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Available online: 14/6/2012 problem of particle in a double oscillators potential. In this problem, one can take a
K?y?v'c;ij(s):'gm&”“aps'zom'15549 special case when oscillation quantum number (V) is none negative integer.
Numerical Computer programming is built to make numerical simulations to this problem. The
Simul;"ﬂionsy probability density of finding particle in a double oscillators potential is calculated
Particle in ,

without using Schrodinger equation or any conventional quantum mechanics. This

Double Oscillators. probability is compared with probability of conventional quantum mechanics.

Introduction
Hermann [1] shows quantum behavior of
particle in a box [2,3] by a numerical simulation process The scalar potential of this problem is
to fractal position equation of this problem without using 1
u=> k(x| —a)?

Schrédinger equation and any conventional quantum [10], as shown in fig.(1),where .

mechanics .This approach is based on Scale Relativity This example comes from molecular physics . There,
Theory by Nottale [4,5,6,7]. Al-Rashid [8] extended one frequently encounters motion in the neighborhood
Hermann’s work to other quantum systems such as : of a state equilibrium configuration, approximated by
Finite square well , simple harmonic oscillator and harmonic potential [ 10].

double well potentials. Al-Rashid [8] found that there In the present work, we will apply Hermann[1]
was a connection between Scale Relativity Theory and and Al-Rashid [8] approach to solve equation of motion
Riccati equation [8,9], in addition he showed the and reveal quantum behavior of double oscillator
quantum behavior of these quantum systems. potential without using Schrddinger equation and any

The model of double oscillators potential by conventional quantum mechanics.

The aim of the present work is extending

consideration two masses ml and m2, constrained to .
Hermann and Al-Rashid works to another quantum

move in a straight line and connected with each other by . . . . -
system in one-dimensional by calculation probability

a spring whose force constant is k and whose length at density of finding particle in a double oscillator potential
PR ¢ so that these results will be compared with the results of

equilibriumis ™.

conventional quantum mechanics.
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Solution of Equation of Motion
Nottale [4,5,7] , in his theory (Scale Relativity),
rewrites Newton’s fundamental equation of dynamics by

complex forms such as:
0
Vu=m—V
dt

where u is scalar potential ,V is complex

velocity which is define as V=v-iU where Vv is
classical velocity and U is an imaginary part of complex

d

, and dt is complex derivative operator

o _
— + V.—I1DA
[4,5,6] which is ot A4

velocity

where D is
_n

diffusion constant, ~ 2m .

As for Hermann [1] and Al-Rashid [7] works ,
one may start from eqgn.(1) to solve equation of motion
of double oscillator

problem but here replacing

reducing mass. By using the definition of complex

velocity, one can separate eqgn.(1) in two real and
imaginary parts as[1,7]:

—DAU - (U.V)U =-WVu

0 --(2)

“U=0
dt

2nd equation of egn.(2) shows that the
imaginary part of complex velocity depends on position

only [1].Eqgn.(2) can be written in one-dimensional as:

0,0 12,0 10
&(&DU(XHEU (x))—ﬂaxu

then, by integration, one obtains:
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D%U (X) +%U 2(X)+¢, = iu(x) ()

where cl is a constant of integration. The

constant of integration was defined by Hermann [1] and

Al-Rashid [8] as = iz

system.

where E is the total energy of

Eqn.(4), then, becomes:

EU(X)+LU2(X)+ E _ 1 u(x) (5)
OX 2D uD uD

By rearrangement of eqn.(5) and using the

D-—_""

definition of 244 eqn.(5) becomes:
d J7 2
—UMX)=——=U"(X)+—(Uu(x)—E)---- 6
dx() - ()h(() ) --=-~(6)

eqn.(6) has the form of Riccati equation [8,9] as
Al-Rashid found [7]. Riccati equation can be solved by
transforming it into a 2nd order differential equation
[8,9] which is:

ry"(x)+r*g(x)y(x) =0
where

__1y'(x)
YOO=r Y00

e-(7)

(8)

and y(X) is an arbitrary function of X . From

eqn.(6), one can define:
U 2
[ =— — , X)=— u X _E .....
- 9(x) h( (X)—E) )
By using eqns. (7),(8) and (9), egn.(6) becomes:
d? 2u
") y(x) - 7z (u(x) —E)y(x) =0--(10)



P- ISSN 1991-8941 E-ISSN 2706-6703
2007,(1), (3) :86-95

Now, for the problem of double oscillator

u(x) = % k(X -q)’

potential , the potential is for

E < u0[10] . Then, egn.(10) can be written as:

d? 2u,1 2 2 .
S YO (Gu o (x-a) EWW=0_

K=u o’

where , @ is angular frequency.

Here, there are two cases depending on X value which
are [11]:
for X is positive , then, eqn.(11) becomes:
d2 2(02

mzﬂm—”

(x—q)’y(x) = ;—lj E y(X)--(12)

hZ

Letz_( ) (x—q) = for x>0,

eqgn.(12) becomes:

d? 22 1
— Y(2)—— y(z) =—E y(z) - (13)
dz ho

Total energy for oscillator is defined as,

E = hw(v+l) [10], then, one can write egn. (13)
Y 2
as:

1 1
y'@+v+5-7 2%)y(z) = 0-(14)

This equation is called Weber differential
equation [11] which has even and odd solutions :

for even solutions ,the solution is [11]:

et —v.1.1 ..
Vi(@)=e *iFy(—i2i-27) ~(9)

from the table [12], the confluent hypergeometric

function is :

-v.1.1 2
F 72)=22¢ D (2)--(16
Fil 520 = m(z) ,(2)-(16)

then, egn.(16) becomes:
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-1

y.(2)=22 D, (z)—(17)

where D, (2) is parabolic cylinder function
[11]. By wusing egn.(8) ,one can  writte:

U@ - L

dz)
D, = .. (18)

From recurrence relations [11]:

D.(2)=—,2D, &)+ D)

---(19)
then egn.(18) becomes:
n, 1 D, .(2)
U(z)=—(CF=z+v——>)dz
@=" C52rv ) -

Finally, we can write U(X) for double

oscillator in this case as :

U =((c-a)+ 2 vy
v (X) __(21)
h=pu=w=1

where

Vv

In special cases, one can consider is a

nonnegative integer n ,then, can reduce D, to [11]:

-n ; =z
D.(2)=22H (—=)e* =e* H,(2)
V2 -(22)

where H”(Z) is a Hermit polynomial and

He (2) is modified Hermit polynomial. Then,

eqn.(21) becomes:

Hn—l(X_q)) f

or x>0
Hy(x—0) )

if one compare eqn.(23) with Al-Rashid’s work

Uy () = (=(x=) +2n

[8] for simple harmonic oscillator, we can see that

eqn.(23) goes to simple harmonic when g=0.This is



P- ISSN 1991-8941 E-ISSN 2706-6703
2007,(1), (3) :86-95

similar to ¥ wave function which goes to simple

harmonic when g=0 in conventional quantum
mechanics[10].
(ii) the odd solutions for X>0 take a

similar way for even solutions, then one can write [11]:

-2 31
e, F(r_v.3.1.
a@=ze FG-Ziin)
and from table[12] , one can find [12]:
edor31, 100
2 2'2'2 21 ---(25)
This leads to :
1
y.(2)=-D,(2)
2 7 e (26)
SO:
I 1 D .(2)
U =—(—= —12)d
(2) ﬂ( 22+v Dv(z)) z

which is similar to even solutions. Again, for
special cases when V' is non-negative integer, one can
writ :
Ho(x-0)
Hn(x_q)

Eqn.(27) , is exactly eqn.(23).

(-(x=qg)+2n ) for x>0

-(27)

Uz(X):

(b) the solutions for X < O are in similar way

for X>0 then, U(X) js:

H n-1 (_(X + q))

U(x)=(-(x+0q)+2n H (0)

) for x<0
—(28)

for even and odd solutions.

Nottale [4,5,6], proves that the position vector

X(t) is assimilated into a stochastic process which
satisfies the relation, so Hermann [1] and Al-Rashid [7]
found that :
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dx(t)
and

ax(1)

=U, (x)dt +d& (t) for dt>0(forward)

=U_(x)dt +d& (t) for dt <O(backward)| (29)

where d§(t) is a random variable of Gaussian

distribution and is of width v 2Ddt[1]By using

values of U (X) ,one can write :

v (X=0)

H g ————))dt+dé(t) for x>0--(30)

x(t) = ((-(x-0)+2

and

Hy ({4 9)

dx(t)=((- 2
=(eg et

)t +dé(t) for x<0-(31)

Numerical Simulations
As Hermann [1] and Al-Rashid [8], eqgns. (30)
and (31) represent a stochastic process. Here, in the
problem of double oscillators , it was found that the
assumption 2Ddt=1 is not useful for the present
simulations since it gives bad results for the present
application. Then, one starts to adjust the value of dt
until one approaches a specific value for which
meaningful results are obtained. It was found that a

m
value of dt=10—3(h) is suitable for the present
simulations [8]. It seems that this value of dt is related to
the period of the motion in the double oscillators
potential. It is expected that a suitable value which gives
meaningful numerical simulation results is that which
leads to a sufficient number of time steps during one
period so as to give meaningful counts. This is a

consequence of the statistical nature of these simulations
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which requires better statistics to be meaningful. Then,
egns. (30) and (31) become:

dx(t):((—(x—q)+2nM))x10'3+N(O,l)X\/l(T'3 for x>0
Hyle-g) ~32)

and

)= (e g+ D o0 o e
H,(Hx+)) ~(33)

where N(0,1) is a normalized random variable

[1] and h=,u:a):1.

The numerical simulations were performed

using eqgns. (32) and (33). The output of these

simulations give the probability density f( X) of the
presence of the particle in the double oscillators

potential. These simulations were done by dividing the

box of size & into 1200 pieces and counting the
number of time steps the particle is in each specific sub

box. In scheme, the X

position in the one-dimensional
box is drawn horizontally, and number of occurrences
vertically. The results are then compared with

conventional quantum mechanics [10] which also
approximate in this special case(¥ 1) into

-n ~(x-0)’

(x-0)=D,((x-6)) =27 H,((x-0)) & *
and
P((x-) =2 "Hi((x-q) e (34

for X>0 and

-n ~(x+0)?

P((x+0))=D, (~(x+0) =2 H, (-{x+q)) &
and - (35)

P(x+q)=2"Hy ) €
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h=u=w=1

for X<0 where and P is
probability in conventional guantum mechanics.

This comparison is by calculating the standard
deviation ¢ and the correlation coefficient p which are
defined as [1]:

N

2 (P = (i)

No e (36)

N

> L(P)—-<P>)(fG)—< f>)

P = N
D aP)—< P> L (f)-< f>)?
and -- (37)

where N is the number of pieces(no. of boxes) ,

p(ly=p(X)yand f(1) =1 X),

In this work, the results of applying a computer
program built following the Hermann [1] and Al-Rashid
[7] approaches are presented. Fig.(2) shows a first
attempt of modeling for n = 0 and 1 when q = 4. Here,
the time step(cc) has been chosen as 108. The numerical

simulations start with arbitrary point which is X=
The continuous curves indicate the results of the present
simulations and the dashed curves the results of
conventional quantum mechanics. The output of the
simulations was normalized by multiplying it with a
constant z whose value depends on the number of
divisions of the region (here, z=50) In these figures,
there is a clear difference between the present results
and the results of quantum mechanics, that is measured
by o (approaching zero) and p (approaching one ).

There are three ways to improve the results
suggested [1,7]. They are:

using more steps in time .
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restarting the simulation after many steps in
time with a new starting position . This leads to a better
thermalization of the system .

increasing numbers of pieces (boxes).

Fig. (3) shows the improved results obtained in
the present work with n=0 and n=1 when g= 4 for 108
steps by using the thermalization process, starting
points(ss) are 25 and 31. The convergence between the
simulation results and conventional guantum mechanics
is clear by the values of ¢ and p.

Fig. (4) shows the improved numerical results
by increasing the number of steps time for n=0 to
cc=5*108. It was also found that, in the present problem,
convergence between the results of numerical
simulations and those of conventional quantum
mechanics can be improved by increasing the number of
boxes. This is clear in Fig. (5), where it appears that
there is better agreement between the two results for n=0
when the number of boxes was increased to 2200.

To test our work the numerical results go may
back to simple harmonic oscillator results when q=0
[10]. Fig.(6) shows the numerical results for n=0 and 1,
which coincide with simple harmonic oscillator results
by Al-Rashid [7].

Discussion and Conclusion

The present work was an attempt to expand the
works of Hermann [1] and Al-Rashid [8] by performing
similar simulations for other quantum-mechanical
problems not treated by them or by others. However, as

it appears from the work in this paper which is

considering a special case for Vs non-negative
integer, there are many difficulties that should be
overcome to obtain meaningful results that can be

compared with conventional quantum mechanical
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results. On the mathematical side, Riccati equation has
helped in solving some of these difficulties[7]. While, on
the numerical side, special attempts to optimize the
solution parameters for the problems treated in this
paper were needed to obtain the required results.

In this paper, Quantitative correct prediction of
the behavior of a quantum particle in a double oscillators
one-dimensional potential can be obtained without
explicitly writing the Schrédinger equation nor using
any conventional quantum axiom[1,7]. It can be
concluded from the present work that this fact is even
correct for one-dimensional quantum mechanical
problems. This leads one to conclude from the present
work that Scale Relativity is a well-founded theory for
deriving quantum mechanics from the concept of fractal

space-time.
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Fig.(1) Potential for a double oscillator [10].
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Fig. (2) Probability density for a particle in a double (b)
oscillators potential (a) n= 0 and (b) n= 1, without Fig.(3) Probability density for a particle in a double
thermalization process. oscillators potential (a) n=0 and (b) n=1 with
thermalization process.
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(a) Fig. (4) Probability density for a particle in a double
n=1 a=1200 g=4 cc=10® ss=25 ¢ =0.0174 oscillators potential with n=0 for longer time steps
p=0.9989 (cc=5x108).
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Fig. (5) Probability density for a particle in a double
oscillators potential with n=0 after increasing the
number of boxes.

n=0 a=1200 q=0 cc=10° ss=31 o =0.0209 (b)
p=0.9998 Fig. (6) Probability density for a particle in a double
oscillators potential (a) n=0 and (b) n= 0 when g=0.
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