Weakly Semi-2-Absorbing Submodules

Habit K. Mohammadali

Khalaf H. Alhabeeb

Department of Mathematics Collage of computer science and mathematics/ Tikrit University

ARTICLE INFO

Received: 18 / 4 /2018 Accepted: 27 / 9 /2018 Available online: 3/1/2019

DOI: 10.37652/juaps.2022.171811

Keywords:

weakly semi-2-absorbing. semi-prime. weakly 2-absorbing. 2-absorbing. prime submodule.

ABSTRACT

In this paper we introduce and study the concept weakly semi-2-absorbing submodule as a generalization of 2-absorbing subomdule, and give some of it is basic properties and characterization of this concept.

1. Introduction

Duns in 1980 introduce the concept of semiprime submodule, where a submodule K of a module X is called semi- prime if $b^2x \in K$, where $b \in R$, $x \in X$,it follows that bx \in K [1]. In [2], they introduced the concept of semi-2-absorbing as a generalization of semi-prime. This led us to introduce the concept weakly semi-2-absorbing submodule as generalization of 2-absorbing subomdule, where a submodule K is called 2-absorbing if ijx ϵ K, with i,j ϵ R, $x \in X$, it follows that $ix \in K$ or $jx \in K$ or $ij \in [K : X] =$ $\{r \in \mathbb{R} : rX \subseteq K\}$ [3].

And a submodule K of X is called semi-2absorbing if $b^2x \in K$ with $b \in R$, $x \in X$, it follows that bx \in K or $b^2 \in$ [K:X][2].

In this work, all rings are commutative with identity and all modules are unitary R-modules.

2. Weakly semi-2-absorbing submodules

In this section, we introduce the concept of weakly semi-2-absorbing submodule, and give some basic properties of this concept.

2.1 DEFENTION

A proper submodule K of X is called weakly semi-2-absorbing if $0 \neq b^2 x \in K$ where $b \in R$, $x \in X$, it follows that bx \in K or b^2 x \in [K:X]. An ideal J of a ring R is called weakly semi-2-absorbing if b^2 r ϵ J with b, $r \in R$, it follows that br $\in J$ or $b^2 \in J$.

2.2 REMARK

Every 2-absorbing submodule us weakly semi-2-absorbing. However, the converse is not true.

Proof

Let K be a 2-absorbing submodule of a module X, and $0 \neq b^2 x \in K$, where $b \in R$, $x \in X$. Then either bx \in K or $b^2 \in$ [K:X], because K is 2absorbing in X. It follows that K is a weakly semi-2absorbing in X.

Corresponding author at: Department of Mathematics Collage of computer science and mathematics / Tikrit University .E-mail address:

For the converse: consider $X = Z \oplus Z$, R = Z and $K = 10 Z \oplus (0)$. It is clear that K is a weakly semi-2-absorbing, but not 2-absorbing in X.

2.3 PROPOSITION

Let E < X, where X is R-module. If E is a weakly semi 2-absorbing in X. Then [E: X] is weakly semi 2-absorbing ideal in R.

Proof

Let b, $r \in R$, with $0 \neq b^2r \in [E:X]$. Then (0) $\neq b^2rx \in E$ for all nonzero $x \in X$. Assume that $b^2 \notin [E:X]$, since E is a weakly semi-2-absorbing in X, then brx $\in E$, it follows that br $\in [E:X]$. Thus [E:X] is a weakly semi-2-absorbing in R.

The converse of proposition (2.3) hold in the class of cyclic modules.

2.4 PROPSITION

Let K be a proper submodule of cyclic module X, and [K: X] is a weakly semi-2-absorbing ideal of R. Then K is a weakly semi-2-absorbing in X.

Proof

Assume that $0 \neq b^2x \in K$, where $b \in R$, $x \in X$, and $X = R_m$, then there exist $1 \in R$ such that x = lm. Thus $0 \neq b^2 lm \in K$, it follows that $0 \neq b^2 l \in [K:m] = [K:X]$, that is $0 \neq b^2 l \in [K:X]$, it follows that $bl \in [K:X]$ or $0 \neq b^2 \in [K:X]$. That is $blm \in K$ or $b^2 \in [K:X]$, hence $bx \in K$ or $b^2 \in [K:X]$.

2.5 COROLLARY

Let K be a proper submodule of cyclic module X. Then K is a weakly semi-2-absorbing submodule iff [K: X] is a weakly semi-2-absorbing ideal in R.

Proof

Direct

2.6 PROPOSITION

If a proper submodule K of a module X is a weakly semi-2-absorbing in X, then [K:y] is a weakly semi-2-absorbing ideal in R for each a nonzero $y \in X - K$.

Proof

Assume that $0 \neq b^2$ $1 \in [K:y]$, where b, $1 \in R$, then $0 \neq b^2$ $1 \in K$, it follows that $0 \neq b^2$ $1 \in K$, hence bly $1 \in K$ or $1 \in K$ or $1 \in K$. Thus bl $1 \in K$ or $1 \in K$ or $1 \in K$. Thus bl $1 \in K$ is a weakly semi-2-absorbing in $1 \in K$.

2.7 PROPOSITION

A proper submodule K of a module X is a weakly semi-2-absorbing iff [K: b^2y] = [K:by] for all nonzero y ϵ X, $0 \neq b \in R$ or $b^2 \in [K:X]$.

Proof

 $(\ \rightarrow\)\ \text{let}\ b^2\notin\ [\ K:X]\ ,\ \text{to prove that}\ [\ K:b^2y]=[\ K:by\]\ .$ We have [\ K:by\] \subseteq [\ K:b^2y]\ . Then $0\ne b^2$ sy ϵ K, it follows that bsy ϵ K (since $b^2\notin\ [\ K:X]$), it follows that s ϵ [\ K:by\]\ . thus [\ K:b^2y]=[\ K:by\]\ .

(\leftarrow) Assume that [K : b^2y] = [K : by] for each a nonzero y in X and a nonzero b in R or $b^2\epsilon$ [K : X], and $0 \neq b^2y \in K$, then we have [K : b^2y] = [K : by] or

 $b^2 \epsilon \ [\ K:X] \ . \ If \ [\ K:b^2y] = [\ K:by\] \ , \ and \ 0 \neq b^2y \ \epsilon$ $K \ , \ then \ we \ have \ [\ K:b^2y] = R \ , \ so \ we \ have \ [\ K:by\]$ $= R \ , \ and \ hence \ b \ y \ \epsilon \ K \ . \ Thus, \ K \ is \ a \ weakly \ semi-2-asorbing \ submodule \ in \ X.$

2.8 REMARK

1. The intersection of two distinct weakly semi-2-absorbing submodules of a module X need not to

be weakly semi-2-absorbing in X, as the following example: 4Z and 25Z are weakly semi-2-absorbing submodules of the z-module Z. But $4Z \cap 25Z = 100Z$ is not weakly semi-2-absorbing in Z, because $0 \neq 5^2$. $4 \in 100Z$, but $5 \cdot 4 = 20 \notin 100Z$ and $5^2 = 25 \notin [100Z:Z] = 100Z$.

2. The intersection of two prime submodule of a module X is A weakly semi-2-absorbing in X.

Proof

Let K_1 , K_2 be two prime submodules of X. Then by [4,theo. 2.3 (1)], where $K_1 \cap K_2$ is 2-absorbing submodule of X. Hence by Remark (2.2), $K_1 \cap K_2$ is weakly semi-2-absorbing in X.

2.9 PROPOSOTION

If K_1 is a weakly semi-2-absorbing submodule of a module X, then K_1 is a weakly semi-2-absorbing in K_2 where $K_1 \subseteq K_2$ is a submodule in X.

Proof

Assume that $0 \neq b^2y \in K_1$, where b in R, y in $K_2 \leq X$. That is $0 \neq b^2y \in K_1$, where b in R, y in X. Since K_1 is a weakly semi-2-absorbing in X, then b y $\in K_1$ or $b^2 \in [K_1 : X]$. If $b^2 \in [K_1 : X]$, then $b^2 X \subseteq K_1 \subseteq K_2$, it follows that

 $b^2K_2\subseteq b^2\,X\subseteq K_1\,,$ hence , it follows that $b^2\epsilon$ $[K_1:K_2].$ It gives K_1 is a weakly semi-2-absorbing in K_2 .

2.10 REMARK

A submodule of a weakly semi-2-absorbing is not necessary weakly semi-2-absorbing . For example the submodules 36Z, 9Z of Z-module Z 9Z is weakly semi-2-absorbing in Z and $36Z \subseteq 9Z$ is not weakly semi-2-absorbing in Z, because $0 \neq 3^2$. $4 \in 36Z$, but $3 \cdot 4 = 12 \notin 36Z$ and $3^2 = 9 \notin [36Z:Z] = 36Z$.

2.11 PROPOSITION

Let K be a weakly semi-2-absorbing submodule of module X, with Kerf \subseteq K, where $f: X \rightarrow X$ be R-epimorphism. Then f(K) is a weakly semi-2-absorbing submodule of X.

Proof

Assume that $0 \neq b^2x \in f(K)$, where $b \in R$, $x \in X$ then f(x) = x for some nonzero x in X. It follows that $0 \neq b^2f(x) \in f(K)$, then $b^2f(x) = f(k)$ for some nonzero $k \in K$. That is $f(b^2x - k) = 0$, hence $b^2x - k \in K$ erf $\subseteq K$, it follows that

 $0\neq b^2x\ \epsilon\ K\ ,\ hence\ bx\ \epsilon\ K\ or\ b^2\epsilon\ [\ K:X]$ because K is a weakly semi-2-absorbing. If $bx\ \epsilon\ K$ then f (bx) ϵ f (K) , hence $bf(x)=bx\ \epsilon\ f$ (K).

If $b^2 \in [K:X]$, then $b^2 X \subseteq K$, so that $b^2 f(X) \subseteq f(K)$, it follows that $b^2 X \subseteq f(K)$, then $b^2 \in [f(K):X]$.

2.12 COROLLARY

If K is a weakly semi-2-absorbing submodule of a module X , then $\frac{K}{H}$ is a weakly semi-2-absorbing in $\frac{X}{H}$ for some submodule H of X , with $H \subseteq K$.

Proof

Since π : $X \to \frac{X}{H}$ defined by π (x) = x + H for all $x \in X$ is an R-epimorphism with Kerf = H. Hence the proof follows by proposition (2.12).

2.13 PROPOSITION

The inverse image of a weakly semi-2-absorbing submodule ia a weakly semi-2-absorbing.

Proof

Let $f: X \to X$ be R-epimorphism and F a weakly semi-2-absorbing submodule of X Assume that $0 \neq b^2yf^{-1}(F)$, where b in R x in X, then

 $0 \neq b^2 f(y) \in F$, it follows that $b f(y) \in F$ or $b^2 \in [F:X]$, because F is weakly semi-2-absorbing in X. It follows that by $\in f^{-1}(F)$ or $b^2 \in [F:X]$.

If $b^2 \in [F:X]$, then $b^2 X \subseteq F$, then $b^2 f(X) \subseteq F$, hence $b^2 X \subseteq f^{-1}(F)$. that is $b^2 \in [f^{-1}(F):X]$.

2.14 PROPOSITION

Let $X=X_1 \oplus X_2$ be a module, where X_1 , X_2 are modules, and K_1 is a proper submodule of X_1 . Then K_1 is a weakly semi-2-absorbing in X_1 iff $K_1 \oplus X_2$ is a weakly semi-2-absorbing in X.

Proof

 (\rightarrow) assume that $0 \neq b^2(x_1, x_2) \in K_1 \oplus X_2$, where $b \in R$, $(x_1, x_2) \in X_1 \oplus X_2$, where x_1 is a nonzero elements in X_1 and x_2 in X_2 , then $0 \neq b^2 x_1 \in K_1$, since K_1 is weakly semi-2-absorbing in X_1 , then $bx_1 \in K_1$ or $b^2 \in [K_1 : X_1]$, it follows that $b(x_1, x_2) \in K_1 \oplus X_2$ or $b^2 \in [K_1 : X_1]$, hence $b^2 \in [K_1 \oplus X_2 : X_1 \oplus X_2]$. Thus $K_1 \oplus X_2$ is weakly semi-2-absorbing in $X_1 \oplus X_2$.

(\leftarrow) Assume that $0 \neq b^2 x_1 \in K_1$, where b in R and x_1 in X_1 , then for any nonzero $x_2 \in X_2$, we have $0 \neq b^2 (x_1, x_2) \in K_1 \oplus X_2$. It follows that

b(x_1 , x_2) ϵ $K_1 \oplus X_2$ or $b^2 \epsilon$ $[K_1 \oplus X_2 : X_1 \oplus X_2] = [K_1 : X_1]$. Hence $bx_1 \epsilon$ K_1 or $b^2 \epsilon$ $[K_1 : X_1]$.

2.15 PROPOSITION

Let $X=X_1 \oplus X_2$ be a module, where X_1 , X_2 are modules, and K_2 is a proper submodule of X_2 . Then K_2 is a weakly semi-2-absorbing in X_2 iff $X_1 \oplus K_2$ is a weakly semi-2-absorbing in X.

Proof

Similar as in proposition (2.14)

2.16 PROPOSITION

Let $Y \oplus Y$ be an R-module with ann Y+ann Y = R, and T be a weakly semi-2-absorbing submodule of $Y \oplus Y$, Then either (i) $T = T_1 \oplus Y$ and T_1 is a weakly semi-2-absorbing in Y. (ii) $T = Y \oplus T_2$ and T_2 is a weakly semi-2-absorbing in Y (iii) $T = T_1 \oplus T_2$ and T_1 is a weakly semi-2-absorbing in Y and T_2 is a weakly semi-2-absorbing in Y.

Proof

Since annY+annY = R and T is a submodule of Y \oplus Y , then by [5, theo.2.4] T = $T_1 \oplus T_2$, hence we have (i) T_1 is a submodule of Y and

 $T_2 = Y$ (ii) $T_1 = Y$ and T_2 is a submodule of Y (iii) T_1 is a submodule of Y and T_2 is a submodule of Y. From (i) we have $T = T_1 \oplus Y$ or from (ii) we have $T = Y \oplus T_2$. Thus by proposition (2.15) we have T_1 is a weakly semi-2-absorbing in Y and T_2 is a weakly semi-2-absorbing submodule in Y, let $0 \neq b^2 y \in T_1$, where $b \in R$, $y \in Y$, then $0 \neq b^2 (y, 0) \in T_1 \oplus T_2 = T$. Thus $0 \neq b^2 (y, 0) \in T$, but T is weakly semi-2-absorbing in $Y \oplus Y$, then either $y \in Y$ or $y \in Y$ or $y \in Y$. It follows that by $y \in Y$ or $y \in Y$.

In the same way we can get T_2 is a weakly semi-2-absorbing in Y.

2.17 PROPOSITIOIN

Let $Y \oplus Y$ be an R-module, and T_1 , T_2 are weakly semi-2-absorbing submodules in Y and

Journal of University of Anbar for Pure Science (JUAPS)

Y`respectively , with [$T_1: Y$] = [$T_2: Y$ `] . Then $T = T_1 \oplus T_2$ is a weakly semi -2-absoring of $Y \oplus Y$ `.

Proof

Let $0 \neq b^2(y,y) \in T_1 \oplus T_2$ for $b \in R$, $(y,y) \in Y \oplus Y$, where y is a nonzero element in Y and y is a nonzero element in Y. Then

 $0 \neq b^2y \in T_1$ and $0 \neq b^2y \in T_2$. But T_1 and T_2 are weakly semi-2-absorbing in Y and Y respectively, then by $\in T_1$ or $b^2 \in [T_1:Y]$ and by $\in T_2$ or

 $b^2 \varepsilon \ [T_2:Y^{`}] = [T_1:Y]$, so by $\varepsilon \ T_1 and \ by `\varepsilon \ T_2 \ or \ b^2 \varepsilon$ $[T_1:Y].$ thus

 $b(y,y) \in T_1 \oplus T_2 \text{ or } b^2 \in [T:Y \oplus Y].$

2.18 PROPOSITION

Let Y be an R-module and T be a weakly semi-2-absorbing submodule of Y . Then $S^{-1}T$ is a weakly semi-2-absorbing submodule of $S^{-1}Y$.

Proof

Let $0 \neq (\overline{x})^2 \overline{y} \in S^{-1}T$, where $\overline{x} = \frac{x}{s_1} \in S^{-1}R$, $\overline{y} = \frac{y}{s_2} \in S^{-1}Y$ and $x \in R$, s_1 , $s_2 \in S$. Then $0 \neq (\frac{x}{s_1})^2$. $(\frac{y}{s_2}) \in S^{-1}T$, then $\frac{x^2y}{s_1^2s_2} \in S^{-1}T$. That is $\frac{x^2y}{t} \in S^{-1}T$, where $s_1^2s_2 = t \in S$. Then tere exist t in S with $0 \neq tx^2y \in T$, it follows that $x^2ty \in T$ or $x^2 \in [T:Y]$. Hence $\frac{xty}{s_1s_2t} = \frac{x}{s_1} \frac{y}{s_2} \in S^{-1}T$, or $(\frac{x}{s_1})^2 \in [S^{-1}T:S^{-1}Y]$.

Thus $S^{-1}T$ is a weakly semi-2-absorbing in $S^{-1}Y$.

2.19 PROPOSITION

Every weakly semi-2-absorbing submodule of an R-module Y is weakly semi-2-absorbing in Y.

Proof

Let T be a weakly semi-2-absorbing submodule of Y. And $0 \neq b^2y \in T$, $b \in R$, $y \in Y$. That is $0 \neq b$ by $\in T$. Then either by $\in T$ or $b^2 \in [T:Y]$.

2.20 PROPOSOTION

Every semi-2-absorbing submodule is weakly semi-2-absorbing

Proof

Clear

2.21 PROPOSITION

Every semi-prime submodule is a weakly semi-2-absorbing

Proof

Since every prime submodule is a semi-prime [6], we have the following corollary.

2.22 COROLLARY

Every prime submodule is a weakly semi-2-absorbing .

REFERNCES

- [1] Daun J.; Prime Modules and one sided ideals in Ring Theory and Algebra; Proceeding of Third Oklahoma conference, B. R., McDonald Editor, New York (1980),301-344.
- [2] Abdulrahman A.A.; 2-Absorbing Modules and Semi 2-Absorbing Modules; M.sc, Thesis, Baghdad university (2015).
- [3] Payrovi S., Babaei S.; On the 2-Absorbing submodules; Iranian Journal of Math. Sciences and information 1, (2015), 131-137.

- [4] Darani A.Y., Soheilnia F.; 2-Absorbing and weakly 2-Absorbing submodules; Thai J. Math. 9, 2011, 577-584.
- [6] Athab A., AL-Hashimi B.A.; A Note on semiprime submodule in Multiplication Modules; Iraqi J. sci. 41, (2000), 88-93.
- [5] Abass M.S.; On Full Stable Modules; Ph. D. Thesis, Baghdad university 1990.

المقاسات الجزئية الشبة المستحوذة من النمط _ 2 الضعيفة هيبة كريم محمدعلي خلف حسن الحبيب

قسم الرياضيات - كلية علوم الحاسوب والرياضيات - جامعة تكريت

المستخلص:

في هذا البحث قدمنا و درسنا مفهوم المقاس الجزئي شبة المشحوذ من النمط – 2 الضعيف كأعمام للمقاس الجزئي المشحوذ من النمط – 2, واعطينا بعض الصفات الأساسية والمكافئات لهذا المفهوم.