
P- ISSN 1991-8941 E-ISSN 2706-6703 Journal of University of Anbar for Pure Science (JUAPS) Open Access

2008,(2), (1) :145-158

145

 DESIGN OF NEW MODEL FOR SLR-PARSER

Essam T. Yassen

College of Computer ,University of Anbar

A R T I C L E I N F O A B S T R A C T

Received: 1 / 4 /2008

Accepted: 24 / 4 /2008

Available online: 30/4/2008

DOI: 10.37652/juaps.2008.15432

 In last decades the applications of the computerized system were widely used

in various environments, such real time systems, monitoring system and other. These

applications need live answer from the programmable system. The compiler phases

represent the heart of any programming language, therefore if we enhance the

compilers; we make the execution more efficient.

In this paper we present new model for SLR-Parser, which is the main stage of

the compiler phases, because it responsible for the grammatical checking of the

program statements and it needs more time than other stages. The new model appears

faster than original parse. Also it is less complexity than original parser. Therefore, it

is more efficient to use.

Keywords:

Design ,

Model ,

SLR-Parser.

Introduction

A compiler is a language translator that takes

as input a program written in high level language and

produces an equivalent program in a low level

language.

 For example, a compiler may translate a C++

program into an executable program running on MIPS

processor.In the process of translation,a compiler goes

through several phases:

 Lexical Analysis (also called Scanning)

 Syntax Analysis (also called Parsing)

 Semantic Analysis (also called Type Checking)

 Intermediate Code Generation

 Code Optimization

 Code Generation

The diagram shows the major components of a

typical compiler :The job of lexical analyzer is to is to

read the source program on character at time and

collect these characters to produce as output a stream

of Tokens(Tokens are used to represent low-level

program units, such as "Keywords", Identifiers", and

may other language symbols).The job of the syntax

analyzer is to take a stream of tokens produce by the

lexical analyzer and build a Parse Tree(or syntax

tree)and determines if sentences in a program are

constructed properly according to the rules of the

source language.

* Corresponding author at: College of Computer ,University
of Anbar, Iraq.E-mail address: E_T_972@yahoo.com

The semantic analyzer's job is to attach some

meaning to the structure produced by the parser. After

syntax and semantic analysis, some compilers generate

an explicit intermediate representation of the source

program, this intermediate representation should have

two important properties: it should be easy to produce,

and easy to translate into target program. the code

optimization phase attempt to improve the

intermediate code, so that faster running machine code

will result. The final phase of compiler is the code

generator,at this point the optimized intermediate form

of source program is usually translated to either

assembly language or machine language[1],[2]e.

Syntax Analysis (Parsing)

Syntactical analysis is the process of

combining the tokens into well formed expressions,

statements, and programs and it checks the syntax

error, so it recognizes the legal programs syntactically

and it rejects illegal ones[3],[4].

Each language has special rules for structure

of program-called grammar or syntax. usually, the

grammatical phrases of the source program are

represented by a parse tree such as the one shown

below[5].[6]:

There are two general categories of

parsers[1],[5],[6]:

Top down parsers:

A top down parser, such as LL(1)

parsing,move from the goal symbol to astring of

mailto:E_T_972@yahoo.com

P- ISSN 1991-8941 E-ISSN 2706-6703 Journal of University of Anbar for Pure Science (JUAPS) Open Access

2008,(2), (1) :145-158

146

terminal symbols.in the terminology of trees,this is

moving from the root of the tree to a set of the leaves

in the syntax tree for a program.in using full backup

we are willing to attempt to create a syntax tree by

following branches until the correct set of terminals is

reached.in the worst possible case,that of trying to

parse a string which is not in the language,all possible

combinations are attempted before the failure to parse

is recognized.the nature of top down parsin technique

is characterized by:

Recursive-Descent parsing:

The general form of top down parsing called

recursive-descent that may involve backtracking,that

is,making repeated scans of the input.

Example: consider the grammar

if the input string is w=cad then:

LL(1) parser:

In this class of top down parser we can parsed

by simply looking at the next symbol in the unparsed

input string in order to decide which production is to

be applied. this method is deterministic in the sense

that no backup is required. therefore, to implement this

method we must eliminating left recursion and left

factoring from grammar.Example: consider the

grammar

Nonterminals
Input symbol

id + * () $

E

E'

T

T'

F

TE'

FT'

id

+TE'

 є

*FT'

TE'

FT'

(E)

є

є

є

є

if the input string is w=id+id*id then:

1. eliminate left recursion and left

factoring

2. compute First & Follow

3. construct Predictive table,as follow:

4. implement LL(1) program:

stack Input output

$E

$E'T

$E'T'F

$E'T'id

$E'T'

$E'

$E'T+

$E'T

$E'T'F

$E'T'id

$E'T'

$E'T'F*

$E'T'F

$E'T'id

$E'T'

$E'

$

id+id*id$

id+id*id$

id+id*id$

id+id*id$

 +id*id$

 +id*id$

 +id*id$

 id*id$

 id*id$

 id*id$

 *id$

 *id$

 id$

 id$

 $

 $

 $

E

TE'

T

FT'

F id

T' є

E'

+TE'

T

FT'

F

id

T'

*FT'

F

id

T' є

E' є

Accept

Bottom Up parsers

Bottom-up parsing simply proceeds in the

reverse order of top down parsing, it starts with the

symbols of the input sentence and tries to find

production right-hand-sides(substrings of a sentential

form) that it can replace with a nonterminal. It

proceeds until it reduces to the goal, the start

symbol.the bottom up parsin technique include[7]:

Handle Pruning

In this technique keep removing handles,

replacing them with corresponding left-hand-sides of

production, until we reach S,for example: consider the

grammar

 E→E+E | E*E | (E) | id

Shift-reduce Parsing

In this section ,we introduce a general style of

bottom-up syntax analysis,shift-reduce parsing.this

technique attempts to construct a parse tree for an

input string beginning at the leaves and working up

towards the root.there are actually four possible

actions a shift-reduce parser can make[1],[6],[8] :

1. Shift input symbols from buffer to stack until

a handle is formed.

2. Reduce handle by replacing gramming

symbols at top of stack by l.h.s. of production.

S cAd

A ab a

E E+T T

T T*F F

F (E) id

P- ISSN 1991-8941 E-ISSN 2706-6703 Journal of University of Anbar for Pure Science (JUAPS) Open Access

2008,(2), (1) :145-158

147

3. Accept on successful completion of parse.

4. Fail on syntax error.

Shift-Reduce Parsing Example :

E→E+E | E*E | (E) | id

Stack Input Buffer
Action

$

$a

$E

$E+

$E+b

$E+E

$E+E*

$E+E*c

$E+E*E

$E+E

$E

a+b*c$

 +b*c$

 +b*c$

 b*c$

 *c$

 *c$

 c$

 $

 $

 $

 $

Shift

Reduce: E→id

Shift

Shift

Reduce: E→id

Shift(*)

Shift

Reduce: E→id

Reduce: E→E*E

Reduce: E→E+E

Accept

Conflicts during shift-reduce parsing:

There are contex free grammars for which

shift-reduce parsing cannot be used. Ambiguous

grammars lead to parsing conflicts.Can fix by

rewriting grammar or by making appropriate choice of

action during parsing. There are two type of

conflicts[9]:

1. Shift/Reduce conflicts: should we shift or

reduce? (See previous example (*))

2. Reduce/Reduce conflicts: which production

should we reduce with?

Example:

stmt → id(param)

param → id

expr → id(expr) | id

Stack Input Buffer Action

$...id(id ,id)...$ Reduce by ??

Should we reduce to param or to expr ?

LR Parsing

LR parsers are most general non-backtracking

shift-reduce parsers known.

• L stands for “Left-to-right scan of input.”

• R stands for “Rightmost derivation (in

reverse).”

 LR parsing is attractive for a variety of

reasons:

1. LR parsers can be constructed to recognize

virtually all programming language constructs

for which contex-free grammars can be

written.

2. the LR parsing method is the most general

nonbacktracking shift-reduce parsing method

known,yet it can be implemented as efficiently

as other shift-reduce methods.

3. the class of grammars that can be parsed using

LR methods is a proper superset of the class of

grammars that can be parsed with predictive

parsers.

4. an LR parser can detect a syntactic error as

soon as it is possible to do so on a left-to-right scan of

the input.

The schematic form of an LR parser is shown in

following figure .it consists of an input,an output,a

stack,a driver program,and a parsing table that has two

parts (action and goto)[1],[6],[8].

 Input

Right-sentential

form

Hand

le

Reducing

production

a+b*c

E+b*c

E+E*c

E+E*E

E+E

E

a

b

c

E*E

E+E

E→id

E→id

E→id

E→E*E

E→E+E

 Stack

There are three techniques for LR parser depending

on the construct of LR parsing table for a grammar :

1. simple LR parser (SLR for short)

2. canonical LR parser

3. lookahead LR parser (lalr for short)

P- ISSN 1991-8941 E-ISSN 2706-6703 Journal of University of Anbar for Pure Science (JUAPS) Open Access

2008,(2), (1) :145-158

148

The LR program is the same for all LR parses;only

the parsing table changes from one parse to

another.The elements in the transition table are labeled

with four kinds of actions:

1 sn Shift into state n

2 gn Goto state n

3 rk Reduce by rule k

4 a Accept

5 Error (denoted by a blank entry in the table)

By using a deterministic finite automaton

(DFA), the LR parser know when to shift and when to

reduce?the DFA is not applied to the input but to the

stack.The edges of the DFA are labeled by the

symbols(terminals and nonterminals)that can appear

on the stack[1],[5].

The LR parsing algorithm:

The program driving the LR parser behaves as

follows.It determines Sm,the state currently on top of

the stack,and ai,the current input symbol.It then

consults action[Sm,ai],the transition table action entry

, if action is [5]:

 Shift(n): Advance input one token;push n on

stack.

 Reduce(k): Pop stack as many times as the

number of symbols on the right-hand side of rule

k;let X be the left-hand side symbol of rule k;in

the state now on top of stack,look up X to get

"goto n" ;Push n on top of stack.

 Accept: Stop parsing , report success.

 Error:Stop parsing, report failure.

Example: consider grammar

Initially,it will have an empty stack,and the

input will be a complete S-sentence followed by

$;that is the right-hand side of the S' rule will be on the

input.we indicate this as S' . S$ where the dot

indicates the current position of the parser. So:

Fig-6- Deterministic finite automaton (DFA)

Stack Input Action

0 x+x $ shift

0S4 +x$ Reduce by T x

0T2 +x$ shift

0T2S3 x$ Shift

0T2S3S4 $ Reduce by T x

0T2S3T2 $ Reduce by E T

0T2S3E5 $ Reduce by E T+E

0E1 $ Accept

Fig-8- Parse of input x+x

The New Model for SLR-Parser

The SLR-parser extremely tedious to build by

hand, so needs a generator and several specific steps.

The following block diagram presents the main stages

of the new model for SLR-Parser, which used to parse

particular input and give the result depending on the

Context Free Grammar build our system that is used

for implementing the new model of the SLR-parser:

Fig-9-Block diagram of our system

E T+E

E T

T x

0 S' E$

1 E T+E

2 E T

3 T x

P- ISSN 1991-8941 E-ISSN 2706-6703 Journal of University of Anbar for Pure Science (JUAPS) Open Access

2008,(2), (1) :145-158

149

state x + $ E T

0 S4 g1 g2

1 Accept

2 S3 r2

3 S4 g5 g2

4 r3 r3

5 r1

Input stage:

In this state the grammar has been reading and

the symbols of grammar (terminals and nonterminals)

could be specified and give the symbols numerical

representation. the advantage of using this method for

representation:

1. Perfect use for storage area, because the

numerical representation take fixed size.

2. It is more efficient for the parser to work with

integer values representing the symbols rather

than the actual symbol name(string).

3. The numerical representation facilitate to built the

SLR-table.

In this state ,each production of grammar must be on

one straight line. Finally,the productions has been

numbered.

For example, consider the grammar

The numerical representation is:
Symbol

name
+ * () id E T F

Numeric

representation
1 2 3 4 5 6 7 8

Compute first & follow stage:

Through this state First & Follow could be

detected for each nonteminal.The First should be

specified firstly according to the following steps[10]:

1. If x is terminal, then FIRST(x) is {x}.

2. If x є is a production ,then add є to

FIRST(x).

3. If x is nonterminal and x y1y2 …

yk is a production, then place a in FIRST(x) if

for some i ,a is in FIRST(yi),and є is in all of

FIRST(y1)… FIRST(yi-1).

Secondly, the Follow specified according to the

following steps:

1. Place$ in FOLLOW(S),where S is the start

symbol.

2. If there are a production A αBß,then

everything in FIRST(ß)except for є is placed in

FOLLOW(B).

3. If there are a production A αB ,or a production

A αBß where FIRST(ß) contains є,then

everything in FOLLOW(A) is in FOLLOW(B).

 Construct DFA-SLR table stage

 In traditional SLR-parser model this stage

implemented in two separate stages, the first one is

Construct DFA stage, and the second is Construct

SLR-table stage .as follows:

 Construct DFA stage:

By using a deterministic finite automaton (

DFA)the SLR-parser know when to shift and when to

reduce. the edges of DFA are labeled by symbols of

grammar(terminals & nonterminals).In this state,

where the input begins with S'(root),that means that it

begins with any possible right-hand side of an S-

production we indicate that by

Call this state1 or state0,a productions

combined with the dot(.) that indicates a position of

parser

Firstly, for each production in state1 we exam the

symbol that occur after dot, there are three cases:

1. If the symbol is null (the dot has been occurred

in the end of right side of production),then

there are no new state .

2. If the symbol is "$" sign, then there are no new

state.

3. If the symbol is a terminal or nonterminal, then

there are new state, this state start with current

production after the dot has been proceeded one

step forward. If the symbol has been occurred

after the dot(in new position)is nonterminal such

as A, then we add all possible right hand side of

A to a new state, and so on.

E E+T T

T T*F F

F (E) id

1 E E+T

2 E T

3 T T*F

4 T F

5 F (E)

6 F id

S' .S$

S .

.

.

P- ISSN 1991-8941 E-ISSN 2706-6703 Journal of University of Anbar for Pure Science (JUAPS) Open Access

2008,(2), (1) :145-158

150

You must know that any new state must built firstly in

a buffer, and we compare it with a previous states in

DFA,if there are no similarity situation then the new

state is added to DFA and give it a new number equal

to number of states in DFA plus one. Finally, we

repeat these steps on all new states until the DFA

completed.

Algorithm: Construct DFA

Input : BNF grammar

Output: A Deterministic Finite Automaton (DFA)

1. S=Initial state // start with production S'

. S$ followed all possible

right-hand side of S

2. N=1 // no. of states in DFA

3. for each production of S

3.1 a= symbol after dot in current production

A ß.a

3.2 if a is terminal or nonterminal

 3.2.1 Create buffer state start with current

production after proceed dot

one step A ßa.

3.2.2 Append all possible right-hand side

of symbol after dot(in new

position) into buffer state

 3.2.3 Compare buffer state with all

previous states in DFA

 3.2.4 If there are no equal case then

 3.2.4.1. Save the number of new

state(N+1)and the edge(a)

3.2.4.2 Append buffer state into DFA

3.2.4.3 Increment no. of state (N) by one

4.repeate step 3 for all new states

 Construct SLR-table stage:

The SLR-table is a data structure consist of many

rows equal to the number of the states in DFA,also

many columns equal to the number of grammar

symbols plus "$" sign .As know ,data structure

presents fast in information treatment and information

retrieve .In this stage SLR-table is constructed .this

table had seen as two subtables:

1. The Action table: consist of many rows equal

to number of states in DFA,and many columns

equal to number of terminals plus "$" sign(the

end of input).

2. The Goto table: consist of many rows equal to

number of states in DFA,and many columns

equal to number of nonterminals.

the elements(entries) in the SLR-table are labeled

with four kinds of actions:

 Sn shift into state n

 gn goto state n

 rk reduce by production k

 a accept

 error (denoted by blank entry

in the table)

for the construction of this table and the

contribution the actions on the tables cells must pass to

each state in DFA individually :

 Shift action & Goto action could be specified

according to the edge which has been moved from

the current state(n) to the new state.

If the edge was terminal symbol (t) then

 Cell[n-1,t]= sn

If the edge was nonterminal symbol (N) then

 Cell[n-1,N]= gn

 If there are production in current state has the form

(the dot in the end of right hand side, ß is any

string),then the action is reduce

 Cell[n-1,f]=rk {f in Follow(A), k is the no.

of production}

 If there are production in current state has the form

(the dot occurred before $ sign, ß is any string

),then the action is accept

 Cell[n-1,$]=a

 Finally, any empty cell in row n-1 means error

action.

Repeat the above steps for each state in DFA.

Algorithm: Construct SLR-table

Input : A Deterministic Finite Automaton (DFA)

Output: SLR-table

1.For each state in DFA (S)

1.2 For all production of s

 1.2.1 a= symbol after dot in current

production A ß.a

 // check the class of a

N

State

n+1

State

n

t
State

n-1

A ß.

A ß.$

P- ISSN 1991-8941 E-ISSN 2706-6703 Journal of University of Anbar for Pure Science (JUAPS) Open Access

2008,(2), (1) :145-158

151

 1.2.2 if a is terminal then action of

cell[s,a]= shift s'

 1.2.3 if a is nonterminal then action of

cell[s,a]= goto s'

 1.2.4 if a is є

1.2.4.1 for all f in follow(A) do

 1.2.4.1.1 action[i,f]=reduce k // k=no.

of production

 1.2.5 if a is $ then action[i,$]=accept

 1.2.6. else error // denoted by blank

through implementing and studying these two

stages, it was notice that, we can implement these two

stages in one stage (in the same time) instead of two

separate stages .that means, while we exam the

productions in the current state to specify a new state

in DFA,we will specified(immediately) the SLR-table

entries(actions),for example, if there is a production

AB. ß in current state (n),then we can specify

the new state start with the production A Bß. And in

the same time we fill sn'(if ß is terminal) or gn'(if ß is

nonterminal)in cell [n, ß] of SLR-table. the benefit this

work is to decrease the parsing time and consequently

to compile time. and the other advantage of this work

there is no need to save the edges(output) of current

state and its new states because the construction of

DFA and SLR-table occurred in the same time.

gnaccSn+1rkn-1

N$tfstate

N

State

n+1

State

n

t

State n-1

S .tß

S .Nß

N .$

N ß.

The suggestion algorithm of DFA and SLR-table is

obtained in the following:

Algorithm: Construct DFA-SLR Table

Input : BNF grammar

Output: A Deterministic Finite Automaton (DFA)

and SLR-table

1. S=Initial state // start with

production S' . S$ followed

all possible right-hand side of S

 2. N=1 // no. of states in DFA

 3. for each production of S

 3.1 a= symbol after dot in current

production A ß.a

 3.2 if a is terminal then

3.2.1 Create buffer state start with

current production after proceed

dot one step A ßa.

P- ISSN 1991-8941 E-ISSN 2706-6703 Journal of University of Anbar for Pure Science (JUAPS) Open Access

2008,(2), (1) :145-158

152

3.2.2 Append all possible right-hand

side of symbol after dot(in new

position) into buffer state

3.2.3 Compare buffer state with all

previous states in DFA

 3.2.4 If there are no equal case then

 3.2.4.1 Append buffer state into DFA

 3.2.4.2 Increment no. of state (N) by one

 3.2.5 action of cell[s,a]= shift s'

3.3 if a is nonterminal then

 3.3.1 Create buffer state start with current

production after proceed dot one step

A ßa.

 3.3.2 Append all possible right-hand side of

symbol after dot(in new position) into

buffer state

3.3.3 Compare buffer state with all previous states

in DFA

 3.3.4 If there are no equal case then

 3.3.4.1 Append buffer state into DFA

 3.3.4.2 Increment no. of state (N) by one

 3.3.5 action of cell[s,a]= goto s'

3.4 if a is є

 3.4.1 for all f in follow(A) do

 3.4.2 action[i,f]=reduce k // k=no. of

production

 3.5 if a is $ then action[i,$]=accept

 3.6 else error // denoted by blank

4.repeate step 3 for all new states

 The Comparison Between New Algorithm and

Origin Algorithms Using Computation Complexity:

The computational complexity measure used

to measure the complexity of any algorithm and

help our to chose the best algorithm for the same

problem. In this section we measure the

complexity of new algorithm compare to the

origin algorithms as shown in [13].

 The complexity of construct DFA

algorithm: this algorithm takes computational

complexity as follows:

T(construct DFA)=n * T(step3)

T(step3)=m* (T(step 3.1)+T(step 3.2))

T(step 3.1)=O(1)

T(step3.2)=O(1)+ T(step3.2.1)+ T(step3.2.2)+

T(step3.2.3) +T(step3.2.4)

T(step3.2.1)=O(1)

T(step3.2.2)=O(m-1)

T(step3.2.3)=O(n-1)

T(step3.2.4)=O(1)+T(step3.2.4.1)+

T(step3.2.4.2)+T(step3.2.4.3)

T(step3.2.4.1)=O(1)

T(step3.2.4.2)=O(1)

T(step3.2.4.3)=O(1)

T(step3.2.4)=O(1)+O(1)+O(1)+O(1)

T(step3.2.4)=O(4)

T(step3.2)=O(1)+O(1)+O(m-1)+

O(n-1)+O(4)=O(m+n+4)

T(step3)=m*(O(1)+O(m+n+4))

T(step3)=m*O(m+n+5)

T(construct DFA)=O(mn*(m+n+5)) // where n is

no. of state , m is no. of productions in current

state

 The complexity of construct SLR-table

algorithm: this algorithm takes computational

complexity as follows:

P- ISSN 1991-8941 E-ISSN 2706-6703 Journal of University of Anbar for Pure Science (JUAPS) Open Access

2008,(2), (1) :145-158

153

T(construct SLR-table)=n* T(step1.2)

T(step1.2)=m * (T(step1.2.1)+

 max(T(step1.2.2), T(step1.2.3),

T(step1.2.4),

T(step1.2.5),T(step1.2.6)))

T(step1.2.1)=O(1)

T(step1.2.)=O(2)

T(step1.2.3)=O(2)

T(step1.2.4)=O(1)+ T(step1.2.4.1)

T(step1.2.4.1)=f * T(step1.2.4.1.1)

T(step1.2.4.1.1)=O(1)

T(step1.2.4.1)=f

T(step1.2.4)=O(1)+O(f)=O(f)

T(step1.2.5)=O(2)

T(step1.2.6)=O(2)

T(step1.2)=m* O(1+f)=m

T(construct SLR-table)=O(mn)

 // where n is no. of state , m is no. of productions in

current state

 The complexity of new algorithm (construct

DFA-SLR table):This algorithm takes

computational complexity as follows:

T(construct DFA-SLR-table)=n * T(step3)

T(step3)=m * (T(step3.1)+

 max(T(step3.2), T(step3.3), T(step3.4),

T(step3.5), T(step3.6)))

T(step3.1)=O(1)

T(step3.2)=O(1)+T(step3.2.1)+

T(step3.2.2)+T(step3.2.3)+

T(step3.2.4)+ T(step3.2.5)

T(step3.2.1)=O(1)

T(step3.2.2)=O(m-1)

T(step3.2.3)=O(n-1)

T(step3.2.4)=O(1)+ T(step3.2.4.1)+

T(step3.2.4.2)

T(step3.2.4.1)=O(1)

T(step3.2.4.2)=O(1)

T(step3.2.4)=O(3)

T(step3.2.5)=O(1)

T(step3.2)=O(1)+O(1)+O(m-1)+ O(n-

1)+O(3)+O(1)=O(m+n+4)

T(step3.3)=O(1)+ T(step3.3.1) + T(step3.3.2) +

T(step3.3.3) + T(step3.3.4) +

T(step3.3.5)

T(step3.3.1)=O(1)

T(step3.3.2)=O(m-1)

T(step3.3.3)=O(n-1)

T(step3.3.4)=O(1)+ T(step3.3.4.1)+T(step3.3.4.2)

T(step3.3.4.1)=O(1)

T(step3.3.4.2)=O(1)

T(step3.3.4)=O(3)

T(step3.3.5)=O(1)

T(step3.3)=O(1)+O(1)+O(m-1)+ O(n-

1)+O(3)+O(1)=O(m+n+4)

T(step3.4)=O(1)+ T(step3.4.1)

T(step3.4.1)=f * T(step3.4.1.1)

T(step3.4.1.1)=O(1)

T(step3.4.1)=O(f)

T(step3.4)=O(1)+O(f)=O(f)

T(step3.5)=O(2)

T(step3.6)=O(2)

T(step3)=m * (O(1)+O(m+n+4))

T(step3)=O(m(m+n+5)

T(construct DFA-SLR-table)=

 O(mn(m+n+5)) // where n is no. of state , m is

no. of productions in current state

The new algorithm perform

P- ISSN 1991-8941 E-ISSN 2706-6703 Journal of University of Anbar for Pure Science (JUAPS) Open Access

2008,(2), (1) :145-158

154

 (construction DFA, construction SLR-table) in

O(mn(m+n+5)) operation, while implement

construction DFA algorithm and construction

SLR-table algorithm separately take the

complexity that equal the summation of

complexity for each one:

 O(mn*(m+n+5)) + O(mn) =

O(mn*(m+n+6))

Therefore, the new algorithm achieve the best use

of parsing time.

Fig-10- complexity of New Algorithm and Origin

Algorithms

Implement SLR-algorithm stage:

In this stage, we implement the SLR-

program by using the following algorithm[8] :

Conclusions

Through the studying of the compiler design

concept and the compiler phases and implementing the

original the SLR parser we are suggested a new model

of SLR parser technique and implemented it in Delphi

programming language and we conclude the

following:

1. The separation of construct DFA stage and

construct SLR-table stage is not perfect approach

for parsing, therefore, we suggest a new algorithm

for constructing DFA a SLR-table in one stage. The

suggestion algorithm involves an interaction

between construct of DFA and of SLR –table. The

suggestion algorithm achieve the best used of

parsing time and storage area because the two

construction works in the same time.

2. We can use numerical representation (integer) for

symbols of grammar instead of symbols name

(string), the advantage of using this method is that

all representation numbers are of a fixed size (

the best use of storage area). Furthermore, it

more efficient for the parser to work with integer

values representing the symbols rather than the

actual variable-length strings.

3. SLR-parser attempts to match multiple productions

at the same time and postpones making a decision

until sufficient input has been seen. In contrast, an

LL(k) parser must make decisions about which

production to match.

4. SLR(k) recognizers are stronger than LL(k)

recognizers because the LR strategy uses more

context information.

5. SLR-parser treats with many kinds of grammars,

because it can over take on the problems that other

parsers couldn’t made it, such as "Backtracking".

6. SLR-parser directly makes parsing process without

getting rid of Left-Recursion and Left-Factoring.

Appendix : Implement of new model :
For implement the new model, Consider the

following grammar

First stage: The function of this stage is read the

grammar and detect the grammar symbols:

E E+T

E T

T x

P- ISSN 1991-8941 E-ISSN 2706-6703 Journal of University of Anbar for Pure Science (JUAPS) Open Access

2008,(2), (1) :145-158

155

Second stage: During this stage, First and

Follow are detected:

Third stage: The output of this stage is DFA

and SLR-table:

Forth stage : suppose input string is x+x.After

insert input string the SLR-program is

executed, as follows:

P- ISSN 1991-8941 E-ISSN 2706-6703 Journal of University of Anbar for Pure Science (JUAPS) Open Access

2008,(2), (1) :145-158

156

REFERENCES

1. A. Aho, R. Sethi,J. D. Ullman," Compilers-

Principles, Techniques and Tools" Addison-

Weseley,1986

2. E.Taha,"Evaluation and Improvement Code

Optimization Methods in Compiler

Design",M.Sc.,University of Anbar,2005

3. J. Tremblay ,P.G. Sorenson ," The Theory and

Practice of Compiler Writing ", McGRAW-

HILL,1985

4. E.Tolman," Language Compiler", university of

Chicago, Newton BBS,2002

5. A.W.Appel,"Modern Compiler Implementation in

ML" ,Cambridge University Press,1998

6. http://www.cs.usfca.edu/~parrt/course/652/lectures/

LR.parsing.html

7. W.M. Waite, L.R. Carter, " An Introduction to

Compiler Construction", Harper Collins, New

york,1993

8. Keith D. Cooper, Ken Kennedy & Linda Torczon,"

Parsing IV, Bottom-up Parsing", Rice University,

2003

9. http://www.inf.ed.ac.uk/teaching/courses/ct/slides/

Lecture7.pdf

10. http://www.jambe.co.nz/UNI/FirstAndFollowSets.h

tml

11. Curt Clifton, "Building Bottom-Up Parsing

Tables", Rose-Hulman Institute of Technology

12. http://en.wikipedia.org/wiki/SLR_parser

13. R.Sedgewick,"Algorithms in", Addison-wesley,

1998

http://www.cs.usfca.edu/~parrt/course/652/lectures/LR.parsing.html
http://www.cs.usfca.edu/~parrt/course/652/lectures/LR.parsing.html
http://www.inf.ed.ac.uk/teaching/courses/ct/slides/Lecture7.pdf
http://www.inf.ed.ac.uk/teaching/courses/ct/slides/Lecture7.pdf
http://www.jambe.co.nz/
http://en.wikipedia.org/wiki/SLR_parser

P- ISSN 1991-8941 E-ISSN 2706-6703 Journal of University of Anbar for Pure Science (JUAPS) Open Access

2008,(2), (1) :145-158

157

Fig-4- steps in Recursive-descent parsing

P- ISSN 1991-8941 E-ISSN 2706-6703 Journal of University of Anbar for Pure Science (JUAPS) Open Access

2008,(2), (1) :145-158

158

 SLR-Parser تصميم نموذج جديد للـ

 عصام طه ياسين

E.mail: E_T_972@yahoo.com

 الخلاصة:
يقات التطب هالتطبيقات، هذفي العقود الأخيرة ازدادت استخدامات تطبيقات أنظمة الحاسوب في مختلف المجالات مثل أنظمة المراقبة وغيرها من

علةى ابةلتاج إلى استجابات مباشرة وسريعة من الأنظمة البرمجية.المترجم يمثل قلب أي لغة برمجيةة لةذلح حينمةا نعةزز ة ةامة المترجمةات سنحمةل بالمقتح
 تن يذ أةثر ة امة للغات البرمجة.

مةةحة البنةةام القواعةةدي ؤولة عةةنالةةذي يمثةةل مرحلةةة أساسةةية مةةن مراحةةل المتةةرجم ،لأن ةةا مسةة SLR-Parserهةةذا البحةةد يقةةدم نمةةوذج جديةةد للةةة
ر أةثةر الممدر التي تحتاج إلى وقت أةثةر مةن بةاقي المراحةل.النموذج المقتةرو يبةدو أسةرن مةن النمةوذج الأمةلي ويةةون اقةل تعقيةدا منة لةذلح يعتبة جللبرنام

 ة امة للاستخدام.

mailto:E_T_972@yahoo.com

