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High-quality demand-sidemanagement requires an abundance of load profiles to
support decision-making processes. However, customer energy consumption
data often contains sensitive personal information, and service providers face
significant challenges in accessing a substantial amount of energy consumption
data. To generate a large volume of customer data without compromising privacy,
this study introduces a data-driven approach integrating Information Maximizing
Generative Adversarial Networks (InfoGAN) with Multivariate Kernel Density
Estimation (MKDE) for the generation of load profiles. InfoGAN is firstly trained
based on existing customer load profiles, with the Q network disentangling the
load into feature variables and the generator producing realistic profiles.
Subsequently, MKDE is utilized to assess the distribution of these features,
enabling the generation of new profiles by sampling new feature variables. The
proposed method circumvents the need for intricate sampling or modeling
processes and generates realistic data that represents the inherent
uncertainties and fluctuations characterizing customers’ electricity
consumption. The generated data could be used as the substitution for real
electricity consumption data, thereby facilitating further applications without
compromising privacy concerns.
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1 Introduction

With the development of Advanced Metering Infrastructure (AMI) in smart grid, a large
amount of fine-grained customers’ power consumption data is collected by smart meters,
leading to a better perception of the demand side for both power utilities and retailers and
higher efficiency of all links in power system (Mohassel et al., 2014). However, these valuable
data also carry inherent sensitive information risks, potentially revealing personal habits and
lifestyle choices of customers, which poses great threats to customer privacy. Striking a
balance between operational efficiency and privacy protection in the smart grid is an ongoing
challenge, necessitating methods to model customer energy behavior while ensuring privacy.

The distribution of real-time customers’ electricity demand can hardly be calculated
because of the variation and acute fluctuating aspects between customers (Grandjean et al.,
2012). Though many privacy issues are involved, load curves are still central to demand-side
management rather than statistical indicators of consumption data, especially in the
electricity market. For distribution network operators, smart meter data can help to
realize better low-voltage network modeling and management (Haben et al., 2016). For
electricity retailers, the exact power consumption demand of their customers is vital to their
marketing strategies, and high-resolution data guarantees demand forecasting ability, which
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may result in lower opportunity costs and higher profit (Da Silva
et al., 2013). For aggregators, household load shapes have the
potential to enhance the targeting and tailoring of demand
response (DR) as well as improve energy reduction
recommendations (Kwac et al., 2014), and when it comes to real-
time demand response, potential evaluation load curves are
indispensable. With the help of deep learning, smart meter data
could also be used for customer characterization, where customers’
sociodemographic characteristics could be inferred by their load
profiles (Wang et al., 2018). Besides, Non-Intrusive Load
Monitoring (NILM) has been used for classification and energy
consumption estimation (Gillis et al., 2015). Besides, energy theft
detection (Hu et al., 2019) and bad data detection (Li et al., 2009) are
also conducted with demand-side energy consumption data.
However, though better energy management could be achieved
by analyzing the data collected from smart meters, there are also
concerns about the abuse of these personal data (Hu and Vasilakos,
2016), not only affecting the safe operation of the critical
infrastructure but also violating customers’ privacy. Energy
consumption data collected from the demand side could
expose customers’ personal activities to anyone with access to
these data and result in property damage and other undesirable
outcomes.

To address privacy concerns in the provision of customer
energy data to other entities in the electricity market, it is
advisable to share the processed data instead of raw customer
data. However, traditional data privacy protection methods, such
as anonymization and adding random noise, have been found to
be not always reliable based on existing studies (Armoogum and
Bassoo, 2019). Moreover, the method of Differential Privacy
(DP) is often used to conceal user information, but it may
introduce excessive noise, particularly for high-dimensional
time series data, which may compromise the utility of the data
(Sangogboye et al., 2018). Utilizing models to synthesize new data
is one of the approaches to address issues related to data
insufficiency or data privacy concerns (Arif et al., 2017).
systematically review existing load modeling techniques, but
the biases are inherent in these model-based methods due to
the assumptions made regarding the load operations. In recent
years, data-driven generative models such as generative
adversarial networks (GAN) (Goodfellow et al., 2014) have
enabled the modeling of power systems without models. GAN
was first introduced to renewable scenario generation in (Chen
et al., 2018), and has been used in load generation (Wang et al.,

2021), reconstruction of high-temporal-resolution PV
generation data (Zhang et al., 2021), etc. Besides, GAN has
also been introduced to generating electroencephalographic
data (Debie et al., 2020), spatial-temporal data (Qu et al.,
2020), and sensitive data in IIoT operations (Hindistan and
Yetkin, 2023), etc. which could realize data privacy protection
through data generation. Since the output-diversity characteristic
of GAN could match the stochastic power consumption of
demand side, it could also be used for generate new
consumption data and replace real data sharing to avoid
privacy leakage.

This paper introduces a novel approach using information
maximizing generative adversarial networks (InfoGAN)
combined with multivariate kernel density estimation
(MKDE) for load profile generation. First, the InfoGAN
model is utilized to learn from existing customer load
profiles, where the Q network has the capability to decouple
the load into feature variables, and the generator is capable of
producing realistic load profiles. Subsequently, when new
customer load profiles are needed, MKDE is employed to
evaluate the distribution of existing feature variables, from
which new feature variables can be sampled and
corresponding load profiles can be generated. Notably, the
proposed method is also applicable to inferring potential
loads based on limited available usage data and generating
load profiles for new customers. The key contribution of this
paper can be summarized as follows.

(1) A novel data-driven approach for generating load profiles is
proposed. Information maximizing generative adversarial
networks are first introduced to generate load profiles, which
could achieve accurate modeling of customer energy
demands through a data-driven approach. This allows for
the rapid generation of extensive required customer load
data, providing a robust data foundation for service
providers.

(2) The proposed method could extract the intrinsic features of the
load profiles, which provides new insights for load modeling.

FIGURE 1
Participants with access to demand-side data in smart grid.

FIGURE 2
Framework of the proposed method.
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Combined with multivariate kernel density estimation, it
enables the generation of any desired type of load profile,
which has been validated through case studies.

(3) Based on the proposed method, potential utility curves can be
efficiently and accurately generated from a limited sample of
customer load data, which provides significant assistance in

FIGURE 4
Clustering results of load profiles.

FIGURE 3
The structure of InfoGAN.
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researching potential customer load demands, offering valuable
insights for further studies.

The paper is organized as follows: Section 2 outlines our
proposed method’s framework; Section 3 details the
methodology, including algorithm introduction and model
implementation; Section 4 describes and evaluates the results;
and Section 5 concludes the paper.

2 Framework

As shown in Figure 1, there are four major participants involved
in data circulation in the smart grid: customers, power utilities, data
platforms, and service providers. Power utilities collect data from
customers through AMI, as well as taking suggestions from service
providers such as aggregators to achieve demand-side management.
Service providers analyze received data and provide suggestions to
participants in the ancillary services market, which could be energy-
saving advice for customers or efficient scheduling policies for power
utilities, as well as getting involved in demand response as
aggregators or participating in the electricity market as retailers.

As stated before, the original data collected from customers contains
quality and privacy issues so that data platform is necessary to work
as an information hub that gets real data from power utilities and
provides service providers with cleaned and masked data. Moreover,
with the popularization of the electricity market, data platforms may
also be able to trade data someday since data itself is one of the most
valuable assets in the electricity market.

To address these issues, we proposed a data-driven method for
smart meter data generation based on InfoGAN and MKDE, which
could capture the features of historical load profiles, and realistic
data can be generated through generative models based on samples
from feature space. The generated data maintains the characteristics
of historical data as well as hiding detailed personal information,
which is suitable for data circulation to service providers. The
framework of the proposed method is shown in Figure 2,
encompassing both the model training and data generation phases.

In the model training process, historical customer energy
consumption data are used as the training for the generative
model. The training process is meticulously designed to enable
the generator within InfoGAN to learn the distribution of
historical data through adversarial training, and the Q network is
capable of extracting key features without labeled data. When new

FIGURE 5
Original and Generated Results of three typical customers. (A) Original Load Profiles, (B) Feature Distiriontions, (C) Generated Load Profiles.
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data is required, historical data or specified types of customer load
profiles can be used as reference samples. The Q network is then
utilized to obtain reference features from these samples.
Subsequently, Multivariate Kernel Density Estimation (MKDE) is
used to estimate the probability density functions (PDFs) of features
to decipher their distribution in a multi-dimensional space non-
parametrically, allowing for the generation of feature variables
through sampling. Finally, these features are used as input for
the generator, which could generate the required load profiles.

It should be mentioned that the feature variables for generation
are sampled from the distribution of existing data, ensuring that the
generated profiles do not directly correspond to specific customers,
which could also preserve privacy. Moreover, this approach is
applicable even with limited historical data. Sampling in the
feature space reduces computational complexity and leverages the
attributes of historical data, yielding more realistic load profiles.

3 Methodology

In this section, information maximizing generative adversarial
networks and multivariate kernel density estimators are introduced
to load profile generation, and detailed implementation are described.

3.1 Load profile generation based on
InfoGAN

Generative Adversarial Networks (GANs) were first proposed as an
unsupervised generative model, which has the ability to generate high-
quality, realistic data. The aim of GAN is to capture the potential

distribution of input data and generate new identically distributed data
samples, which also corresponds to some data issues in the power
system. There are two deep neural networks known as generativemodel
G and discriminative model D being trained simultaneously which
corresponds to aminimax two-player game. The goal of GAN is to train
generative model G to capture exactly the real distribution of the input
data x assisted by constantly optimized discriminative model D. The
competition in this game pushes both of these two models to improve
their performance until Nash equilibria are achieved that the samples
generated byG can’t be distinguished from the original data x byD. The
distribution of the input data x is defined as Pdata and noise variable z
under a known prior distribution Pz such as Gaussian distribution is
used as the input of G. The target of G is to present a mapping from
prior distribution to the data space denoted as G(z). The output of D
denoted as D(x) is a single scalar representing the estimation that x
comes from Pdata rather than the generated distribution Pg. As a result,
the objective function of training G is maximizing D (G(z)), and the
object function of training D is minimizing D (G(z)) as well as
maximizing D(x)x~Pdata

, and the value function of GAN can be
written as follows:

min
G

max
D

V D,G( ) � Ex~Pdata x( ) logD x( )[ ]
+ Ez~Pz z( ) log 1-D G z( )( )( )[ ]

Despite its effectiveness, the vanilla GAN encounters challenges
in learning interpretable and disentangled representations of data,
which is critical for understanding and controlling the generative
process. To put it into practical usage, a method to extract the
features of data is needed. As an innovative iteration of GANs,
InfoGAN (Chen et al., 2016) addresses this limitation by learning to
disentangle representations of the data in an unsupervised manner.

FIGURE 6
The impact of feature value on the generated results.
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The core innovation of InfoGAN lies in the introduction of an
auxiliary network, the Q network, which maximizes the mutual
information between the feature variables c and the observations
G(z, c), effectively inducing the generator to learn meaningful and
interpretable representations. Here, feature variable c represents the
conditional variable, encoding interpretable and meaningful
attributes of generated samples, while z is the noise variables
introducing randomness to ensure diversity in generation.

Figure 3 illustrates the structure of InfoGAN. Unlike
conventional GANs, where the generator only receives a noise
variable z as input, InfoGAN augments this by incorporating
feature variables c. These variables are designed to represent
distinct and interpretable attributes of the generated samples, and
the Q network is trained to predict these feature variables. Besides,
the Q network often shares parameters with the discriminator to
enhance training efficiency and model compactness in practice,
which leverages the feature-discriminating capabilities of D,
facilitating more effective inference of the conditional variables.
This training encourages the generator to produce outputs where
variations in the features correspond to variations in specific,
interpretable aspects of the generated data. Q (c|x) is computed
to approximate the posterior P (c|x), and it is proved that mutual
information I (c, G (z,c)) can be quantified by
Ex~G(z,c)[Ec′~P(c|x)[logQ(c′ |x)]]. Consequently, the minimax
game of InfoGAN can be described as follows, where λ is a
regularization coefficient that balances the conventional GAN
objective with mutual information maximization.

min
G

max
D

VInfoGAN D,G, Q( )
� V D,G( )-λEx~G z,c( ) Ec′~P c|x( ) logQ c′ x|( )[ ][ ]

In this paper, the training of InfoGAN is described as follows.

•Hypermeter: α, learning rate. m, batch size. ncritic, the

number of D updates per G updates.

•Require: θg0, initial G parameters. θd0, initial D

parameters. θq0, initial Q parameters.

1: while θ has not converged, do

2: for t = 0, . . . , ncritic do

3: Sample x(i)m
i�1 ~ pdata # a batch from the

training data

4: Sample z(i)m
i�1 ~ pz and c(i)m

i�1 ~ pc # a batch from

latent distribution

5: # Update discriminator D:

6: gθd ← ∇θd
1
m∑m

i�1 [logD(x(i)) + log(1 − D (G(z(i),c(i))))
−λlogQ(c(i)|G(z(i) , c(i)))]

7: θd ← θd + α · RMSProp(θd ,gθd)
8: # Update Q network:

9: gθq ← ∇θq
1
m∑m

i�1[λlog Q(c(i)|G(z(i),c(i)))]
10: θq ← θq + α · RMSProp(θq,gθq)
11: end for

12: # Update generator G:

13: gθg ← ∇θg[−1
m∑m

i�1log(1 − D(G(z(i) ,c(i) ))) +λlogQ(c(i)

|G(z(i), c(i)))]
14: θg ← θg − α · RMSProp(θg ,gθg)
15: end while

Algorithm 1. Information Maximizing Generative Adversarial Networks.

In practice, generator G and discriminator D are both deep neural
networks composed of multilayer perceptron, normalization, and leaky
rectified linear units (leaky ReLU) with RMSProp algorithm for weight
updates. ncritic denotes the number of discriminator updates per generator
update, balancing their training pace and ensuring the discriminator’s
effectiveness in guiding the generator’s learning process. Besides, 1D
convolutional layers are also adopted in the proposed models.

In summary, InfoGAN is introduced to load profile generation,
aiming at disentangling the features of power consumption data, which
not onlymaintains the generative strengths of traditional GANs but also
significantly improves the model’s utility in understanding and
manipulating complex load data distributions.

3.2 Multivariate kernel density estimation for
feature modeling

To generate data similar to that of a specific customer, the
feature variables corresponding to the customer’s historical data can
be used as a reference. As multivariate kernel density estimation
(MKDE) extends the concept of kernel density estimation (KDE) to
multiple dimensions, it could estimate the probability density
functions of a vector of variables, enabling the sampling of new
feature variables for the generation of new samples.

The typical formula of the MKDE can be expressed as follows,
where f̂(x) denotes the estimated probability density function at
point x, n represents the number of data points, xi is the i-th data
points, KH is the kernel function measuring the similarity between
the point x and the data point xi.

f̂ x( ) � 1
n
∑n
i�1
KH x − xi( )

However,MKDEpresents increased computational complexity and
challenges in bandwidth selection. The choice of bandwidth, critical in
density estimation, becomes more complex as it often requires a matrix
to appropriately scale the kernel in each dimension, considering inter-
variable correlations. In this paper, we adopted the commonly used
Silverman’s rule (Zhang et al., 2006), which suggests the use of a
diagonal bandwidth matrix H � diagonal(h1,/, hd) where each
diagonal element is derived from the corresponding univariate
bandwidth estimate for each dimension. Each diagonal element can
be expressed as follows, where d is the dimensionality of the data, n is
the sample size, and σ i is the standard deviation of the i-th dimension.

hi � 4
d+2( )n( )

1/ d+4( )
σ i

Besides, the kernel function is pivotal as it determines the
manner and extent of smoothing applied to the data in MKDE.
Compared to other kernels, the Gaussian kernel facilitates the
handling of the tails in the data distribution more effectively. As
a result, the Gaussian kernel is employed as kernel function K to
ensure a continuous, smooth density estimate.

4 Case study

In this section, the proposed method is trained with historical
consumption data, aiming at extracting key features of load profiles
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and generating realistic load profiles conformed to regular patterns
of customers’ electricity consumption.

4.1 Data description

The proposed method was validated on a dataset of small and
medium enterprises (SME) in Ireland, which includes electricity
consumption data collected every 30min over a period of 1.5 years.
Notably, the missing or abnormal data in this dataset, which can be the
result of faulty data collection instruments, is fully removed instead of
extrapolating the missing values to protect the original features. To
address potential challenges arising from absolute consumption values,
which could negatively impact the training approximation and
generalization, all features were normalized through min-max scaling,
resulting in a standardized range of [0,1]. This normalization process
facilitated the comparison of load profiles across diverse customers and
served to enhance the disclosure of dynamic data characteristics.
Consequently, 90,155 days’ load profiles from 319 customers were
selected, and the data from 256 customers were used to train the
generative model, while the rest was used for the testing.

To further understand the characteristics of load profiles, the
K-means clustering method with K = 3 was employed to cluster all

load data, which also facilitates a more structured comparison within
homogenous groups and effectively showcases the proposed method’s
performance. The clustering results and the consumption profiles of
typical customers within each cluster are shown in Figure 4. It is
observed that cluster 1 primarily exhibits consumption peaks at noon
with lower loads in the morning and evening, resembling the electricity
usage pattern of commercial office buildings. Cluster 2 demonstrates a
gradual increase in load from noon to past midnight, likely representing
businesses such as restaurants that operate into the evening. Cluster
3 shows higher loads during the early morning hours, suggesting
enterprises that operate at night. The clustering results also reveal
significant variability and uncertainty in the load profiles, making them
difficult to describe with mathematical models. However, similarities
could also be found among load profiles, which suggests that a data-
driven approach could be effectively used for modeling.

4.2 Load profile generation for existing
customers

In this paper, the feature variable c is a continuous variable
containing ten features with a range of values between 0 and 1, and
the dimension of noise variable z takes 50 which is sampled from a

FIGURE 7
Distribution by hour of load generated by different methods.
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Gaussian distribution. All weights ofG,D, andQ are initialized from
a centered Normal distribution with a standard deviation of 0.02,
and batch normalization is adopted.

Figure 5 provides a visual representation of the efficacy of the
proposed method in capturing and replicating the inherent
variability in electricity consumption patterns across different
customers. Figure 5A delineates the actual load profiles for
customers 7, 64, and 73, aggregating over a period of 100 days.
These profiles are characterized by distinctive usage patterns,
underscoring the individualized nature of electricity
consumption. In Figure 5B, the red sections encapsulate the
distribution of original feature variables extracted by the Q
network. The blue section presents the distribution formed by
randomly sampling 100 feature vectors after analyzing the
original feature distribution with MKDE, illustrating the close
approximation to the original feature distribution. Figure 5C
showcases the generated load profiles based on the
aforementioned sampled features. Remarkably, these synthesized
profiles exhibit a high degree of resemblance to the actual load
profiles, which is indicative of the model’s ability to learn and
simulate complex, real-world data distributions. It should be
noted that since the generated data is randomly sampled from
the feature space, there is no deterministic mapping between the
original and the generated load profiles.

An empirical analysis of the impact of individual feature variables
on the generated load profile is also conducted. A day’s load data of a
customer was chosen as the baseline, and its corresponding features
were extracted through the Q network. Then, different features were
modified separately, which were then used as input of the generator
along with a fixed noise variable z to produce new load profiles. As
shown in Figure 6, the abscissa of the figure corresponds to ten features,
while the ordinate reflects the modified value of these features. The

baseline load data, represented in orange, serves as a reference against
which the impact of feature adjustments can be measured, while the
generated load profiles are depicted in blue. Notably, regions with
significant deviations from the baseline are encapsulated within red
dashed boxes. It can be observed that each feature has a noticeable
impact on the load profiles. For example, feature c1 predominantly
impacts the onset of the morning load peak and a c2 appears to
determine the peak load value in the afternoon. Besides, the interaction
between features is not isolated, as the morning load variation is
collectively influenced by features c6 through c9, which suggests a
complex and interconnected feature space contributes to shaping the
load profile. The figure demonstrates the capacity of the proposed
method to learn and generate the dynamics of load profiles, which also
proves its utility in learning disentangled and interpretable
representations of the load profiles.

4.3 Comparative analysis

In this paper, the two most commonly used generative models,
Variational Autoencoders (VAE) (Kingma et al., 2019) and Vanilla
GAN, are used for comparison. Due to the extensive variety of load
profiles in the original dataset, evaluating the effectiveness of the
proposed method using the complete dataset is challenging.
Therefore, a comparative approach using different clusters is
adopted. Both VAE and GAN are trained with corresponding
data of the test clusters and generate 1000 samples. In the
proposed method, MKDE is used to estimate the feature
distribution under different clusters and feature variables are
then sampled based on these distributions to generate samples.

Figure 7 presents a schematic of the samples generated by different
methods compared to the samples of the corresponding clusters. The

FIGURE 8
Comparison of MMD of different methods.
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central line graph in each cluster illustrates the average load profile
generated by the respective method, with the surrounding shaded area
denoting the standard deviation from this mean, encapsulating the
variability and dispersion of the samples. It is apparent that the
proposed method closely approximates the original data, as
indicated by both mean and standard deviation. The results
demonstrate the proposed method maintains good statistical
characteristics when generating a large volume of samples.

Furthermore, the Maximum Mean Discrepancy (MMD) metric
(Gretton et al., 2012) is also used to estimate the effectiveness of the
proposed method. This metric quantifies the disparity between the
distributions of real and generated data, with a smaller MMD value
signifying a greater similarity between the two data sets. As shown in
Figure 8, the results demonstrate that the data generated by the
proposed method exhibit higher similarity across various scenarios
compared to traditional generative methods, thereby validating the
effectiveness of the proposed approach.

4.4 Load profile generation for new
customers

In demand-side management, there also arises a need to
generate additional user load data from a limited dataset to infer
probable energy usage scenarios, and the enhanced load data could
facilitate comprehensive demand forecasting, load balancing, and
tailoring energy efficiency measures. Compared to traditional
models like the vanilla Generative Adversarial Networks (GAN),
which have uncontrollable output results, the proposed method
allows for the generation of customer load profiles that align with
known information. Besides, the proposed method does not require
prior knowledge of a customer’s specific category, as is necessary for

models like conditional GANs (cGANs), and leverages existing
samples as a reference. When limited real data of a customer is
available, the proposed method can also rapidly generate potential
load profiles for research and analysis.

Different quantities of samples were selected from the test set as
reference samples, and the feature distribution was first obtained using
MKDE, followed by generating corresponding samples. As shown in
Figure 9, the proposedmethod is capable of generating similar samples
even with as few as ten reference samples. As the quantity of reference
samples increases, the MaximumMean Discrepancy (MMD) between
the generated samples and the real samples progressively decreases,
which indicates that the generated dataset increasingly resembles the
real sample set, demonstrating the method’s efficacy in accurately
replicating real-world data. Additionally, the diversity of the generated
samples also increases with the number of reference samples,
suggesting that more reference samples can better depict the feature
space corresponding to the real samples.

5 Conclusion

This paper presents a novel methodology combining InfoGAN and
MKDE for generating customer load profiles. The approach leverages
InfoGAN to learn from existing load data, with itsQ network effectively
disentangling feature variables and the generator producing realistic
load profiles. MKDE is then used to assess the distribution of these
features for new profile generation. Through this procedure, the privacy
of customers is well protected because the real data are separated from
third parties by generative models. The case studies have demonstrated
the quality of generated samples compared to the real load profiles,
which could be proof of the effectiveness of the proposed method. The
proposed method provides an effective tool for load data analysis in

FIGURE 9
The relationship between generated sample quality and reference sample quantity.

Frontiers in Energy Research frontiersin.org09

Lan et al. 10.3389/fenrg.2023.1339543

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1339543


power systems, offering significant support for the planning and
management of power systems.
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