with $j_{m+1}=i_{0}+2 l-2 m$;
(R12) $w \approx v_{i_{0}} v_{i_{0}+1} v_{i_{0}+2} v_{i_{0}+3} u_{i_{1}} \ldots u_{i_{l}} x_{j_{1}} \ldots x_{j_{m}}, w=u_{i_{0}} u_{i_{1}} \ldots u_{i_{l}} x_{j_{1}} \ldots x_{j_{m}} x_{j_{m+1}} \in W_{t}$ with $j_{m+1}=i_{0}+2 l-2 m-1$;
(R13) $w \approx v_{i_{0}+1} v_{i_{0}+2} v_{i_{0}+3} v_{i_{0}+4} u_{i_{1}} \ldots u_{i_{l}} x_{j_{1}} \ldots x_{j_{m}}, w=u_{i_{0}} u_{i_{1}} \ldots u_{i_{l}} x_{j_{1}} \ldots x_{j_{m}} x_{j_{m+1}} \in W_{t}$ with $j_{m+1}=i_{0}+2 l-2 m+1$;

(R15) $w \approx u_{i_{1}} \ldots u_{i_{l}} x_{j_{1}} \ldots x_{j_{m}} x_{j_{m+1}}, w=u_{i_{0}} u_{i_{1}} \ldots u_{i_{l}} x_{j_{1}} \ldots x_{j_{m}} x_{j_{m+1}} \in W_{t}$ with $i_{0}<2 m-2 l$;
(R16) $v_{1} \ldots v_{i} u_{i, j} \approx v_{1} \ldots v_{k+3}, i \in\{1, \ldots, n-2\}$;

(R18) $v_{i} u_{i, j} \approx v_{k+3} u_{i-1, j}, i \in\{2, \ldots, n-2\} ;$
(R19) $v_{k+2} x_{i, j}^{-1} \approx v_{k+3} x_{i-1, j}^{-1}, i \in\{2, \ldots, n-2\}$.
Lemma 1. The relations from $R$ hold as equations in $I O F_{n}^{p a r}$, when the letters are replaced by the corresponding transformations.

Proof. We show the statement diagrammatically. This method was also used in [4, 5]. We give an example calculation for the relation ( $R 10$ ) $u_{i} u_{i+3} \approx v_{i+6} u_{i} u_{i+2}, i \leq n-5$, in Figures 1 and 2 below. Note we can show $x_{i+3} x_{i} \approx v_{i+6} x_{i+2} x_{i}$ in a similar way.

By Figures 1 and 2, we have that $\bar{u}_{i} \bar{u}_{i+3}=\bar{v}_{i+6} \bar{u}_{i} \bar{u}_{i+2}$.


Figure 1. $\bar{u}_{i} \bar{u}_{i+3}$.


Figure 2. $\bar{v}_{i+6} \bar{u}_{i} \bar{u}_{i+2}$.

Next, we will verify consequences of $R$, which are important by technical reasons.
Lemma 2. (i) For $w=u_{i_{0}} u_{i_{1}} \ldots u_{i_{l}} x_{j_{1}} \ldots x_{j_{m}} x_{j_{m+1}} \in W_{t}$ with $j_{m+1}=2 l-2 m$, we have $w \approx v_{1} u_{i_{0}} u_{i_{1}} \ldots u_{i_{l}} x_{j_{1}} \ldots x_{j_{m}}$.
(ii) For $\quad w=u_{i_{0}} u_{i_{1}} \ldots u_{i_{l}} x_{j_{1}} \ldots x_{j_{m}} x_{j_{m+1}} \in W_{t} \quad$ with $\quad i_{0}=2 m-2 l$, we have $w \approx v_{i_{0}+3} u_{i_{1}} \ldots u_{i_{l}} x_{j_{1}} \ldots x_{j_{m}} x_{j_{m+1}}$.

Proof. (i) We have

$$
u_{i_{0}} u_{i_{1}} \ldots u_{i_{l}} x_{j_{1}} \ldots x_{j_{m}} x_{j_{m+1}} \stackrel{(R 14)}{\approx} u_{i_{0}} u_{i_{1}} \ldots u_{i_{l}} x_{j_{1}} \ldots x_{j_{m}} x_{j_{m+1}-1} x_{j_{m+1}}
$$

Suppose $j_{m+1}=2 l-2 m \geq 4$. Then

$$
\begin{aligned}
u_{i_{0}} u_{i_{1}} \ldots u_{i_{l}} x_{j_{1}} \ldots x_{j_{m}} x_{j_{m+1}-1} x_{j_{m+1}} \stackrel{(L 5)}{\approx} u_{i_{0}} u_{i_{1} \ldots} u_{i_{l}} x_{j_{1} \ldots x_{j_{m}}} v_{j_{m+1}+3} x_{j_{m+1}-1} x_{j_{m+1}-3} \\
\stackrel{(R 4)}{\approx} v_{1} u_{i_{0}} u_{i_{1}} \ldots u_{i_{l}} x_{j_{1}} \ldots x_{j_{m}} x_{j_{m+1}-1} x_{j_{m+1}-3} \stackrel{(R 14)}{\approx} v_{1} u_{i_{0}} u_{i_{1}} \ldots u_{i_{l}} x_{j_{1} \ldots} \ldots x_{j_{m}}
\end{aligned}
$$

Suppose $j_{m+1}=2 l-2 m<4$, i.e. $j_{m+1}=2$. We prove that

$$
u_{i_{0}} u_{i_{1} \ldots} \ldots u_{i_{l}} x_{j_{1}} \ldots x_{j_{m}} x_{j_{m+1}} \approx v_{1} u_{i_{0}} u_{i_{1}} \ldots u_{i_{l}} x_{j_{1} \ldots} \ldots x_{j_{m}}
$$

by using (L1) and ( $R 4$ )-(R6) in a similar way.
(ii) The proof is similar to (i), by using (R15) and (L5) if $i_{0} \geq 4$ and ( $R 15$ ), (L1), and (R4)-(R6) if $i_{0}=2$.

## 3. Set of forms

In this section, we introduce an algorithm, which transforms any word $w \in X_{n}^{*}$ to a word in $W_{n}$ using $R$, with other words, we show that for all $w \in X_{n}^{*}$, there is $w^{\prime} \in W_{n}$ such that $w \approx w^{\prime}$ is a consequence of $R$. First, the algorithm transforms each $w \in X_{n}^{*}$ to a "new" word $w^{\prime}$. All these "new" words will be collected in a set. Later, we show that this set belongs to $W_{n}$. Let $w \in X_{n}^{*} \backslash\{\epsilon\}$.

- Using (R1)-(R6), we can move any $v_{i}$ for $i \in\{1,2, \ldots, n\}$, at the beginning of the word or we can cancel it. So we obtain $w \approx \tilde{v} \tilde{w}$, where $\tilde{v} \in\left\{v_{1}, \ldots, v_{n}\right\}^{*}$ and $\tilde{w} \in\left\{u_{1}, u_{2}, \ldots, u_{n-2}, x_{1}, x_{2}\right.$, $\left.\ldots, x_{n-2}\right\}^{*}$.
- Moreover, we separate the $u_{i}$ 's and $x_{i}$ 's for $i \in\{1, \ldots, n-2\}$ by $(E)$ and (R1)-(R6). Then $\tilde{v} \tilde{w} \approx \bar{v} \overline{B C}$, where $\bar{v} \in\left\{v_{1}, \ldots, v_{n}\right\}^{*}, \bar{B} \in\left\{u_{1}, u_{2}, \ldots, u_{n-2}\right\}^{*}$, and $\bar{C} \in\left\{x_{1}, x_{2}, \ldots, x_{n-2}\right\}^{*}$.
- By $(L 1)-(L 6)$ and $(R 1)-(R 6)$, we get $\bar{v} \overline{B C} \approx v^{\prime} B^{\prime} C^{\prime}$, where $v^{\prime} \in\left\{v_{1}, \ldots, v_{n}\right\}^{*}$, $B^{\prime} \in\left\{u_{1}, u_{2}, \ldots, u_{n-2}\right\}^{*}$, and $C^{\prime} \in\left\{x_{1}, x_{2}, \ldots, x_{n-2}\right\}^{*}$ such that the indices of the letters in the word $B^{\prime}$ are ascending and in the word $C^{\prime}$ are descending (reading from the left to the right).
- By $(L 1), \quad(R 7)-(R 10)$, and $(R 1)-(R 6)$, we replace subwords of $B^{\prime} C^{\prime}$ of the form $x_{i+3} x_{i}, x_{i+1} x_{i}, x_{i}^{2}, u_{i}^{2}, u_{i} u_{i+3}$, and $u_{i} u_{i+1}$ until $v^{\prime} B^{\prime} C^{\prime} \approx v^{\prime \prime} w_{1} \ldots w_{p}$ with $v^{\prime \prime} \in\left\{v_{1}, \ldots, v_{n}\right\}^{*}$ and $w_{1}, \ldots, w_{p} \in W_{x}^{-1} \cup W_{u}$ such that
if $u_{i} \in \operatorname{var}\left(w_{1} \ldots w_{p}\right)$ (respectively, $\left.x_{i} \in \operatorname{var}\left(w_{1} \ldots w_{p}\right)\right)$ then $u_{i+1}, u_{i+3} \notin \operatorname{var}\left(w_{1} \ldots w_{p}\right)$
(respectively, $x_{i+1}, x_{i+3} \notin \operatorname{var}\left(w_{1} \ldots w_{p}\right)$ ) for all $i \in\{1, \ldots, n-2\}$ and each letter in $w_{1} \ldots w_{p}$ is unique.

Note that this is possible since each of the relations $(L 1),(R 7)-(R 10)$, and $(R 1)-(R 6)$ does not increase the index of any letter in $\left\{u_{1}, u_{2}, \ldots, u_{n-2}, x_{1}, x_{2}, \ldots, x_{n-2}\right\}$ in the "new" word.

- Using (R11)-(R15), Lemmas 2, and ( $R 1$ )-( $R 6$ ), we remove letters $x_{i}$ and $u_{i}$, respectively, until one can not more remove a letter $x_{i}$ or $u_{i}$ for $i \in\{1,2, \ldots, n-2\}$. We obtain $v^{\prime \prime} w_{1} \ldots w_{p} \approx$ $v^{\prime \prime \prime} w_{1}^{\prime} \ldots w^{\prime}{ }_{p^{\prime}}$, where $v^{\prime \prime \prime} \in\left\{v_{1}, \ldots, v_{n}\right\}^{*}$ and $w_{1}^{\prime}, \ldots, w_{p^{\prime}}^{\prime} \in W_{x}^{-1} \cup W_{u}$. Note that is possible since each of the relations (R11)-(R15) as well as Lemmas 2 only removes letters (and add letters in $\left\{v_{1}, \ldots, v_{n}\right\}$, respectively).
- We decrease the indices of the letters in $\left\{u_{1}, u_{2}, \ldots, u_{n-2}, x_{1}, x_{2}, \ldots, x_{n-2}\right\}$ (if possible) by $(R 16)-(R 19)$ as well as $(R 1)-(R 6)$ and obtain $v^{\prime \prime \prime} w_{1}^{\prime} \ldots w_{p^{\prime}}^{\prime} \approx v^{*} B^{*} C^{*}$ with $v^{*} \in\left\{v_{1}, \ldots, v_{n}\right\}^{*}$, $B^{*} \in\left\{u_{1}, u_{2}, \ldots, u_{n-2}\right\}^{*}$, and $C^{*} \in\left\{x_{1}, x_{2}, \ldots, x_{n-2}\right\}^{*}$. Note that the indices of the letters in $B^{*}$ (respectively, in $C^{*}$ ) are ascending (respectively, are descending).

We repeat all steps. The procedure terminates if the word will not change more in all steps. We obtain $v^{*} B^{*} C^{*} \approx v_{A} \hat{w}_{1} \ldots \hat{w}_{\hat{p}}$, where $\hat{w}_{1}, \ldots, \hat{w}_{\hat{p}} \in W_{x}^{-1} \cup W_{u}$ and $A \subseteq \bar{n}$ such that no $v_{j}(j \in A)$ can be canceled by using $(R 1)-(R 6)$. This case has to happen since the number of the letters from $\left\{u_{1}, u_{2}, \ldots, u_{n-2}, x_{1}, x_{2}, \ldots, x_{n-2}, v_{1}, \ldots, v_{n}\right\}$ decreases or is kept and the indices of the $u_{i}$ 's and $x_{i}$ 's decrease or are kept in each step.

We denote by $P$ the set of all words obtained from $w \in X_{n}^{*}$ by that algorithm.
By ( $*$ ), we obtain immediately from the algorithm.
Remark 1. Let $\hat{w}=v_{A} \hat{w}_{1} \ldots \hat{w}_{m} \in P$ and let $1 \leq k<k^{\prime} \leq m$.
If $\hat{w}_{k}, \hat{w}_{k^{\prime}} \in W_{u}$ then $i_{k}+2\left|\hat{w}_{k}\right|+2 \leq i_{k^{\prime}}$.
If $\hat{w}_{k}, \hat{w}_{k^{\prime}} \in W_{x}$ then $i_{k^{\prime}}+2\left|\hat{w}_{k^{\prime}}\right|+2 \leq i_{k}$.
Let fix a word $\hat{w}=v_{A} \hat{w}_{1} \ldots \hat{w}_{m} \in P$. There are $a, b \in\{0, \ldots, n\}$ with $a+b=m, t_{1}, \ldots, t_{a+b} \in$ $\{1, \ldots, m\}, w_{t_{1}}, \ldots, w_{t_{a}} \in W_{u}$ and $w_{t_{a+1}}, \ldots, w_{t_{a+b}} \in W_{x}$ such that

$$
\hat{w}=v_{A} \hat{w}_{1} \ldots \hat{w}_{m}=v_{A} w_{t_{1}} \ldots w_{t_{a}} w_{t_{a+1}}^{-1} \ldots w_{t_{a+b}}^{-1},
$$

where $\left\{w_{t_{1}}, \ldots, w_{t_{a}}\right\}=\emptyset$ or $\left\{w_{t_{a+1}}, \ldots, w_{t_{a+b}}\right\}=\emptyset$ (i.e. $a=0$ or $b=0$ ) is possible. We observe that $\left\{\hat{w}_{1}, \ldots, \hat{w}_{m}\right\}=\left\{w_{t_{1}}, \ldots, w_{t_{a}}, w_{t_{a+1}}^{-1}, \ldots, w_{t_{a+b}}^{-1}\right\}$ and $\left\{t_{1}, \ldots, t_{a}, t_{a+1}, \ldots, t_{a+b}\right\}=\{1, \ldots, m\}$. We define an order on $\left\{t_{1}, \ldots, t_{a}, t_{a+1}, \ldots, t_{a+b}\right\}$ by $t_{1}<\cdots<t_{a}$ and $t_{a+b}<\cdots<t_{a+1}$. If $a, b \geq 1$, the order between $t_{1}, \ldots, t_{a}$ and $t_{a+1}, \ldots, t_{a+b}$ is given by the following rule:

Let $k \in\{1, \ldots, a\}$ and $l \in\{1, \ldots, b\}$
if $i_{t_{k}}+2\left|w_{t_{k}}\right|-2+2\left|w_{t_{k+1}} \ldots w_{t_{a}}\right|-2\left|w_{t_{a+1}}^{-1} \ldots w_{t_{a+l-1}}^{-1}\right|<i_{t_{a+l}}+2\left|w_{t_{a+l}}^{-1}\right|-2$ then $t_{k}<t_{a+l}$ and
if $i_{t_{k}}+2\left|w_{t_{k}}\right|-2+2\left|w_{t_{k+1}} \ldots w_{t_{a}}\right|-2\left|w_{t_{a+1}}^{-1} \ldots w_{t_{a+l-1}}^{-1}\right|>i_{t_{a+l}}+2\left|w_{t_{a+l}}^{-1}\right|-2$ then $t_{k}>t_{a+l}$.
The case

$$
i_{t_{k}}+2\left|w_{t_{k}}\right|-2+2\left|w_{t_{k+1}} \ldots w_{t_{a}}\right|-2\left|w_{t_{a+1}}^{-1} \ldots w_{t_{a+l-1}}^{-1}\right|=i_{t_{a+l}}+2\left|w_{t_{a+l}}^{-1}\right|-2
$$

is not possible, since otherwise we can cancel $u_{i_{t_{k}}+2\left|w_{t_{k}}\right|-2}$ and $x_{i_{t_{a+l}}+2\left|w_{t_{a+l}}^{-1}\right|-2}$ in $\hat{w}$ by ( $R 11$ ). Our next aim is to describe the relationships between $k_{u},(k+1)_{u}$ and $k_{x},(k+1)_{x}$ for all $k \in\{1, \ldots, m-1\}$ for the word $w=w_{1} \ldots w_{m}$.

Lemma 3. For all $k \in\{1, \ldots, m-1\}$, we have $k_{u}<(k+1)_{u}$ and $k_{x}<(k+1)_{x}$.
Proof. Let $k \in\{1, \ldots, m-1\}$. Suppose $w_{k}, w_{k+1} \in W_{u}$. We obtain $k_{u}<(k+1)_{u}$ and

$$
\begin{gathered}
k_{x}=i_{k}+2\left|w_{k}\right|+2\left|W_{u}^{k}\right|-2\left|W_{x}^{k}\right|, \\
(k+1)_{x}=i_{k+1}+2\left|w_{k+1}\right|+2\left|W_{u}^{k+1}\right|-2\left|W_{x}^{k+1}\right| .
\end{gathered}
$$

By Remark 1, we have $i_{k}+2\left|w_{k}\right|+2 \leq i_{k+1}$. This gives

$$
i_{k}+2\left|w_{k}\right|+2\left|W_{u}^{k}\right|-2\left|W_{x}^{k}\right|<i_{k+1}+2\left|W_{u}^{k}\right|-2\left|W_{x}^{k}\right|=i_{k+1}+2\left|w_{k+1}\right|+2\left|W_{u}^{k+1}\right|-2\left|W_{x}^{k+1}\right|
$$

(since $w_{k+1} \in W_{u}$ implies $\left.2\left|W_{x}^{k}\right|=2\left|W_{x}^{k+1}\right|\right)$. Then $k_{x}<(k+1)_{x}$. For the case $w_{k}, w_{k+1} \in W_{x}$, we can show that $k_{u}<(k+1)_{u}$ and $k_{x}<(k+1)_{x}$ in a similar way.

Suppose $w_{k} \in W_{u}$ and $w_{k+1} \in W_{x}$. First, we will show $k_{u}<(k+1)_{u}$. We have $k_{u}=i_{k}$ and

$$
(k+1)_{u}=i_{k+1}+2\left|w_{k+1}\right|+2\left|W_{x}^{k+1}\right|-2\left|W_{u}^{k+1}\right| .
$$

Since $k \in\left\{t_{1}, \ldots, t_{a}\right\}$ and $k+1 \in\left\{t_{a+1}, \ldots, t_{a+b}\right\}$, we obtain

$$
i_{k}+2\left|w_{k}\right|-2+2\left|W_{u}^{k}\right|-2\left|W_{x}^{k+1}\right|<i_{k+1}+2\left|w_{k+1}\right|-2
$$

Then

$$
i_{k}<i_{k}+2\left|w_{k}\right|<i_{k+1}+2\left|w_{k+1}\right|+2\left|W_{x}^{k+1}\right|-2\left|W_{u}^{k+1}\right|
$$

(since $w_{k+1} \in W_{x}$ implies $\left|W_{u}^{k}\right|=\left|W_{u}^{k+1}\right|$ ). Then $k_{u}<(k+1)_{u}$. Moreover, we prove $k_{x}<(k+1)_{x}$ similarly. The case $w_{k} \in W_{x}$ and $w_{k+1} \in W_{u}$ can be shown in a similar way as above.

Of course, the next goal should be the proof of $w=w_{1} \ldots w_{m} \in Q_{0}$, i.e. we will show that $w$ satisfies $\left(1_{q}\right)-\left(4_{q}\right)$.

Lemma 4. We have $w=w_{1} \ldots w_{m} \in Q_{0}$.
Proof. Exactly, $w$ satisfies $\left(1_{q}\right)$ and $\left(2_{q}\right)$. This is trivially checked by Remark 1 .
Let $k \in\{1, \ldots, m-1\}$ and let $w_{k} \in W_{u}, w_{k+1} \in W_{x}$. This provides $k \in\left\{t_{1}, \ldots, t_{a}\right\}, k+1 \in$ $\left\{t_{a+1}, \ldots, t_{a+b}\right\}$. We have

$$
i_{k}+2\left|w_{k}\right|-2+2\left|W_{u}^{k}\right|-2\left|W_{x}^{k+1}\right|<i_{k+1}+2\left|w_{k+1}\right|-2
$$

Since $w_{k+1} \in W_{x}$, we have

$$
2\left|W_{u}^{k}\right|=2\left|W_{u}^{k+1}\right|
$$

So

$$
i_{k}+2\left|w_{k}\right|-2+2\left|W_{u}^{k+1}\right|-2\left|W_{x}^{k+1}\right|<i_{k+1}+2\left|w_{k+1}\right|-2
$$

We observe that

$$
i_{k}+2\left|w_{k}\right|-2+2\left|W_{u}^{k+1}\right|-2\left|W_{x}^{k+1}\right|+1 \leq i_{k+1}+2\left|w_{k+1}\right|-2
$$

If

$$
i_{k}+2\left|w_{k}\right|-2+2\left|W_{u}^{k+1}\right|-2\left|W_{x}^{k+1}\right|+1=i_{k+1}+2\left|w_{k+1}\right|-2,
$$

we can cancel $u_{i_{k}+2\left|w_{k}\right|-2}, x_{i_{k+1}+2\left|w_{k+1}\right|-2}$ by $(R 13)$ in $\hat{w}$. This contradicts $\hat{w} \in P$. Then

$$
i_{k}+2\left|w_{k}\right|-2+2\left|W_{u}^{k+1}\right|-2\left|W_{x}^{k+1}\right|+2 \leq i_{k+1}+2\left|w_{k+1}\right|-2
$$

i.e.

$$
i_{k}+2\left|w_{k}\right|+2 \leq i_{k+1}+2\left|w_{k+1}\right|-2\left|W_{u}^{k+1}\right|+2\left|W_{x}^{k+1}\right|=(k+1)_{u}
$$

Next, to show that $(k+1)_{x}-k_{x} \geq 2$. Lemma 3 gives $(k+1)_{x}-k_{x} \geq 1$.
If $(k+1)_{x}-k_{x}=1$ then

$$
i_{k+1}-i_{k}-2\left|w_{k}\right|-2\left|W_{u}^{k}\right|+2\left|W_{x}^{k}\right|=1
$$

This implies

$$
i_{k+1}+2\left|w_{k+1}\right|-2=i_{k}+2\left|w_{k}\right|-2+2\left|W_{u}^{k}\right|-2\left|W_{x}^{k+1}\right|+1
$$

since

$$
2\left|W_{x}^{k}\right|=2\left|W_{k+1}\right|+2\left|W_{x}^{k+1}\right| .
$$

We can cancel $u_{i_{k}+2\left|w_{k}\right|-2}, x_{i_{k+1}+2\left|w_{k+1}\right|-2}$ in $\hat{w}$ by (R13). This contradicts $\hat{w} \in P$. Thus, $(k+1)_{x}-k_{x} \geq 2$. In case $w_{k}, w_{k+1} \in W_{u}$, by using Remark 1 , we easily get

$$
i_{k}+2\left|w_{k}\right|+2 \leq(k+1)_{u} .
$$

To show $(k+1)_{x}-k_{x} \geq 2$, it is routine to calculate directly. Together with Remark 1 , we will get that $(k+1)_{x}-k_{x} \geq 2$. Altogether, $w$ satisfies $\left(3_{q}\right)$. We prove that $w$ satisfies $\left(4_{q}\right)$ in a similar way. Therefore, $w \in Q_{0}$.

We have shown $w \in Q_{0}$. This leads us to the next step, showing that $A \subseteq A_{w}$. First, we point out subsets of $\bar{n}$, which do not contain any element of $A$.

Lemma 5. Let $q \in\{1, \ldots, a\}$ and let

$$
\rho \in\left\{i_{t_{q}}+1, \ldots, i_{t_{q}}+2\left|w_{t_{q}}\right|+1\right\} \cap \bar{n} .
$$

Then $\rho \notin A$.
Proof. Assume $\rho \in A$. Then

$$
v_{\rho} w_{t_{1}} \ldots w_{t_{q}} \ldots w_{t_{a}} w_{t_{a+1}}^{-1} \ldots w_{t_{a+b}}^{-1} \stackrel{(R 3)}{\approx} w_{t_{1} \ldots v_{\rho} w_{t_{q}} \ldots w_{t_{a}} w_{t_{a+1}}^{-1} \ldots w_{t_{a+b}}^{-1} .}^{.} .
$$

If $\rho \in\left\{i_{t_{q}}+1, i_{t_{q}}+2, i_{t_{q}}+3\right\} \cap \bar{n}$ then

$$
v_{\rho} u_{i_{t_{q}}}{\stackrel{(R 5)}{\approx} u_{i_{t_{q}}} .}
$$

If $\rho=i_{t_{q}}+h+t$ for some $h \in\left\{2,4, \ldots, 2\left|w_{t_{q}}\right|-2\right\}$ and $t \in\{2,3\}$ then

$$
\begin{aligned}
& w_{t_{1}} \ldots v_{\rho} w_{t_{q}} \ldots w_{t_{a}} w_{t_{a+1}}^{-1} \ldots w_{t_{a+b}}^{-1}=w_{t_{1} \ldots v_{\rho}} u_{i_{t_{q}}} u_{i_{t_{q}}+2} \ldots u_{i_{t_{q}}+2\left|w_{t}\right|-2} w_{t_{q+1}} \ldots w_{t_{a}} w_{t_{a+1}}^{-1} \ldots w_{t_{a+b}}^{-1} \\
& \stackrel{(R 3)}{\approx} w_{t_{1}} \ldots u_{i_{t_{q}}} \ldots v_{\left(i_{t_{q}}+h+t\right)} u_{i_{t_{q}}+h} \ldots u_{i_{t_{q}}+2 \mid w_{t_{q} \mid-2}} w_{t_{q+1}} \ldots w_{t_{a}} w_{t_{a+1}}^{-1} \ldots w_{t_{a+b}}^{-1} \\
& \stackrel{(R)}{\approx} w_{t_{1}} \ldots u_{i_{t_{q}}} \ldots u_{i_{t_{q}}+h} \ldots u_{i_{t_{q}}+2\left|w_{t_{q}}\right|-2} w_{t_{q+1}} \ldots w_{t_{a}} w_{t_{a+1}}^{-1} \ldots w_{t_{a+b}}^{-1},
\end{aligned}
$$

i.e. we can cancel $v_{\rho}$ in $\hat{w}$ using ( $R 3$ ) and ( $R 5$ ), a contradiction.

Lemma 6. Let $\rho \in A$ and let $q \in\{1, \ldots, a\}$ such that $t_{q} \neq m$. If $\rho \in\left\{\left(t_{q}\right)_{u}+1, \ldots,\left(t_{q}+1\right)_{u}-1\right\}$ then

$$
\rho \in\left\{\left(t_{q}\right)_{u}+2\left|w_{t_{q}}\right|+2, \ldots,\left(t_{q}+1\right)_{u}-1\right\} \subseteq A_{w} .
$$

Proof. We have $\left(t_{q}\right)_{u}=i_{t_{q}}$. It is a consequence of Lemma 5 that

$$
\rho \in\left\{i_{t_{q}}+2\left|w_{t_{q}}\right|+2, \ldots,\left(t_{q}+1\right)_{u}-1\right\}
$$

and by $\left(6_{q}\right)$, we have

$$
\left\{i_{t_{q}}+2\left|w_{t_{q}}\right|+2, \ldots,\left(t_{q}+1\right)_{u}-1\right\} \subseteq A_{w} .
$$

Lemma 7. Let $\rho \in A$, if $t_{a}=m$ and $\rho \in\left\{i_{m}+1, \ldots, n\right\}$ then $\rho \in\left\{m_{x}+2, \ldots, n\right\} \subseteq A_{w}$.
Proof. Assume $\rho \in\left\{i_{m}+1, \ldots, m_{x}+1\right\}$. We have $m_{x}+1=i_{t_{a}}+2\left|w_{t_{a}}\right|+1$. Then $\rho \in\left\{i_{t_{a}}+1, \ldots, i_{t_{a}}+2\left|w_{t_{a}}\right|+1\right\}$. By Lemma 5, we have $\rho \notin A$. Therefore, $\rho \in\left\{m_{x}+2, \ldots, n\right\} \subseteq A_{w}$ by $\left(5_{q}\right)$.

Lemma 8. Let $\rho \in A$, then $\rho \neq\left(t_{a+l}\right)_{u}+1$ for all $l \in\{1, \ldots, b\}$.
Proof. Let $l \in\{1, \ldots, b\}$. Assume $\rho=\left(t_{a+l}\right)_{u}+1$. Suppose that there exists $q \in\{1, \ldots, a\}$ with $t_{q}>t_{a+l}$. Then

$$
\begin{gathered}
v_{\rho} w_{t_{1}} \ldots w_{t_{q}} \ldots w_{t_{a}} w_{t_{a+1}}^{-1} \ldots w_{t_{a+b}}^{-1} \stackrel{(R 3)}{\approx} w_{t_{1} \ldots v_{\rho} w_{t_{q}} \ldots w_{t_{a}} w_{t_{a+1}}^{-1} \ldots w_{t_{a+b}}^{-1}}^{\left.\stackrel{(R 4)}{\approx} w_{t_{1}} \ldots w_{t_{q}} \ldots w_{t_{a}} v_{\rho+2 \mid w_{t_{q}} \ldots w_{t_{a}}}\right|_{t_{a+1}} ^{-1} \ldots w_{t_{a+b}}^{-1} .}
\end{gathered}
$$

Since
we have

$$
\rho+2\left|w_{t_{q}} \ldots w_{t_{a}}\right|=i_{t_{a+l}}+2\left|w_{t_{a+1}}^{-1} \ldots w_{t_{a+l}}^{-1}\right|+1 .
$$

Suppose $t_{q}<t_{a+l}$ for all $q \in\{1, \ldots, a\}$. Then we have

$$
\left(t_{a+l}\right)_{u}+1=i_{t_{a+l}}+2\left|w_{t_{a+1}}^{-1} \ldots w_{t_{a+l}}^{-1}\right|+1,
$$

i.e.

$$
v_{\rho} w_{t_{1}} \ldots w_{t_{q}} \ldots w_{t_{a}} w_{t_{a+1}}^{-1} \ldots w_{t_{a+b}}^{-1} \stackrel{(R 3)}{\approx} w_{t_{1}} \ldots w_{t_{q}} \ldots w_{t_{a}} v_{\rho} w_{t_{a+1}}^{-1} \ldots w_{t_{a+b}}^{-1} .
$$

Both cases imply

$$
\begin{gathered}
w_{t_{1} \ldots w_{t_{q}} \ldots w_{t_{a}} v_{i_{t_{a+l}}+2\left|w_{t_{a+1}}^{-1} \ldots w_{t_{a+l}}^{-1}\right|+1} w_{t_{a+1}}^{-1} \ldots w_{t_{a+b}}^{-1}}^{\stackrel{(R 4)}{\approx} w_{t_{1}} \ldots w_{t_{q} \ldots} \ldots w_{t_{a}} w_{t_{a+1}}^{-1} \ldots v_{i_{t_{a+l}}+2\left|w_{t_{a+l}}^{-1}\right|+1} w_{t_{a+l}}^{-1} \ldots w_{t_{a+b}}^{-1} \stackrel{(R 6)}{\approx}} w_{t_{1} \ldots w_{t_{q}} \ldots w_{t_{a}} w_{t_{a+1}}^{-1} \ldots w_{t_{a+l}}^{-1} \ldots w_{t_{a+b}}^{-1},}
\end{gathered}
$$

i.e. we can cancel $v_{\rho}$ in $\hat{w}$ using ( $R 3$ ), ( $R 4$ ), and ( $R 6$ ), a contradiction.

Lemma 9. Let $\rho \in A$ and let $l \in\{1, \ldots, b\}$ such that $t_{a+l} \neq m$. If $\rho \in\left\{\left(t_{a+l}\right)_{u}+1, \ldots,\left(t_{a+l}+1\right)_{u}-1\right\}$ then

$$
\rho \in\left\{\left(t_{a+l}\right)_{u}+2, \ldots,\left(t_{a+l}+1\right)_{u}-1\right\} \subseteq A_{w} .
$$

Proof. It is a consequence of Lemma 8 that $\rho \in\left\{\left(t_{a+l}\right)_{u}+2, \ldots,\left(t_{a+l}+1\right)_{u}-1\right\}$ and by $\left(6_{q}\right)$, we have $\left\{\left(t_{a+l}\right)_{u}+2, \ldots,\left(t_{a+l}+1\right)_{u}-1\right\} \subseteq A_{w}$.

Lemma 10. Let $\rho \in A$. If $t_{a+1}=m$ and $\rho \in\left\{m_{u}+1, \ldots, n\right\}$ then $\rho \in\left\{m_{u}+2, \ldots, n\right\} \subseteq A_{w}$.
Proof. Suppose $\rho=m_{u}+1=\left(t_{a+1}\right)_{u}+1$. By Lemma 8, we have $\rho \notin A$. Therefore, $\rho \in\left\{m_{u}+2, \ldots, n\right\} \subseteq A_{w}$ by $\left(5_{q}\right)$.

Lemma 11. If $1<1_{x}<1_{u}$ then $\rho \notin A$ for all $\rho \in\left\{1, \ldots, 1_{u}-1_{x}\right\}$.
Proof. Let $\rho \in\left\{1, \ldots, 1_{u}-1_{x}\right\}$. Assume $\rho \in A$. We observe that

$$
1_{u}-1_{x}=2\left|w_{t_{a+b}}^{-1} \ldots w_{t_{a+1}}^{-1}\right|-2\left|w_{t_{1}} \ldots w_{t_{a}}\right|=2 k
$$

for some positive integer $k$. We put $\mathcal{U}=w_{t_{1}} \ldots w_{t_{a}}$ and $\mathcal{X}=w_{t_{a+b}}^{-1} \ldots w_{t_{a+1}}^{-1}$, i.e. $2 k=2|\mathcal{X}|-2|\mathcal{U}|$ and $|\mathcal{X}|=|\mathcal{U}|+k$. Let

$$
w_{t_{a+1} \ldots}^{-1} \ldots w_{t_{a+b}}^{-1}=y_{1} \ldots y_{|\mathcal{U}|} y_{|\mathcal{U}|+1} \ldots y_{|\mathcal{U}|+k},
$$

where $y_{1}, \ldots, y_{|\mathcal{U}|+k} \in\left\{x_{1}, \ldots, x_{n-2}\right\}$. Then

$$
v_{\rho} w_{t_{1}} \ldots w_{t_{a}} y_{1} \ldots y_{|\mathcal{U}|} y_{|\mathcal{U}|+1} \ldots y_{|\mathcal{U}|+k} \stackrel{(R A)}{\approx} w_{t_{1} \ldots} \ldots w_{t_{a}} v_{\rho+2 \mid w_{t_{1}} \ldots w_{t_{a}}} \mid y_{1} \ldots y_{|\mathcal{U}|} y_{|\mathcal{U}|+1} \ldots y_{|\mathcal{U}|+k} .
$$

Using Remark 1, it is routine to calculate that

$$
2\left|w_{t_{a+b}}^{-1} \ldots w_{t_{a+1}}^{-1}\right|<i_{t_{a+1}}+2\left|w_{t_{a+1}}^{-1}\right|,
$$

i.e.

$$
\left(1_{u}-1_{x}\right)+2\left|w_{t_{1}} \ldots w_{t_{a}}\right|=2\left|w_{t_{a+b}}^{-1} \ldots w_{t_{a+1}}^{-1}\right|<i_{t_{a+1}}+2\left|w_{t_{a+1}}^{-1}\right| .
$$

This implies

$$
\rho+2\left|w_{t_{1}} \ldots w_{t_{a}}\right| \leq i_{t_{a+1}}+2\left|w_{t_{a+1}}^{-1}\right| .
$$

Then

$$
w_{t_{1}} \ldots w_{t_{a}} v_{\rho+2 \mid w_{t_{1}} \ldots w_{t_{a}}} \mid y_{1} \ldots y_{|\mathcal{U}|} y_{|\mathcal{U}|+1} \ldots y_{|\mathcal{U}|+k} \stackrel{(R 4)}{\approx} w_{t_{1} \ldots w_{t_{a}} y_{1} \ldots y_{|\mathcal{U}|} v_{\rho} y_{|\mathcal{U}|+1} \ldots y_{|\mathcal{U}|+k}} .
$$

Note that $1_{u}-1_{x}$ is even and there is $i \in\left\{2,4, \ldots, 1_{u}-1_{x}\right\}$ such that $\rho \in\{i-1, i\}$. If $\rho=i-1$ then

$$
\rho-2\left|y_{|\mathcal{U}|+1} \cdots y_{|\mathcal{U}|+i / 2-1}\right|=1 .
$$

If $\rho=i$ then

$$
\rho-2\left|y_{|\mathcal{U}|+1} \cdots y_{|\mathcal{U}|+i / 2-1}\right|=2 .
$$

Thus,

$$
\begin{gathered}
\stackrel{(R 4)}{\approx} w_{t_{1} \ldots} w_{t_{a}} y_{1} \ldots y_{|\mathcal{U |}|} v_{\rho} y_{|\mathcal{U}|+1} \ldots y_{|\mathcal{U}|+k} \\
w_{t_{1}} \ldots w_{t_{a}} y_{1} \ldots y_{|\mathcal{U}|} y_{|\mathcal{U}|+1} \ldots v_{\rho-2|y| \mathcal{U} \mid+1} \ldots y_{|\mathcal{U}|+i / 2-1} \mid y_{|\mathcal{U}|+i / 2} \ldots y_{|\mathcal{U}|+\left(1_{u}-1_{x}\right) / 2} \\
=w_{t_{1} \ldots} \ldots w_{t_{a}} y_{1} \ldots y_{|\mathcal{U}|} y_{|\mathcal{U}|+1} \ldots v_{\hat{\rho}} y_{|\mathcal{U}|+i / 2} \ldots y_{|\mathcal{U}|+\left(1_{u}-1_{x}\right) / 2}
\end{gathered}
$$

(where $\hat{\rho} \in\{1,2\}$ )

$$
\stackrel{R 6)}{\approx} w_{t_{1}} \ldots w_{t_{a}} y_{1} \ldots y_{|\mathcal{U}|} y_{|\mathcal{U}|+1} \ldots y_{|\mathcal{U}|+i / 2} \ldots y_{|\mathcal{U}|+\left(1_{u}-1_{x}\right) / 2},
$$

i.e. we can cancel $v_{\rho}$ in $\hat{w}$ using ( $R 4$ ) and ( $R 6$ ), a contradiction.

Lemma 12. Let $\rho \in A$ with $\rho \in\left\{1, \ldots, 1_{u}-1\right\}$. If $1<1_{u} \leq 1_{x}$ then $\rho \in\left\{1, \ldots, 1_{u}-1\right\} \subseteq A_{w}$ and if $1<1_{x}<1_{u}$ then $\rho \in\left\{1_{u}-1_{x}+1, \ldots, 1_{u}-1\right\} \subseteq A_{w}$.

Proof. If $1<1_{u} \leq 1_{x}$ then $\left\{1, \ldots, 1_{u}-1\right\} \subseteq A_{w}$ by $\left(7_{q}\right)$. If $1<1_{x}<1_{u}$, it is a consequence of Lemma 11 that $\rho \in\left\{1_{u}-1_{x}+1, \ldots, 1_{u}-1\right\}$ and by $\left(7_{q}\right)$, we have $\left\{1_{u}-1_{x}+1, \ldots, 1_{u}-1\right\} \subseteq A_{w}$.

Lemma 13. We have $\left(t_{q}\right)_{u} \notin A$ for all $q \in\{1, \ldots, a\}$.
Proof. Let $q \in\{1, \ldots, a\}$. We have

$$
w_{t_{q}}=u_{i_{t_{q}}} u_{i_{t_{q}}+2 \ldots u_{i_{t_{q}}+2\left|w_{t_{q}}\right|-2}}
$$

and $\left(t_{q}\right)_{u}=i_{t_{q}}$. Assume $\left(t_{q}\right)_{u} \in A$. If $i_{t_{q}} \geq 2$ then

$$
\begin{gathered}
v_{i_{q}} w_{t_{1}} \ldots w_{t_{q} \ldots w_{t_{a}}} w_{t_{a+1}}^{-1} \ldots w_{t_{a+b}}^{-1} \stackrel{(R 3)}{\approx} w_{t_{1} \ldots v_{i_{q}}} u_{i_{t_{q}}} u_{i_{t_{q}}+2 \ldots u_{i_{t_{q}}+2\left|w_{t_{q}}\right|-2} w_{t_{q+1}} \ldots w_{t_{a}} w_{t_{a+1}}^{-1} \ldots w_{t_{a+b}}^{-1}}^{\stackrel{(R 18)}{\approx} w_{t_{1} \ldots} \ldots v_{i_{t_{q}}+2\left|w_{t_{q}}\right|+1} u_{i_{t_{q}}-1} u_{i_{t_{q}}+1 \ldots u_{i_{q}}+2 \mid w_{t_{q} \mid-3} w_{t_{q+1}} \ldots w_{t_{a}} w_{t_{a+1}}^{-1} \ldots w_{t_{a+b}}^{-1} .}} .
\end{gathered}
$$

If $i_{t_{q}}=1$ then $q=1$ and

$$
\begin{gathered}
v_{i_{t_{1}}} w_{t_{1}} w_{t_{2}} \ldots w_{t_{a}} w_{t_{a+1}}^{-1} \ldots w_{t_{a+b}}^{-1}=v_{1} u_{1} u_{3} \ldots u_{1+2 \mid w_{t_{1} \mid-2} w_{t_{2}} \ldots w_{t_{a}} w_{t_{a+1}}^{-1} \ldots w_{t_{a+b}}^{-1}}^{\stackrel{(R 16)}{\approx} v_{1} v_{2} \ldots v_{1+2\left|w_{t_{1}}\right|+1} w_{t_{2}} \ldots w_{t_{a}} w_{t_{a+1}}^{-1} \ldots w_{t_{a+b}}^{-1}}
\end{gathered}
$$

We observe that we can replace several letters in $\hat{w}$ by letters with decreasing index by ( $R 18$ ) and the letters $u_{1}, u_{3}, \ldots, u_{1+2\left|w_{t_{1}}\right|-2}$ were canceled in $\hat{w}$ by (R16), respectively, a contradiction.

Lemma 14. We have $\left(t_{a+l}\right)_{u} \notin A$ for all $l \in\{1, \ldots, b\}$.
Proof. Let $l \in\{1, \ldots, b\}$. Now assume that $\left(t_{a+l}\right)_{u} \in A$. We will have the following two cases. In the first case, we suppose that there exists $q \in\{1, \ldots, a\}$ with $t_{q}>t_{a+l}$ and, of course, for the trivial second case is supposed $t_{q}<t_{a+l}$ for all $q \in\{1, \ldots, a\}$. Using ( $R 3$ ) and ( $R 4$ ) in the first case and ( $R 4$ ) in the second case, together with a few tedious calculations, both cases imply

$$
v_{\left(t_{a+l}\right)_{u}} w_{t_{1}} \ldots w_{t_{q}} \ldots w_{t_{a}} w_{t_{a+1}}^{-1} \ldots w_{t_{a+b}}^{-1} \approx w_{t_{1} \ldots} \ldots w_{t_{a}} v_{i_{t_{a+l}}+2 \mid w_{t_{a+1}}^{-1} \ldots w_{t_{a+l}}^{-1}} w_{t_{a+1}}^{-1} \ldots w_{t_{a+b}}^{-1} .
$$

It is routine to calculate that

$$
w_{t_{1} \ldots} \ldots w_{t_{a}} v_{i_{t_{a+l}}+2\left|w_{t_{a+1}}^{-1} \ldots w_{t_{a+l}}^{-1}\right| w_{t_{a+1}}^{-1} \ldots w_{t_{a+b}}^{-1} \stackrel{(R 4)}{\approx} w_{t_{1} \ldots w_{t_{a}}} w_{t_{a+1}}^{-1} \ldots v_{i_{t_{a+l}}}+2 \mid w_{t_{a+l}}^{-1} w_{t_{a+l}}^{-1} \ldots w_{t_{a+b}}^{-1} . . . . ~ . ~}^{\text {. }} .
$$

If $i_{t_{a+l}}+2\left|w_{t_{a+l}}^{-1}\right|>3$ then

$$
\begin{aligned}
& w_{t_{1}} \ldots w_{t_{a}} w_{t_{a+1}}^{-1} \ldots v_{i_{t_{a+l}}+2 \mid w_{t_{a+l}}^{-1}} w_{t_{a+l}}^{-1} \ldots w_{t_{a+b}}^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{(R 19)}{\approx} w_{t_{1} \ldots} \ldots w_{t_{a}} w_{t_{a+1}}^{-1} \ldots v_{i_{t_{a+l}}+2\left|w_{t_{a+l}}^{-1}\right|+1} x_{i_{t_{a+l}}+2\left|w_{t_{a+l}}\right|-3} x_{i_{t_{a+l}}+2\left|w_{t_{a+l}}\right|-5 \ldots} x_{i_{t_{a+l}-1}} w_{t_{a+l+1}}^{-1} \ldots w_{t_{a+b}}^{-1} .
\end{aligned}
$$

If $i_{t_{a+l}}+2\left|w_{t_{a+l}}^{-1}\right|=3$ then $w_{t_{a+b}}^{-1}=x_{1}$. Thus,

$$
\begin{gathered}
w_{\left.t_{1} \ldots w_{t_{a}} v_{i_{t_{a+l}}+2 \mid w_{t_{a+1}}^{-1} \ldots w_{t_{a+l}}^{-1}}\right|_{t_{a+1}} ^{-1} \ldots w_{t_{a+b}}^{-1}}^{\stackrel{(R \alpha)}{\approx} w_{t_{1}} \ldots w_{t_{a}} w_{t_{a+1}}^{-1} \ldots w_{t_{a+b-1}}^{-1} v_{3} x_{1} \stackrel{(R 17)}{\approx} w_{t_{1} \ldots w_{t_{a}}}^{-1} w_{t_{a+1}}^{-1} \ldots w_{t_{a+b-1}}^{-1} v_{1} v_{2} v_{3} v_{4} .}
\end{gathered}
$$

We observe that we can replace several letters in $\hat{w}$ by letters with decreasing index by ( $R 19$ ) and the letter $x_{1}$ can be canceled in $\hat{w}$ by ( $R 17$ ), respectively, a contradiction.

If we summarize the previous lemmas, then we obtain:

Lemma 15. We have $A \subseteq A_{w}$.
Proof. Let $\rho \in A$. Then it is easy to verify that $\rho \in\left\{1, \ldots, 1_{u}\right\}$ or $\rho \in\left\{k_{u}+1, \ldots,(k+1)_{u}\right\}$ for some $k \in\{1, \ldots, m-1\}$ or $\rho \in\left\{m_{u}+1, \ldots, n\right\}$. Suppose that $\rho \in\left\{k_{u}+1, \ldots,(k+1)_{u}-1\right\}$ for some $k \in\{1, \ldots, m-1\}$. Lemmas 13 and 14 show that $k_{u} \notin A$. Then we can conclude that $\rho \in A_{w}$ by Lemmas 6 and 9 . Suppose $\rho \in\left\{m_{u}+1, \ldots, n\right\}$. Then we can conclude that $\rho \in A_{w}$ by Lemmas 7 and 10. Finally, we suppose that $\rho \in\left\{1, \ldots, 1_{u}-1\right\}$. Then we can conclude that $\rho \in A_{w}$ by Lemma 12. Eventually, we have $\rho \in A_{w}$ for all $\rho \in A$. Therefore, $A \subseteq A_{w}$.

Lemmas 4 and 15 prove that $\hat{w}=v_{A} \hat{w}_{1} \ldots \hat{w}_{m} \in W_{n}$. Consequently, we have:
Proposition 2. $P \subseteq W_{n}$.
By the definition of the set $P$ and Proposition 2, it is proved:
Corollary 1. Let $w \in X_{n}^{*}$. Then there is $w^{\prime} \in P \subseteq W_{n}$ with $w \approx w^{\prime}$.

## 4. A presentation for $I O F_{n}^{p a r}$

In this section, we exhibit a presentation for $I O F_{n}^{p a r}$. Concerning the results from the previous sections, it remains to show that $\left|W_{n}\right| \leq\left|I O F_{n}^{p a r}\right|$. For this, we construct a word $w_{\alpha}$, for all $\alpha \in I O F_{n}^{p a r}$, in the following way.

Let

$$
\alpha=\left(\begin{array}{ccccccc}
d_{1} & < & d_{2} & < & \cdots & < & d_{p} \\
m_{1} & & m_{2} & & \cdots & & m_{p}
\end{array}\right) \in I O F_{n}^{p a r} \backslash\{\varepsilon\}
$$

for a positive integer $p \leq n$. There are a unique $l \in\{0,1, \ldots, p-1\}$ and a unique set $\left\{r_{1}, \ldots, r_{l}\right\} \subseteq$ $\{1, \ldots, p-1\}$ such that (i)-(iii) are satisfied:
(i) $r_{1}<\ldots<r_{l}$;
(ii) $d_{r_{i}+1}-d_{r_{i}} \neq m_{r_{i}+1}-m_{r_{i}}$ for $i \in\{1, \ldots, l\}$;
(iii) $d_{i+1}-d_{i}=m_{i+1}-m_{i}$ for $i \in\{1, \ldots, p-1\} \backslash\left\{r_{1}, \ldots, r_{l}\right\}$.

Note that $l=0$ means $\left\{r_{1}, \ldots, r_{l}\right\}=\emptyset$. Further, we put $r_{l+1}=p$. For $i \in\{1, \ldots, l\}$, we define

$$
w_{i}=\left\{\begin{array}{lll}
x_{m_{r_{i}}},\left(\left(m_{r_{i}+1}-m_{r_{i}}\right)-\left(d_{r_{i}+1}-d_{r_{i}}\right)\right) / 2 & \text { if } & m_{r_{i}+1}-m_{r_{i}}>d_{r_{i}+1}-d_{r_{i}} \\
u_{d_{r_{i}}},\left(\left(d_{r_{i}+1}-d_{r_{i}}\right)-\left(m_{r_{i}+1}-m_{r_{i}}\right)\right) / 2 & \text { if } & m_{r_{i}+1}-m_{r_{i}}<d_{r_{i}+1}-d_{r_{i}}
\end{array}\right.
$$

Obviously, we have $w_{i} \in W_{x} \cup W_{u}$ for all $i \in\{1, \ldots, l\}$. If $m_{p}=d_{p}$ then we put $w_{l+1}=\epsilon$. If $m_{p} \neq d_{p}$, we define additionally

$$
w_{l+1}=\left\{\begin{array}{lll}
x_{m_{p},\left(d_{p}-m_{p}\right) / 2} & \text { if } & d_{p}>m_{p} \\
u_{d_{p},\left(m_{p}-d_{p}\right) / 2} & \text { if } & d_{p}<m_{p}
\end{array}\right.
$$

Clearly, $w_{l+1} \in W_{x} \cup W_{u}$. We consider the word

$$
w=w_{1} \ldots w_{l+1}
$$

From this word, we construct a new word $w_{\alpha}^{*}$ by arranging the subwords $s \in W_{x}$ in reverse order at the end, replacing $s$ by $s^{-1}$. In other words, we consider the word

$$
w_{\alpha}^{*}=w_{s_{1}} \ldots w_{s_{a}} w_{s_{a+1}}^{-1} \ldots w_{s_{a+b}}^{-1}
$$

such that $w_{s_{1}}, \ldots, w_{s_{a}} \in W_{u}, w_{s_{a+1}}, \ldots, w_{s_{a+b}} \in W_{x}$ and

$$
\left\{w_{s_{1}}, \ldots, w_{s_{a}}, w_{s_{a+1}}, \ldots, w_{s_{a+b}}\right\}=\left\{w_{1}, \ldots, w_{a+b}\right\}
$$

where $s_{1}<\ldots<s_{a}, s_{a+b}<\ldots<s_{a+1}$, and $a, b \in \bar{n} \cup\{0\}$ with

$$
a+b=\left\{\begin{array}{lll}
l & \text { if } & d_{p}=m_{p} \\
l+1 & \text { if } & d_{p} \neq m_{p}
\end{array}\right.
$$

For convenience, $a=0$ means $w_{\alpha}^{*}=w_{s_{a+1}}^{-1} \ldots w_{s_{a+b}}^{-1}$ and $b=0$ means $w_{\alpha}^{*}=w_{s_{1}} \ldots w_{s_{a}}$. Now, we add recursively letters from the set $\left\{v_{1}, \ldots, v_{n}\right\} \subseteq X_{n}$ to the word $w_{\alpha}^{*}$, obtaining new words $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{p}$.
(1) For $d_{p} \leq n-2$ :
(1.1) if $m_{p}<d_{p}$ then $\lambda_{0}=v_{d_{p}+2 \ldots v_{n} w_{\alpha}^{*} \text {; }}$
(1.2) if $n-1>m_{p}>d_{p}$ then $\lambda_{0}=v_{m_{p}+2 \ldots v_{n} w_{\alpha}^{*} \text {; }}$
(1.3) if $m_{p}=d_{p}$ then $\lambda_{0}=v_{m_{p}+1} \ldots v_{n} w_{\alpha}^{*}$;
otherwise $\lambda_{0}=w_{\alpha}^{*}$.
(2) If $d_{p}=m_{p}=n-1$ then $\lambda_{0}=v_{n} w_{\alpha}^{*}$. Otherwise $\lambda_{0}=w_{\alpha}^{*}$.
(3) For $k \in\{2, \ldots, p\}$ :
(3.1) if $2 \leq m_{k}-m_{k-1}=d_{k}-d_{k-1}$ then $\lambda_{p-k+1}=v_{d_{k-1}+1} \ldots v_{d_{k}-1} \lambda_{p-k}$;
(3.2) if $2<m_{k}-m_{k-1}<d_{k}-d_{k-1}$ then $\lambda_{p-k+1}=v_{d_{k}-\left(m_{k}-m_{k-1}-2\right)} \ldots v_{d_{k}-1} \lambda_{p-k}$;
(3.3) if $m_{k}-m_{k-1}>d_{k}-d_{k-1}>2$ then $\lambda_{p-k+1}=v_{d_{k-1}+2 \ldots v_{d_{k}-1} \lambda_{p} \text {; }}$
otherwise $\lambda_{p-k+1}=\lambda_{p-k}$.
(4) If $d_{1}=1$ or $m_{1}=1$ then $\lambda_{p}=\lambda_{p-1}$.
(5) If $1<d_{1} \leq m_{1}$ then $\lambda_{p}=v_{1} \ldots v_{d_{1}-1} \lambda_{p-1}$.
(6) If $1<m_{1}<d_{1}$ then $\lambda_{p}=v_{d_{1}-m_{1}+1} \ldots v_{d_{1}-1} \lambda_{p-1}$.

The word $\lambda_{p}$ induces a set $A=\left\{a \in \bar{n}: v_{a}\right.$ is a letter in $\left.\lambda_{p}\right\}$ and it is easy to verify that $\rho \notin A$ for all $\rho \in \operatorname{dom}(\alpha)$. We put $w_{\alpha}=\lambda_{p}$. The word $w_{\alpha}$ has the form $w_{\alpha}=v_{A} w_{\alpha}^{*}$.

Our next aim is to present the relationship between cardinality of $W_{n}$ and $I O F_{n}^{p a r}$. This leads us to assume the existence of a map $f: I O F_{n}^{\text {par }} \backslash\{\varepsilon\} \rightarrow W_{n} \backslash\left\{v_{\bar{n}}\right\}$, where $f(\alpha)=w_{\alpha}$ for all $\alpha \in I O F_{n}^{\text {par }} \backslash\{\varepsilon\}$. We start by constructing the transformation $\alpha_{v_{A} w^{*}}$ for any $v_{A} w^{*} \in W_{n}$, different from $v_{\bar{n}}$. Let $v_{A} w^{*} \in W_{n} \backslash\left\{v_{\bar{n}}\right\}$. We have $w \in Q_{0}, A \subseteq A_{w}$, and there are $w_{1}, \ldots, w_{m} \in W_{u} \cup W_{x}$ such that $w=w_{1} \ldots w_{m}$ for some positive integer $m$. For $k \in\{1, \ldots, m\}$, we define $a_{k}=k_{u}+2$ and $b_{k}=i_{k}+2 j_{k}+2$, whenever $w_{k} \in W_{x}$. On the other hand, we define $a_{k}=i_{k}+2 j_{k}+2$ and $b_{k}=k_{x}+2$, whenever $w_{k} \in W_{u}$. It is easy to verify that $a_{m}=b_{m}$. We put

$$
\alpha_{v_{A} w^{*}}=\bar{v}_{A}\left(\begin{array}{lllll}
1+1_{u}-\min \left\{1_{u}, 1_{x}\right\} \ldots 1_{u} & a_{1} \ldots 2_{u} & \cdots & a_{m-1} \ldots m_{u} & a_{m} \ldots n \\
1+1_{x}-\min \left\{1_{u}, 1_{x}\right\} \ldots 1_{x} & b_{1} \ldots 2_{x} & \cdots & b_{m-1} \ldots m_{x} & b_{m} \ldots n
\end{array}\right) .
$$

For convenience, we also give

$$
\alpha_{v_{A} w^{*}}=\left(\begin{array}{cccc}
d_{1} & d_{2} & \ldots & d_{p} \\
m_{1} & m_{2} & \ldots & m_{p}
\end{array}\right)
$$

for some positive integer $p \leq n$. In the following, we show that $\alpha_{v_{A} w^{*}}$ is well-defined in the sense that the construction of $\alpha_{v_{A} w^{*}}$ gives a transformation.

Lemma 16. $\alpha_{v_{A} w^{*}}$ is well-defined.

Proof. Let $k \in\{1, \ldots, m-1\}$. Suppose $w_{k}, w_{k+1} \in W_{u}$. We have

$$
\begin{gathered}
k_{u}=i_{k}, \quad k_{x}=i_{k}+2\left|w_{k}\right|+2\left|W_{u}^{k}\right|-2\left|W_{x}^{k}\right|, \\
(k+1)_{u}=i_{k+1},(k+1)_{x}=i_{k+1}+2\left|w_{k+1}\right|+2\left|W_{u}^{k+1}\right|-2\left|W_{x}^{k+1}\right|,
\end{gathered}
$$

and $a_{k}=i_{k}+2 j_{k}+2, b_{k}=k_{x}+2$. Then

$$
\begin{gathered}
(k+1)_{u}-a_{k}=i_{k+1}-\left(i_{k}+2 j_{k}+2\right), \\
(k+1)_{x}-b_{k}=i_{k+1}+2\left|w_{k+1}\right|+2\left|W_{u}^{k+1}\right|-2\left|W_{x}^{k+1}\right|-k_{x}-2 \\
=i_{k+1}+2\left|w_{k+1}\right|+2\left|W_{u}^{k+1}\right|-2\left|W_{x}^{k+1}\right|-i_{k}-2\left|w_{k}\right|-2\left|W_{u}^{k}\right|+2\left|W_{x}^{k}\right|-2 \\
=i_{k+1}-i_{k}-2 j_{k}-2=i_{k+1}-\left(i_{k}+2 j_{k}+2\right)
\end{gathered}
$$

Therefore, $(k+1)_{u}-a_{k}=(k+1)_{x}-b_{k}$.
For the rest cases $\left(w_{k} \in W_{u}\right.$ and $w_{k+1} \in W_{x}, w_{k} \in W_{x}$ and $w_{k+1} \in W_{u}$ as well as $\left.w_{k}, w_{k+1} \in W_{x}\right)$, a proof similar as above will eventually show that $(k+1)_{u}-a_{k}=(k+1)_{x}-b_{k}$. Furthermore, suppose $d_{p}=m_{p}$. Let $k \in\{1, \ldots, m\}$ and $w_{k} \in W_{u}$. We have

$$
\begin{gathered}
a_{k}-k_{u}=i_{k}+2 j_{k}+2-k_{u}=i_{k}+2 j_{k}+2-i_{k}=2 j_{k}+2, \\
b_{k}-k_{x}=k_{x}+2-k_{x}=2 .
\end{gathered}
$$

Thus, $a_{k}-k_{u} \neq b_{k}-k_{x}$.
For the case $w_{k} \in W_{x}$, we can show $a_{k}-k_{u} \neq b_{k}-k_{x}$ in the same way.
Continuously, suppose $d_{p} \neq m_{p}$. By the previous part of the proof, we have $a_{k}-k_{u} \neq b_{k}-k_{x}$ for all $k \in\{1, \ldots, m-1\}$. Moreover, we observe that $d_{p} \notin\left\{a_{m}, \ldots, n\right\}$ and $m_{p} \notin\left\{b_{m}, \ldots, n\right\}$ because $n-a_{m}=n-b_{m}$. This implies $d_{p}=m_{u}$ and $m_{p}=m_{x}$. By any of the above, we can conclude that $\alpha_{v_{A} w^{*}}$ is well-defined.

The proof of Lemma 16 shows $(k+1)_{u}-a_{k}=(k+1)_{x}-b_{k}$ for all $k \in\{1, \ldots, m-1\}$. Then $a_{k}-k_{u} \neq b_{k}-k_{x}$ for all $k \in\{1, \ldots, m\}$, whenever $d_{p}=m_{p}$, and $a_{k}-k_{u} \neq b_{k}-k_{x}$ for all $k \in\{1, \ldots, m-1\}$ and $d_{p}=m_{u}, m_{p}=m_{x}$, whenever $d_{p} \neq m_{p}$. Furthermore, observing by trivial calculation, $a_{k}-k_{u} \geq 2$ and $b_{k}-k_{x} \geq 2$. Therefore, if there exists $i \in\{1, \ldots, p-1\}$, where $d_{i+1}-d_{i} \neq m_{i+1}-m_{i}$, then $d_{i} \in\left\{1_{u}, \ldots,(m-1)_{u}\right\}\left(\cup\left\{m_{u}\right\}\right), m_{i} \in\left\{1_{x}, \ldots,(m-1)_{x}\right\}\left(\cup\left\{m_{x}\right\}\right)$ and we put $k_{u}=d_{r_{k}}, k_{x}=m_{r_{k}}$ for all $k \in\{1, \ldots, m-1\}(\cup\{m\})$ (we put $r_{m}=p$, whenever $d_{p} \neq m_{p}$ ). This gives the unique set $\left\{r_{1}, \ldots, r_{m}\right\}$ as required by the definition of $w_{\alpha_{v_{A} w^{*}}}$. Moreover, we need to show that $\alpha_{v_{A} w^{*}} \in I O F_{n}^{p a r} \backslash\{\varepsilon\}$ by checking (i)-(iv) of Proposition 1. We will now show that $\alpha_{v_{A} w^{*}} \in I O F_{n}^{p a r}$ as well as $w_{\alpha_{v_{A} w^{*}}}=v_{A} w^{*}$. This gives the tools to calculate that $\left|W_{n}\right| \leq\left|I O F_{n}^{p a r}\right|$.

Lemma 17. $\alpha_{v_{A} w^{*}} \in I O F_{n}^{p a r} \backslash\{\varepsilon\}$.
Proof. Clearly, $\alpha_{v_{A} w^{*}} \neq \varepsilon$. We will prove that $\alpha_{v_{A} w^{*}}$ satisfies the conditions (i)-(iv) in Proposition 1. We observe that $d_{1}<d_{2}<\cdots<d_{p}$ and $m_{1}<m_{2}<\cdots<m_{p}$ by definition of $\alpha_{v_{A} w^{*}}$. We have $1_{u}-d_{1}=1_{x}-m_{1}$, i.e. $1_{u}-1_{x}=d_{1}-m_{1}$. By the definition of $k_{u}$ and $k_{x}$, for $k \in\{1, \ldots, m\}$, we observe that $1_{u}-1_{x}$ is even, i.e. $d_{1}-m_{1}$ is even. Thus, $d_{1}$ and $m_{1}$ have the same parity.

Let $d_{i+1}-d_{i}=1$ for some $i \in\{1, \ldots, p-1\}$. Then $d_{i} \in \operatorname{dom}(\alpha) \backslash\left\{1_{u}, \ldots, m_{u}\right\}$ implies $m_{i+1}-m_{i}=$ $d_{i+1}-d_{i}=1$.

Let $m_{i+1}-m_{i}=1$ for some $i \in\{1, \ldots, p-1\}$. Then $m_{i} \in \operatorname{im}(\alpha) \backslash\left\{1_{x}, \ldots, m_{x}\right\}$ implies $d_{i+1}-d_{i}=$ $m_{i+1}-m_{i}=1$.

Let $d_{i+1}-d_{i}$ is even. Suppose $d_{i+1}-d_{i} \neq m_{i+1}-m_{i}$. This gives $d_{i}=k_{u}$ and $m_{i}=k_{x}$ for some $k \in\{1, \ldots, m-1\}$. By the definition of $k_{u}$ and $k_{x}$, we observe that $k_{u}-k_{x}$ is even.

Moreover, $(k+1)_{u}-d_{i+1}=(k+1)_{x}-m_{i+1}$ since $(k+1)_{u}-(k+1)_{x}$ is even, we have $d_{i+1}-m_{i+1}$ is even. Then $d_{i+1}, d_{i}$ and $d_{i}, m_{i}$ as well as $d_{i+1}, m_{i+1}$ have the same parity. This implies that $m_{i+1}, m_{i}$ have the same parity, i.e. $m_{i+1}-m_{i}$ is even. Conversely, we can prove similarly that, if $m_{i+1}-m_{i}$ is even then $d_{i+1}-d_{i}$ is even. By Proposition 1, we get $\alpha_{v_{A} w^{*}} \in I O F_{n}^{p a r}$.

We can construct $f\left(\alpha_{v_{A} w^{*}}\right)=w_{\alpha_{v_{A} w^{*}}}$, where $w_{\alpha_{v_{A} w^{*}}}=v_{\tilde{A}} \hat{w}_{\alpha_{v_{A} w^{*}}}^{*}$ with $\hat{w}=\hat{w}_{1} \ldots \hat{w}_{m}$ for $\hat{w}_{1}, \ldots, \hat{w}_{m} \in W_{u} \cup W_{x}$ and $\tilde{A} \subseteq \bar{n}$. We will prove that $f$ is surjective in the next lemma.

Lemma 18. Let $v_{A} w^{*} \in W_{n} \backslash\left\{v_{\bar{n}}\right\}$. Then there is $\alpha \in I O F_{n}^{\text {par }} \backslash\{\varepsilon\}$ with $v_{A} w^{*}=w_{\alpha}$.
Proof. We have $w_{\alpha_{v_{A} w^{*}}}=v_{\tilde{A}} \hat{w}_{{v_{v_{A}} w^{*}}_{*}^{*}}$, where $\hat{w}=\hat{w}_{1} \ldots \hat{w}_{m}$ with $\hat{w}_{1}, \ldots, \hat{w}_{m} \in W_{u} \cup W_{x}$ and $\tilde{A} \subseteq \bar{n}$. First, our goal is to show that $\hat{w}=w$. Suppose $d_{p}=m_{p}$ and let $k \in\{1, \ldots, m\}$ such that $b_{k}-k_{x}>a_{k}-k_{u}$. By the definition of $\hat{w}_{k}$, we have $\hat{w}_{k}=x_{k_{x},\left(\left(b_{k}-k_{x}\right)-\left(a_{k}-k_{u}\right)\right) / 2}$ and $k_{x}=i_{k}$. Then

$$
\frac{\left(b_{k}-k_{x}\right)-\left(a_{k}-k_{u}\right)}{2}=\frac{i_{k}+2 j_{k}+2-i_{k}-k_{u}-2+k_{u}}{2}=j_{k},
$$

i.e. $\hat{w}_{k}=x_{i_{k}, j_{k}}=w_{k}$. For the case $b_{k}-k_{x}<a_{k}-k_{u}$, we can prove that $\hat{w}_{k}=w_{k}$ in a similar way. This gives $\hat{w}_{1} \ldots \hat{w}_{m}=w_{1} \ldots w_{m}$.

Suppose $d_{p} \neq m_{p}$. We have $a_{k}-k_{u} \neq b_{k}-k_{x}$ for all $k \in\{1, \ldots, m-1\}$ and by a similar proof as above, we have $\hat{w}_{1} \ldots \hat{w}_{m-1}=w_{1} \ldots w_{m-1}$. If $m_{p}<d_{p}$ then $\hat{w}_{m}=x_{m_{p},\left(d_{p}-m_{p}\right) / 2}$ and $m_{p}=m_{x}=i_{m}$. Then

$$
\frac{d_{p}-m_{p}}{2}=\frac{m_{u}-m_{x}}{2}=\frac{i_{m}+2 j_{m}-i_{m}}{2}=j_{m},
$$

i.e. $\hat{w}_{m}=x_{i_{m}, j_{m}}=w_{m}$. For the case $m_{p}>d_{p}$, we can prove $\hat{w}_{m}=w_{m}$ in a similar way. Thus, $\hat{w}_{1} \ldots \hat{w}_{m-1} \hat{w}_{m}=w_{1} \ldots w_{m-1} w_{m}$. Then $w=\hat{w}$, i.e. $w^{*}=\hat{w}_{\alpha_{v_{A} w^{*}}}^{*}$. The next goal is to show that $A=\tilde{A}$.

1) To show that $A \subseteq \tilde{A}$ : let $a \in A$. We have $A \subseteq A_{w}$ since $v_{A} w^{*} \in W_{n}$. Therefore, we have the following cases: $a \in\left\{a_{m}, \ldots, n\right\}=A_{1}$ or $a \in\left\{a_{k}, \ldots,(k+1)_{u}-1\right\}=A_{2}$ for some $k \in\{1, \ldots, m-1\}$ or

$$
a \in\left\{1+1_{u}-\min \left\{1_{u}, 1_{x}\right\}, \ldots, 1_{u}-1\right\}=A_{3} .
$$

If $a \in A_{1}$ and $m_{p} \neq d_{p}$ then $a \in \tilde{A}$ since (1.1) and (1.2), respectively. If $a \in A_{1}$ and $a \in\left\{d_{p}+1, \ldots, n\right\}$ with $m_{p}=d_{p}$ then $a \in \tilde{A}$ since (1.3) and (2), respectively.

Suppose $a \in A_{2}$ with $a \in\left\{a_{k}, \ldots, d_{r_{k}+1}-1\right\}$. If $2<d_{r_{k}+1}-d_{r_{k}}<m_{r_{k}+1}-m_{r_{k}}$ then $w_{k} \in W_{x}$. Note that $a_{k}=k_{u}+2=d_{r_{k}}+2$. Thus, $a \in \tilde{A}$ since (3.3). If $2<m_{r_{k}+1}-m_{r_{k}}<d_{r_{k}+1}-d_{r_{k}}$ then $w_{k} \in W_{u}$.

Note

$$
\begin{gathered}
d_{r_{k}+1}-a_{k}=m_{r_{k}+1}-b_{k}, \quad b_{k}=k_{x}+2, \\
a_{k}=a_{k}-b_{k}+b_{k}=d_{r_{k}+1}-m_{r_{k}+1}+k_{x}+2=d_{r_{k}+1}-m_{r_{k}+1}+m_{r_{k}}+2 .
\end{gathered}
$$

Thus, $a \in \tilde{A}$ since (3.2).
Suppose $a \in A_{3}$. If $1<d_{1} \leq m_{1}$ and $a \in\left\{1, \ldots, d_{1}-1\right\}$ then $a \in \tilde{A}$ since (5). If $1<m_{1}<d_{1}$ and $a \in\left\{d_{1}-m_{1}+1, \ldots, 1_{u}-1\right\}$ then $a \in \tilde{A}$ since (6) (note that $1_{u}-1_{x}=d_{1}-m_{1}$ ).

Suppose $a \in A_{1} \cup A_{2} \cup A_{3}$ and there exists $s \in\{2, \ldots, p\}$ such that $d_{s}-d_{s-1}=m_{s}-m_{s-1} \geq 2$ with $a \in\left\{d_{s-1}+1, \ldots, d_{s}-1\right\}$. Then $a \in \tilde{A}$ since (3.1). By any of the above, we have $A \subseteq \tilde{A}$.
2) To show that $\tilde{A} \subseteq A$ : let

$$
\begin{gathered}
A_{1}=\left\{1+1_{u}-\min \left\{1_{u}, 1_{x}\right\}, \ldots, 1_{u}-1\right\}, \\
A_{2}=\left\{a_{1}, \ldots, 2_{u}-1\right\} \cup\left\{a_{2}, \ldots, 3_{u}-1\right\} \cup \ldots \cup\left\{a_{m-1}, \ldots, m_{u}-1\right\}, \\
A_{3}=\left\{a_{m}, \ldots, n\right\} .
\end{gathered}
$$

Because $A \subseteq A_{w}$, we have $A \subseteq A_{1} \cup A_{2} \cup A_{3}$ and $A \cap\left\{d_{1}, \ldots, d_{p}\right\}=\emptyset$. This implies $A \subseteq A_{1} \cup$ $A_{2} \cup A_{3} \backslash\left\{d_{1}, \ldots, d_{p}\right\}$. Conversely, we have $A_{1} \cup A_{2} \cup A_{3} \backslash\left\{d_{1}, \ldots, d_{p}\right\} \subseteq A$ by the definition of $\alpha_{v_{A} w^{*}}$. Thus, $A=A_{1} \cup A_{2} \cup A_{3} \backslash\left\{d_{1}, \ldots, d_{p}\right\}$.

Let $a \in \tilde{A}$. By the definition of $\tilde{A}$, we can observe that $a \neq d_{i}$ for all $i \in\{1, \ldots, p\}$.
Suppose $a$ is given by (1.1) or (1.2) or (1.3) or (2). Then $a \in A_{3} \backslash\left\{d_{1}, \ldots, d_{p}\right\}$.
Suppose $a$ is given by (3.1). Then $a \in A_{1} \cup A_{2} \cup A_{3} \backslash\left\{d_{1}, \ldots, d_{p}\right\}$.
Suppose $a$ is given by (3.2), i.e. $a \in\left\{d_{s}-m_{s}+m_{s-1}+2, \ldots, d_{s}-1\right\}$ for some $s \in\{2, \ldots, p\}$.
We have already shown that there is $k \in\{1, \ldots, m-1\}$ such that $d_{s}-m_{s}+m_{s-1}+2=a_{k}$. Then $a \in A_{2} \backslash\left\{d_{1}, \ldots, d_{p}\right\}$.

Suppose $a$ is given by (3.3). Then $a \in A_{2} \backslash\left\{d_{1}, \ldots, d_{p}\right\}$.
Suppose $a$ is given by (5). Then $a \in A_{1} \backslash\left\{d_{1}, \ldots, d_{p}\right\}$.
Suppose $a$ is given by (6). Then $a \in A_{1} \backslash\left\{d_{1}, \ldots, d_{p}\right\}$ (note that $d_{1}-m_{1}=1_{u}-1_{x}$ ). Therefore, we have $a \in A$, i.e. $\tilde{A} \subseteq A$.

By 1) and 2), we get $A=\tilde{A}$. This implies $v_{A} w^{*}=v_{\tilde{A}} \hat{w}^{*}=w_{\alpha_{v_{A} w^{*}}}$.
Lemma 18 establishes that $f$ is surjective, which implies $\left|W_{n}\right| \leq\left|I O F_{n}^{\text {par }}\right|$. We will now adjust our alphabet and relations to meet the requirements of Theorem 1. As mentioned previously, $\bar{X}_{n}=\left\{\bar{s}: s \in X_{n}\right\}$ is a generating set for the monoid IOF par. Building on the insights from Lemma 1, we can conclude that $\bar{X}_{n}$ satisfies all the relations from $\bar{R}=\left\{\bar{s}_{1} \approx \bar{s}_{2}: s_{1} \approx s_{2} \in R\right\}$.

Corollary 1 further shows that for any $w \in \bar{X}_{n}^{*}$, there exists a corresponding $w^{\prime} \in \bar{W}_{n}$, for which $w \approx w^{\prime}$ is a consequence of $\bar{R}$. This implies that $\bar{R} \subseteq \bar{X}_{n}^{*} \times \bar{X}_{n}^{*}$ and that $\bar{W}_{n} \subseteq \bar{X}_{n}^{*}$ meet the conditions $1-3$ in Theorem 1. We now possess all the necessary items to conclude our main result.

Theorem 2. $\left\langle\bar{X}_{n} \mid \bar{R}\right\rangle$ is a monoid presentation for IOF ${ }_{n}^{\text {par }}$.

## REFERENCES

1. Clifford A. H., Preston G. B. The Algebraic Theory of Semigroups. Math. Surveys Monogr., vol. 7, part 1. Providence. R.I.: Amer. Math. Soc. Surveys, 1961. DOI: 10.1090/surv/007.1; Math. Surveys Monogr., vol. 7, part 2. Providence. R.I.: Amer. Math. Soc. Surveys, 1967. DOI: 10.1090/surv/007.2
2. Currie J. D., Visentin T.I. The number of order-preserving maps of fences and crowns. Order, 1991. Vol. 8. P. 133-142.
3. Dimitrova I., Koppitz J., Lohapan L. Generating sets of semigroups of partial transformations preserving a zig-zag order on $\mathbb{N}$. Int. J. Pure Appl. Math., 2017. Vol. 117, No. 2. P. 279-289. DOI: 10.12732/ijpam.v117i2.4
4. East J. A presentation of the singular part of the symmetric inverse monoid. Comm. Algebra, 2006. Vol. 34, No. 5. P. 1671-1689. DOI: 10.1080/00927870500542689
5. East J. A presentation for the singular part of the full transformation semigroup. Semigroup Forum, 2010. Vol 81. P. 357-379. DOI: 10.1007/s00233-010-9250-1
6. Fernandes V. H. The monoid of all injective order preserving partial transformations on a finite chain. Semigroup Forum, 2001. Vol. 62. P. 178-204. DOI: 10.1007/s002330010056
7. Fernandes V.H., Koppitz J., Musunthia T. The rank of the semigroup of all order-preserving transformations on a finite fence. Bull. Malays. Math. Sci. Soc., 2019. Vol. 42. P. 2191-2211. DOI: 10.1007/s40840-017-0598-1
8. Howie J. M. Fundamentals of Semigroup Theory. Oxford: Clarendon Press, 1995. 351 p.
9. Jendana K., Srithus R. Coregularity of order-preserving self-mapping semigroups of fences. Commun. Korean Math. Soc., 2015. Vol. 30, No. 4. P. 349-361. DOI: 10.4134/CKMS.2015.30.4.349
10. Lallement G. Semigroups and Combinatorial Applications. New York: Wiley, 1979. 376 p.
11. Lohapan L., Koppitz J. Regular semigroups of partial transformations preserving a fence $\mathbb{N}$. Novi Sad J. Math., 2017. Vol. 47, No. 2. P. 77-91. DOI: 10.30755/NSJOM. 05333
12. Lohapan L., Koppitz J., Worawiset S. Congruences on infinite semigroups of transformations preserving a zig-zag order. J. Algebra Appl., 2021. Vol. 20, No. 09. Art. no. 2150167. DOI: 10.1142/S021949882150167X
13. Ruškuc N. Semigroup Presentations. Ph. D. Thesis. St Andrews: University of St Andrews, 1995.
14. Rutkowski A. The formula for the number of order-preserving selfmappings of a fence. Order, 1992. Vol. 9. P. 127-137. DOI: 10.1007/BF00814405
15. Sareeto A., Koppitz J. The rank of the semigroup of order-, fence- and parity-preserving partial injections on a finite set. Asian-Eur. J. Math., 2023. DOI: 10.1142/S1793557123502236
16. Srithus R., Chinram R., Khongthat C. Regularity in the semigroup of transformations preserving a zig-zag order. Bull. Malays. Math. Sci. Soc., 2020. Vol. 43, No. 2. P. 1761-1773. DOI: 10.1007/s40840-019-00772-2
17. Wagner V. V. Generalized groups. Dokl. Akad. Nauk SSSR, 1952. Vol. 84, No. 6. P. 1119-1122. (in Russian)
