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A high-precision, complex, three-dimensional (3D) geological model can directly
express the attributes of stratum thickness, geological structure, lithology and
spatial form, which can provide a reliable basis for the development and utilization
of underground space and planning decisions. However, it is difficult to perform
accurate modelling due to the lack of basic data. As such, this paper proposes
coupling a machine learning algorithm (K-nearest neighbour (KNN)) with the
kriging algorithm to construct the topological relationship between the Delaunay
triangle and the Thiessen polygon in order to perform the simulation and
prediction of virtual drilling. Based on KNN, support vector machine (SVM) and
neural network algorithms as well as the virtual borehole encryption data, data
standardization processing and analysis are carried out. Through model
verification, algorithm optimization is realized, and the optimal modelling
method is explored. The results show that the fine KNN algorithm improved by
Bayesian optimization can effectively improve the modelling accuracy through
0.1-mencryption, standardization processing and 5-fold cross-validation. Stratum
modelling combined with the fine KNN and kriging algorithms can obtain a more
accurate modelling without adding virtual boreholes. The improved levels of
upper and lower hybrid modelling with an appropriate number of profile
boreholes can also effectively optimize model accuracy. Both modelling
accuracy and efficiency can be significantly improved by using Delaunay
triangles and Thiessen polygons with virtual boreholes. Stratum modelling can
effectively express the geological pinch-out in areas with adequate degrees of
stratification, and hybrid modelling performs well in irregular geological bodies
such as karsts and lenses.
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1 Introduction

Three-dimensional (3D) geological modelling uses computer technology to integrate
survey data in 3D space to restore the spatial form and combination relationship between
geological interfaces and geological bodies (Xiao et al., 2012;Wang et al., 2016). Accurate and
detailed 3D geological models can provide technical support for professionals when
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analysing geological structures and fault distributions, which will
provide a reliable basis for the development and utilization of
underground space (Li et al., 2016).

Traditional explicit modelling uses mainly drilling, acoustic
wave testing, gravity exploration, electromagnetic wave testing
and other methods to obtain data. Meanwhile, modelling based
onmanual interaction is inefficient and not accurate. In contrast, the
implicit modelling of 3D models through spatial interpolation
algorithms has developed rapidly and been widely used (Jessell,
2001; Calcagno et al., 2008; Li et al., 2015). Spatial interpolation
algorithms include mainly kriging interpolation, inverse distance
weighted interpolation (Liu et al., 2020; Nistor et al., 2020; Liu et al.,
2021; Liu et al., 2023), and discrete smooth interpolation (Jeong
et al., 2018; Wang et al., 2019; Sun and Durlofsky, 2019; Jin et al.,
2020; Liu et al., 2021; Zhang et al., 2022; Fu et al., 2023). Among
them, kriging interpolation (Krige, 1951; Hu et al., 2018; Zhang and
Zhu, 2018; Li et al., 2020; Wang et al., 2021; Li et al., 2022), as the
main method used for spatial statistics, can well express the
structural characteristics of complex geological bodies (Adhikary
et al., 2017) and is widely used in the field of geological modelling.
Kriging interpolation method has been effectively applied for
complex geological rapid modelling (Cheng et al., 2023),
transparent working face modelling (An et al., 2022), coal seam
3D modelling (Che and Jia, 2019), fault 3D modelling (Jia et al.,
2020) and other complex geological conditions.

However, implicit 3D modelling technology is limited by grid
scale, data density and the algorithm used and cannot be finely
controlled for local complex geological structures (He et al., 2015).
In the case of fewer borehole data, it is difficult to achieve a good
complex geological modelling effect only by kriging interpolation.
Therefore, professionals are required to supplement the data and
adjust their geological models. Machine learning has made great
progress in recent years as it has powerful data analysis capabilities
and does not require prior theoretical formulas and expert
knowledge. Machine learning even surpasses humans in some

respects (He et al., 2023). Therefore, the introduction of machine
learning into the field of geosciences has become a recent research
hotspot. In complex geological conditions, lithology and strata can
be used as important indicators to distinguish the accuracy of the
model. By using machine learning algorithms, lithology can be well
predicted (Wang et al., 2018; Guo et al., 2019; Pratama, 2019; Jia
et al., 2021; Zhu et al., 2021; Li et al., 2022; Erdogan Erten et al., 2022;
Chen et al., 2023) and strata (Zhou et al., 2019; Shi and Wang, 2021;
Bullejos et al., 2022; Xiong and Liu, 2022; Wang et al., 2023; Wang
et al., 2023). Supervised learning for solving classification problems
in machine learning is more suitable for the above work. The
application of supervised learning algorithms in geological
modeling mainly includes the following categories; 1) k-nearest
neighbor algorithm (Pratama, 2019; Potratz et al., 2021; Bullejos
et al., 2022); 2) bayesian algorithm (Olierook et al., 2021; Zhang
et al., 2021); 3) decision tree algorithm (Bacal et al., 2019; Zhou et al.,
2020); 4) support vector machine algorithm (Wang et al., 2019;
Ghezelbash et al., 2021; Hu et al., 2022); 5) neural network algorithm
(Bai and Tahmasebi, 2020; Hillier et al., 2021). The above algorithms
have their own advantages, as shown in Table 1 below. Therefore,
each algorithm has a certain application in geological modeling. As a
reliable algorithm in machine learning, KNN algorithm has a good
performance in geological model construction. This paper mainly
studies the KNN algorithm, which is applied to the virtual borehole
prediction in the complex geological area of this study. The
advantages of the algorithm, such as mature theory, easy
implementation and no need to estimate parameters, are fully
utilized. Finally, the training data is tested, and the results are
satisfactory. The modeling accuracy is better than other machine
learning algorithms.

The kriging algorithm is an optimal interpolation method in
implicit modelling, has a wide application range and small deviation,
and can effectively construct geological models. However, the
algorithm assumes that the data are linear and requires a large
amount of uniformity data. Moreover, drilling data acquisition costs

TABLE 1 Summary of complex geological machine learning algorithms.

Name Explanation Advantages Disadvantages

Naive Bayes This method is a classification method based on
Bayesian theorem and independent assumption
of feature conditions

This method has good robustness It is difficult to deal with the associated data sets

Decision Tree This method obtains a tree classifier through
sample data learning. The correct classification
can be given for the new samples to be classified

This method is easy to understand and
implement, fast and small amount of calculation

When dealing with large sample sets, over-fitting is
easy to occur

K-Nearest
Neighbor

This method uses the labeled adjacent points in
the space formed by the input elements to predict
the class

It is mature in theory, simple in thought, easy to
understand and easy to implement. It does not
need to estimate parameters and can be used for
nonlinear classification. It has no assumptions on
data, high accuracy and is not sensitive to outliers

When the sample is unbalanced, it is possible that
when a new sample is input, the samples of the large
capacity class in the K neighbors of the sample
account for the majority

Artificial
Neural
Network

This method performs distributed parallel
information processing by imitating the behavior
characteristics of animal neural networks

It has strong parallel distributed processing
ability, distributed storage and learning ability,
strong robustness and fault tolerance, can fully
approximate the complex nonlinear relationship,
and has the function of associative memory

A large number of parameters are needed, the
output results are difficult to explain, and the
learning time is too long

Support Vector
Machine

This method uses the maximum margin
hyperplane solved by the learning sample as the
decision boundary to classify the data

It can handle high-dimensional data, has strong
generalization ability, can handle nonlinear
problems, and has good robustness and
interpretability

It is sensitive to parameters, data scaling and noise
data, and has high computational complexity. It is
only suitable for binary classification problems
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are high, and the complex geology makes it difficult to meet the
algorithm conditions. Machine learning has powerful data analysis
capabilities and can handle local complex geological structures well.
Furthermore, machine learning can effectively analyse complex data
with nonlinear, nonstationary, non-Gaussian and multivariate
characteristics. Therefore, the combination of the KNN and
kriging algorithms can give full play to the advantages of the
KNN algorithm in effectively predicting complex data and
provide the best linear unbiased estimation of the kriging
algorithm and improve the accuracy of complex geological
modelling. Because there are many complex geological structures
such as karst and geological pinchout in geology (Nanehkaran et al.,
2023). Complex geological visualization is very important in the
study of geological disasters (Mehrabi et al., 2023). Therefore, it is an
important task to study the construction of complex geological
models. At present, the research mainly focuses on the accuracy
of the algorithm to prove the effect of the algorithm (Bacal et al.,

2019; Ren et al., 2022). There are few studies on model construction
using the data processed by the algorithm. Moreover, it is difficult to
use data alone to study the prediction effect, and the visualization
effect of the obtained research results is poor. It is impossible to draw
a specific modeling effect conclusion from a quantitative perspective
(Olierook et al., 2021; Bullejos et al., 2022).There is still a lack of
methods for modelling complex geology using machine learning
algorithms combined with kriging algorithms, which motivates this
study. Based on previous studies, this paper explores a complex
geological implicit modelling method that couples the KNN and
kriging algorithms with fewer data, as shown in Figure 1. Because
modelling accuracy is difficult to determine, this paper intends to
determine the specific performance of this modelling method in
complex geological models through the profile data verification
method. An accurate and complex 3D geological model is then
constructed. It is expected that this study would provide technical
support for professionals in carrying out geological analysis.

FIGURE 1
Flow chart of the kriging and KNN coupling algorithm modelling method.
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2 Kriging and K-nearest neighbour
coupling algorithm

2.1 Key modelling techniques based on the
kriging method

The kriging interpolation algorithm is an optimal interpolation
method proposed by South African engineer Danie G. Krige, also

known as the spatial autocovariance optimal interpolation method
(Krige, 1951). This method is based on variogram theory and
structural analysis and is suitable for regionalized variables with
spatial correlation. This method is also a geostatistical gridding
method. The approach first considers the variation distribution in
the spatial position to determine the distance range that has an
impact on a point to be inserted. The sampling points are then used
in this range to estimate the attribute value of the point to be inserted

FIGURE 2
Principle diagram of the kriging and KNN coupling algorithm.

FIGURE 3
Initial borehole distribution.
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FIGURE 4
Virtual borehole selection step. (A) Initial drilling point. (B) Creation of a TIN. (C) Transformation of a TIN into a triangle. (D) Creation of a Tyson
polygon. (E) Intersection. (F) Total strongholds.

FIGURE 5
Borehole encryption diagram.
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to achieve linear, unbiased and minimum variance estimation.
Eventually, a certain coefficient can be assigned to each sample.
Finally, the weighted average calculation is performed. The principle
of which is shown as follows:

‾Z0 � ∑n

i�1γiZi (1)

where, ‾Z0 is the estimated value at point (x0, y0); Zi is the measured
value of point i, which is a known value; and γi is the kriging
coefficient, which is the weighted sum of the data of all known
observation points in space to estimate the value of the interpolation
points.

The kriging interpolation used in this paper can be applied to
sequence prediction in stratigraphic modelling. Drilling points are
used as sampling points, which are divided into sequences according
to geological laws. Based on the characteristics of nonlinearity and
the statistical principle of kriging interpolation, the advantages of the
kriging method, such as small deviation and strong applicability, are
fully utilized. According to the divided sequence, the strata without
borehole positions are predicted. Meanwhile, this method can also
be used for boreholes without sequence division in lithology
modelling and direct modelling through exponential kriging
interpolation to complete complex, true 3D geological modelling.

FIGURE 6
Accurate index comparison. (A) 0.1 m confusion matrix. (B) 0.1 m ROC curve. (C) 1 m confusion matrix. (D) 1 m ROC curve.

TABLE 2 Encrypted distance comparison.

Encryption distance (m) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Accuracy (%) 95.5 88.9 83.1 79.1 75.1 71.2 67.6 63 61 58.5

Data size 4904 2583 1814 1435 1191 1033 945 846 783 733
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2.2 Key modelling techniques based on the
K-nearest neighbour method

The KNN algorithm is a supervised machine learning algorithm,
the core idea of which is that if a sample belongs to a certain category
in the K-most-adjacent samples in the feature space, then the sample
also belongs to that category and has the sample characteristics of
that category. In this study, the KNN algorithm is applied to the
prediction of virtual boreholes. According to the known borehole
lithology as the attribute value, when the new data with only
coordinates without lithology are input, the algorithm compares
the coordinates of the new data with those of the known borehole
data and then extracts the most similar K data (nearest-neighbour
object) attribute values. The algorithm takes the average attribute
value as the virtual borehole attribute value according to the first
K-most-similar data. The first step in the application of the KNN
algorithm is similarity measurement, which often uses the Euclidean
distance, cosine value, correlation and Manhattan distance. In this
paper, the Euclidean distance is taken as an example to measure the
distance between the sample point and the new data point and is
defined in Euclidean space. The distance between the new data point

x0 � (x0,1, x0,2, . . . , x0,j, . . . , x0,n) and the sample set xi �
(xi,1, xi,2, . . . , xi,j, . . . , xi,n) is then expressed as follows:

d x0, xi( ) � ∑n

j�1 xi,j−x0,j( )2[ ]
1/2

(2)

where, d(x0, xi) is the Euclidean distance between the ith sample
point and the new data point, and xi,j and x0,j are the jth attribute
values of the ith and new sample points, respectively.

2.3 Basic principle of the coupling algorithm

The kriging interpolation algorithm is suitable for regionalized
variables with spatial correlation and requires enough data as it is
difficult to take advantage of the algorithmwhen the amount of data is
small. The algorithm assumes that the relationship between samples is
linear, and the covariance and variogram required in the process are
based on two-points statistical analysis. However, in some cases, the
data have complex multivariate characteristics, non-Gaussianity, and
non-stationarity and may be nonlinear. Therefore, it is difficult to
effectively interpolate nonlinear and complex feature data in space.

Machine learning algorithms can learn from the data and check
their predictive ability through the expert-driven mechanism of
supervised learning. A machine earning algorithm does not have
higher requirements for the stability and linearity of the data than
does the kriging algorithm. Instead, the machine learning algorithm
selects the model based on the data feature and does not make strict
statistical assumptions on the data. Therefore, the machine learning
algorithm can effectively analyse some complex feature data and
accurately predict complex strata and rock sample information.

Figure 2 shows the principle the kriging and KNN coupling
algorithm in machine learning to give full play to their respective
advantages and improve modelling accuracy. On the one hand, the
coupling algorithm takes advantage of the KNN algorithm to effectively
solve complex data and predict complex geological models. On the other
hand, the coupling algorithm takes advantage of the best linear unbiased
estimation of the kriging algorithm to reduce the minimum variance at
unsampled positions and construct high accurate geological models.

TABLE 3 Comparison of machine learning algorithm accuracies.

Algorithm Accuracy (%)

Fine KNN 95.5

Wide neural network 94.6

Integrated (bagged tree) 94.4

Ensemble (subspace KNN) 94.3

Weighted KNN 94.3

Three KNN 92.8

Medium KNN 92.8

Fine Gaussian SVM 92.4

A cosine KNN 91.6

TABLE 4 AUC data of each algorithm lithology classification.

Fine
KNN

Bayesian
optimization

Random
search

Grid
search

Wide neural
network

Fine
Gaussian SVM

Miscellaneous fill 0.95 0.97 0.95 0.98 1 1

Clay 1 0.95 0.95 0.95 0.98 1 1

Clay 2 0.98 0.97 0.98 0.99 1 1

Clay 3 0.97 0.97 0.97 0.99 1 1

Mid-weathered diorite 0.97 0.98 0.97 0.99 1 1

Full-weathered diorite 0.96 0.97 0.96 0.98 1 1

Moderately weathered
marlstone

0.98 0.98 0.98 0.99 1 1

Strongly weathered marlstone 0.98 0.98 0.98 0.99 1 1

Medium-weathered limestone 0.98 0.98 0.98 0.99 1 1

Solution opening 0.98 0.98 0.98 0.99 1 1
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3 Machine learning prediction process

3.1 Data pre-processing

This paper relies on a project plot in Jiangsu Province.
According to the geotechnical engineering investigation report
and field situation, the research and analysis are carried out. The
terrain is generally flat. The local height of the site can reach 3–5 m,
and the undulation is large. The geomorphic unit is the piedmont

alluvial plain geomorphic unit. The upper part of the site is filled
with soil. Layers 2 and 3 are general sedimentary soil layers of
Quaternary Holocene (Q4). Layers 3-1 and 3-2 are old cohesive soils
formed by alluvial deposits of the Quaternary late Pleistocene (Q3).
The underlying bedrock is the Lower Paleozoic Ordovician Xiaoxian
Formation, and the lithology is mainly limestone and marl. The
bedrock is a monoclinic stratum with a strike of NNE8°. Its dip angle
is 2°–17° (from the core of the anticline to the right wing) from west
to east, and there are intrusive dikes in the lower part. There is no

FIGURE 7
Confusion matrix. (A) Fine KNN. (B) Wide neural network. (C) Fine Gaussian SVM. (D) Bayesian optimization. (E) Grid search. (F) Random search.
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new active fault distribution in the proposed site and its vicinity.
During the exploration period, there were no adverse geological
effects such as ground fissures, ground subsidence, landslides,
collapses, mudslides, liquefiable soil layers and so on. However,
there are bad geological conditions such as karst and fold under the
proposed site.

The data in this study are derived from the CAD borehole
histogram. The lithology, x, y, borehole elevation and other data are
extracted and integrated. Stratum modelling is used to standardize
the data by converting them into a standard format, and then
importing them into the software for analysis. The analysis effect
is shown in Figure 3. Through such analysis, the incorrect data in the
sorting process can be corrected. At the same time, the data
distribution can be studied. In upper and lower hybrid
modelling, profile drilling can be added in time to achieve better
modelling results.

3.2 Virtual borehole selection

Because the drilling data obtained in this study are limited and
the geological conditions are complex, it is difficult to carry out
effective geological modelling. Therefore, this paper studies the
method of adding virtual drilling to improve modelling accuracy.
In this study, the spatial location of virtual boreholes is derived
mainly from the following two points: 1) the midpoint of the line
connecting the sampling points of adjacent boreholes (Cao et al.,
2013), where the virtual borehole obtains the midpoint of the three
edges of the triangle through Delaunay triangulation, and 2) the
boundary of the influence range of the borehole sampling point
(Song et al., 2018), where the virtual borehole is extracted by creating
a Tyson polygon.

Figure 4 shows the procedure of adding virtual drilling: 1)
importing x, y, and z data into ArcGIS (see Figure 4A); 2)
creating a TIN based on x and y coordinates (see Figure 4B); 3)
transforming the TIN into a triangle (see Figure 4C); 4) providing an
ID number for the drilling point; 5) establishing a Thiessen polygon
(see Figure 4D); 6) intersecting the triangle and the Thiessen

polygon, and outputting the intersection point (see Figure 4E); 7)
adding x and y coordinates to the virtual drilling point; 8)
interpolating virtual drilling points, and adding z to the virtual
drilling point; and 9) mixing the virtual borehole with the initial
borehole (see Figure 4F).

3.3 Standardized data encryption and
verification method

Due to the small amount of drilling data, the corresponding
features and eigenvalues are small in number. However, because
machine learning needs to train the model with a large amount of
data, this study intends to increase the number of data features and
eigenvalues through data encryption, as shown in Figure 5.

The actual data verification proves that the magnitude of the
encryption is different, and the magnitude of the error is different.
When the encryption degree is 1m, the error is usually in meters.
When the encryption is 0.1 m, the error is in decimeters. According
to previous studies, most of the indicators that prove the
effectiveness of the algorithm are accuracy, confusion matrix and
ROC curve (Bacal et al., 2019; Ren et al., 2022). Therefore, this paper
studies the above indicators. The results are shown in Figure 6.
According to the confusion matrix comparison diagram, it can be
seen that the confusion matrix effect is poor when the encryption
degree is 1 m. Theminimum false negative rate is about 30%, and the
false negative rate for the second lithology is 59.5%. At the same
time, the ROC curve is poor, and the average AUC for each lithology
is about 0.78. For the algorithmmodel with a degree of encryption of
0.1 m, the confusion matrix and ROC curve perform better.

This paper will focus on investigating the change in model
accuracy when the encryption degree is 0.1–1 m. Table 2 shows that
the accuracy of the prediction model increases with increasing
degree of encryption. When the initial encryption is 1 m, the
accuracy of the prediction algorithm model is only 58.5%, while
when the encryption distance is 0.1 m, the accuracy is 95.5%.

After encryption, the data are standardized to avoid affecting the
results of data analysis and to eliminate the dimensional influence
between indicators. Commonly used standardization methods
include min–max, Z score and decimal calibration
standardization. In this study, min–max standardization, also
known as deviation standardization, is used to map the x, y and
z coordinates to the [0,1] interval through the linear transformation
of the original data. The conversion function is shown as follows:

x* � x −min
max −min

(3)

where max is the maximum value of a certain attribute data point of
the sample, and min is the minimum value of a certain attribute data
point of the sample.

Previous studies showed that the supervised learning effect was
better than the unsupervised learning effect, and the learning mode
included classification and regression problems. The research shows
that the strategy of solving the regression problem is not suitable for
the complex geological modelling approach in this paper. The
prediction process faces the problem of stratum intersection, and
it is difficult to predict many high-complexity stratum problems.
Compared with the above methods, the classification problem

FIGURE 8
Survey area and profile distribution.

Frontiers in Earth Science frontiersin.org09

Liu et al. 10.3389/feart.2023.1325907

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1325907


FIGURE 9
Stratigraphic correlation. (A) Model profile. (B) Survey profile.

TABLE 5 Classification algorithm model validation table.

Profile
12

Profile
13

Profile
14

Profile
34

Profile
30

Profile
32

Profile
33

Profile
58

Profile
59

Total
mean

Fine KNN (%) 77.39 65.26 69.35 70.59 76.34 56.47 68.35 65.32 78.23 69.7

Wide neural
network (%)

89.686 62.3 71.14 70.1 72.97 48.11 57.87 77.79 82.11 70.23

Differentials (%) −12.296 2.96 −1.79 0.49 3.37 8.36 10.48 −12.47 −3.88 −0.53
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algorithm is more suitable for the problems studied in this paper.
The lithology is used as the predicted value, and the coordinates are
used as the eigenvalues for learning and prediction, which can
effectively solve the complex geological modelling problem with
fewer data. Therefore, the classification algorithm is used as the main
research method in this paper.

Encrypted data are imported into the software, the classification
algorithm is used for prediction, and the accuracy rate is used as the
primary judgement index. The accuracy verification methods
include mainly cross-validation, leave-out method verification,
and resubstituting verification. According to the actual data
prediction, resubstituting verification has a strong effect on
model accuracy, but the actual modelling effect is poor, and the
data utilization rate of the leave-out method is low. Therefore, cross-
validation is selected as the final verification method. As cross-
validation generally uses 5- or 10- fold cross-validation, this paper
compares and analyses both methods. The analysis shows that the
average value of 5-fold cross-validation is 57.52%, the average value
of 10-fold cross-validation is 55.08%, and the average value of 5-fold
cross-validation data after standardization is 60.75%. The effect of 5-
fold cross-validation is higher than that of 10-fold cross-validation.
The use of min–max standardization for data can also improve the
final modelling effect. Therefore, this study uses min–max
standardized 5-fold cross-validation for data prediction.

3.4 Algorithm selection and optimization

3.4.1 Machine learning algorithm selection
This study uses a variety of machine learning algorithms to

predict the data and examine the accuracy of models, ROC curves,
confusion matrices and final model effects. According to the
training, the data shown in Table 3 can be obtained. According
to the accuracy of the algorithm, different types of KNN algorithms
have higher accuracies. At the same time, wide neural networks,
support vector machines and some integrated algorithms also
achieve better performance. According to the ROC curve, the
AUC values of the wide neural network and the fine Gaussian
SVM are higher than those of other methods, as shown in Table 4. In
summary, this paper selects the fine KNN algorithm, fine Gaussian
SVM and a wide neural network for modelling analysis and selecting
the appropriate algorithm according to the model. The results show
that the fine KNN algorithm improved by Bayesian optimization can
effectively improve the modelling accuracy through 0.1-m
encryption, standardization processing and 5-fold cross-validation.

Figure 7 is the confusion matrix, which shows the true rate
(TPR) of the fine KNN algorithm is above 90%, and no large
fluctuation exists. The wide neural network is more floating than
is the fine KNN algorithm, and the prediction effects of the second
and fourth types of lithology are poor. For the fine Gaussian SVM,
the degree of floating is larger than those of the previous two
algorithms, and the true rate of the last lithology is only 82.2%,
which is less effective than are those of other algorithms.

According to the analysis of the accuracy effect, the fine KNN
algorithm performs better than the wide neural network and fine
Gaussian SVM. However, according to the ROC curve analysis, the
wide neural network and the fine Gaussian SVM perform better than
the fine KNN algorithm. While the confusion matrix shows that theTA
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fine KNN algorithm performs better. It is impossible to make an
accurate judgment based on the above evaluation values. Therefore,
this paper uses the fine KNN algorithm to model the profile. By
cutting the profile shown in Figure 8 and Figure 9 and verifying it,
the accuracy data shown in Table 5 are obtained.

According to the prediction results (Table 6), the fine KNN
algorithm and the wide neural network can effectively predict the
data, while the fine Gaussian SVM faces difficulty in effectively
predicting the data. The algorithm has strong instability and
different degrees of prediction for different types of lithology.
The study of various SVM algorithms shows that this type of
algorithm focuses the prediction data on a certain lithology, the
prediction accuracy for other types of lithology is extremely poor.
And it is impossible to distinguish the borehole boundary, so it is
difficult to obtain effective data.

For the cut profiles, profiles 30, 32, and 33 are more complex
than are other profiles. The survey profile has more lithology and
cannot be modelled according to a simple geological sequence.
According to the above accuracy data, the fine KNN algorithm
performs better under complex geological conditions compared to
the other methods. The overall average is good, and there is not a low
accuracy rate, which can allow for the effective construction of the
geological model. Therefore, in the below research, the fine KNN
algorithm is used.

3.4.2 K-nearest neighbour algorithm optimization
method

According to the above analysis, the accuracy of the KNN
algorithm is high, and the AUC of each stratum (Table 4) of this
method is higher than 0.95. Compared to other methods, in the fine
KNN algorithm, the effect of the confusion matrix is better, and it
has better performance for complex geological areas. The
optimization methods include mainly Bayesian optimization, grid
search and random search. This study uses the above three methods
to optimize the model, and the optimization process and parameters
are shown in Table 7. The analysis shows that random search is
faster, followed by Bayesian optimization, with the grid search time

being much longer than those of the above two methods. The
distance metrics of grid and random search are consistent. By
analysing the confusion matrix (Figure 7), it can be seen that the
true rates of the three optimization models are greater than 90% and
that they have different performance levels in different lithologies. It
is difficult to select effective optimization methods according to the
confusion matrix and ROC curve. In this paper, the data are
predicted and analysed. The data prediction shows that grid and
random search obtain the same prediction results. Therefore, this
paper intends to verify the actual modelling of Bayesian
optimization and grid search. The verification results are shown
in Table 8.

The analysis of the modelling results shows that the overall
accuracies of the grid search and Bayesian optimization are 65.03%
and 70.27%, respectively. Bayesian optimization performs
significantly better than do the other optimization algorithms.
The analysis of the profiles shows that in profiles 32 and 33 with
high complexity, Bayesian optimization exhibits certain
improvement compared with grid search. The analysis shows that
the type of algorithm determines the actual modelling effect.
Bayesian optimization modelling is better than grid search and
random search, and thus, this study intends to use Bayesian
optimization for follow-up research.

4 Model accuracy analysis

4.1 Machine learning prediction effect
analysis

This paper compares mainly the modelling accuracy of the KNN
and kriging coupling algorithm and of the kriging algorithm as well
as evaluate the improved machine learning algorithm.

According to previous studies, there are many studies on the
accuracy of the algorithm to prove the effect of the algorithm
(Bacal et al., 2019; Potratz et al., 2021; Ren et al., 2022). There are
few studies on modeling the data obtained by machine learning.

TABLE 7 KNN optimization algorithm index.

Bayesian optimization Grid search Random search

Training time (s) 22.764 400.78 18.169

Forecasting speed (obs./sec) ~260000 ~140000 ~260000

Distance metric Euclidean Chebyshev Chebyshev

Distance weight reciprocal distance equidistance inverse distance square

TABLE 8 KNN optimization algorithm model validation.

Profile
12

Profile
13

Profile
14

Profile
34

Profile
30

Profile
32

Profile
33

Profile
58

Profile
59

Total
mean

Grid search (%) 78.8 65.83 75.71 44.29 75.03 49.5 61.89 56.18 78.1 65.03

Bayesian
optimization (%)

80.59 67.25 72.63 73.33 74.24 54.89 67.51 64.25 77.81 70.27

Differentials (%) −1.79 −1.42 3.08 −29.04 0.79 −5.39 −5.62 −8.07 0.29 −5.24
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Through modeling, only the structure is analyzed, and the
accuracy of the model is not analysed (Bai and Tahmasebi,
2020; Olierook et al., 2021; Bullejos et al., 2022). It is
impossible to draw a specific modeling effect conclusion from a
quantitative perspective. In this paper, the KNN algorithm and the
kriging algorithm are combined to construct the geological model.

Relying on the accuracy of the algorithm, the confusion matrix and
the ROC curve can only verify the effect of the KNN algorithm. It is
difficult to verify and analyze the model effect after the
combination of the two. Therefore, this paper makes a
comparative analysis of the overlap rate between the final
model and the survey results, in order to find the influence of

FIGURE 10
Accuracy comparison. (A) Accuracy comparison of modelling methods. (B) Comparison of up-down hybrid modeling before and after machine
learning. (C) Comparison of hierarchical modeling before and after machine learning.
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the combination of the two on the accuracy of the final model. In
this paper, the effect of the algorithm is analyzed from the practical
application by using overlapping comparison. It can better
illustrate the effect of this method from the perspective of
engineering practicability. At the same time, this method is

simple and effective, which can reasonably verify the
implementation effect of the algorithm.

The specific steps are as follows: three profiles are uniformly
selected to cut the whole model, and the profiles (Figure 8), from top
to bottom, are 12, 13, 14, 34, 30, 32, 33, 58, and 59.

TABLE 9 Machine learning of upper and lower hybrid modelling.

Profile
12

Profile
13

Profile
14

Profile
34

Profile
30

Profile
32

Profile
33

Profile
58

Profile
59

Total
mean

Initially up and
down (%)

80.59 73.92 68.25 37.99 50.42 38.91 31.79 56.96 49.93 54.31

Forecasting up and
down (%)

80.86 62.85 77.88 38.93 52.31 37.34 39.94 81.03 75.33 60.71

Differentials 1 (%) 0.27 −11.07 9.63 0.94 1.89 −1.57 8.15 24.07 25.4 6.4

Improve up and
down (%)

80.59 67.25 72.63 73.33 74.24 54.89 67.51 64.25 77.81 70.27

Differentials 2 (%) 0 −6.67 4.38 35.34 23.82 15.98 35.72 7.29 27.88 15.96

TABLE 10 Machine learning analysis of stratum modelling.

Profile
12

Profile
13

Profile
14

Profile
34

Profile
30

Profile
32

Profile
33

Profile
58

Profile
59

Total
mean

Initial strata (%) 65.974 64.028 71.8 49.93 61.56 50.88 50.84 59.56 65.05 59.95

Strata
analysis (%)

79.322 65.905 70.94 65.02 71.57 57.54 67.51 66.68 81.89 69.58

Differentials (%) 13.348 1.877 −0.86 15.09 10.01 6.66 16.67 7.12 16.84 9.64

FIGURE 11
Borehole distribution comparison. (A) Initial drilling. (B) Virtual drilling. (C) Improved drilling.

TABLE 11 Comparison of machine learning prediction methods.

Forecasting up and
down

Improving up and
down

Strata prediction after
standardization

Predicted strata before
standardization

Time of modelling 0:55:47 1:18:19 0:00:13 0:00:13

Mean value (%) 59.95 70.27 69.58 68.63

Difficulty in
operation

plain relatively complicated complication extremely complicated
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According to the comparison between the model profile
(Figure 9A) and the survey profile (Figure 9B), the proportions of
the same lithology areas are obtained as the accuracy evaluation index.

Figure 10A shows the accuracy of lithology modelling,
stratigraphic modelling, overlapping hybrid modelling and upper
and lower hybrid modelling.

According to the above diagram (Figure 10A), the overall
performance of upper and lower modelling is better than those
of the other methods. Comparing the upper and lower modelling
approach with the stratum modelling approach, it can be seen that
the two have similar accuracies. Compared with lithology modelling

and overlapping hybrid modelling, stratum modelling and upper
and lower hybrid modelling can improve accuracy by 13.18%,
14.68%, 13% and 14.5%, respectively, which can effectively
improve the modelling effect. Therefore, this paper studies
mainly upper and lower modelling and stratum modelling based
on kriging interpolation.

4.1.1 Prediction effect analysis of upper and lower
hybrid modelling

Figure 10B and Table 9 reveal that machine learning based on
the KNN algorithm can effectively predict formation information.
According to the analysis of modelling accuracy, the KNN algorithm
has a poor effect in upper and lower modelling prediction. When
adding an appropriate amount of profile drilling, combined with the
initial amount of drilling, the prediction can obtain results that are
more accurate, and for some low-accuracy points, the addition of
virtual drilling can effectively improve modelling accuracy. The
amount of data should not be too large, and the accuracy can be
improved by adding corresponding profile points in the missing
parts of the data. When the amount of data is too large, not only is it
difficult to model the operation but it also takes a long time, and the
accuracy rate is worse than that of adding an appropriate number of
points. Therefore, in the case of the KNN and kriging coupling
algorithm, it is necessary to select the appropriate number of vacant
area profile points.

4.1.2 Formation modelling prediction effect
analysis

Figure 10C and Table 10 show that the KNN algorithm has a
good effect in stratigraphic modelling and prediction, and most of
the profiles have been significantly improved. According to the
distribution of boreholes (Figure 11), only the upper parts of profiles
13 and 14 are distributed, there is no borehole distribution in the
lower part, and other effective boreholes are far away. Therefore, it is
impossible to improve the corresponding accuracy according to the
machine learning algorithm, and thus, it is necessary to add some
effective boreholes around the profile to improve the corresponding
accuracy. According to the average accuracy, the two profiles have
good results, and thus, no virtual drilling can be added.

By analysing the above two prediction methods and prediction
results (Table 11), it can be seen that the formation prediction based
on the KNN algorithm requires data preprocessing, which can be
divided into preprediction and postprediction processing. These two
types of processing are similar, and simpler preprediction processing
can be selected. This prediction method can be used for geological
modelling when the degree of stratification is good and the amount
of data is small. For the case of poor stratification and high geological
complexity, the upper and lower modelling method based on the
KNN algorithm can be selected, but the uniformity of the initial data
distribution should be considered, and the appropriate method
should be selected according to the final data processing time.
Figure 12.

4.2 Analysis of virtual borehole distribution

According to the principle analysis of the kriging and KNN
algorithms, the borehole distance has a strong influence on model

FIGURE 12
Comparison chart of borehole distribution accuracies. (A) Initial
drilling. (B) Virtual drilling. (C) Improved drilling.
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FIGURE 13
Comparison of complex stratigraphic profiles. (A) Initial hybrid modelling profile. (B) Predicted hybrid modelling profile. (C) Initial formation
modelling profile. (D) Prediction formation modelling profile.

FIGURE 14
Comparison of the complex structural profile. (A) Mixed modelling profile 30. (B) Mixed modelling profile 32. (C) Mixed modelling profile 30. (D)
Mixed modelling profile 32. (E) Stratigraphic modelling profile 32. (F) Stratigraphic modelling profile 33.
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accuracy. This paper intends to analyse distances and borehole
distributions (Figure 11). The analysis results are presented below.

(1) The above figure shows that the distribution of the improved
borehole is more uniform than is that before improvement. The
analysis results show that adding an appropriate number of data
points can effectively improve modelling accuracy. The analysis
of the kriging interpolation algorithm needs to consider the
principle of data distribution. Under the condition of an uneven
data distribution, the geological conditions cannot be accurately
analysed and counted.

(2) Considering the uniformity and influence of distance, for
profiles 14 and 58, the overall degree of accuracy after
improvement is lower than that before improvement because
the distance is too close. According to research, the drilling
distance needs to be moderate, and the number of virtual
drillings should not be too large. When the number of
virtual drillings is too large, the degree of model accuracy
decreases.

(3) According to, the use of Delaunay triangle and Thiessen
polygon intersections can effectively model complex
geological regions. It can be seen from the initial to the final
diagram that modelling accuracy can be gradually improved
under the method described in this study and can be greatly
improved under the condition of a suitable virtual drilling
distance.

4.3 Complex geological visualization effects

This study analyses the effect of machine learning in complex
stratigraphic modelling, taking profile 59 (Figure 13) as an example.
According to Table 9, the accuracy rates before and after the
prediction of mixed modelling are 49.93% and 77.81%,
respectively, and those before and after the prediction of
formation modelling are 65.05% and 81.89%. According to the
initial and prediction model profiles of mixed modelling and
stratum modelling in Figure 13, it can be seen that machine
learning reduces mainly the stratum interruption caused by
insufficient data volume in the initial model, making the overall
model construction and connections between strata smoother,
which is more in line with geological structure and geological
genesis. According to the mixed borehole data table, the reason
for the lenses in the upper and lower layered modelling area is that
the number of virtual boreholes is insufficient, and only some areas
can be constructed. Therefore, when using upper and lower mixed
modelling, it is necessary to increase the amount of data and reduce
the size of the unreasonable formation structure caused by the lack
of data.

In this paper, profiles 30, 32, and 33 are selected for complex
geological structure analysis. Figure 14 shows that stratum
modelling has a larger number of overlapping strata in complex
geological areas, which cannot be accurately visualized for lenticles,
karsts and other areas but can be better visualized for stratum pinch-
out, compared to the other types of modelling. The mixed modelling
approach has a large mutation phenomenon in the stratum pinch-
out area, and the effect of pinch-out geological construction is poor,
while in abrupt areas such as karsts and lenses, this approach has a

better treatment effect. The mixed modelling and stratigraphic
modelling accuracies of profile 30 are 74.24% and 71.57%,
respectively; those of profile 32 are 54.89% and 57.54%,
respectively; and those of profile 33 are the same. According to
the accuracy, it can be seen that the two models have similar
modelling effects in this area. Therefore, both models can be
visualized for the geological area, and the corresponding
modelling methods can be selected according to different
geological conditions and visualization requirements.

5 Conclusion

(1) In the method described in this paper, the KNN algorithm has
better performance for complex geological areas with less data.
In the machine learning algorithm, the accuracies of the fine
KNN model, the wide neural network model and the fine
Gaussian SVM model are higher, at 95.5%, 94.6%, and
92.4%, respectively. Moreover, the ROC curve performs
better in the machine learning algorithm, while the confusion
matrix shows that the fine Gaussian SVMhas only an 82.2% true
rate for a certain lithology, and its performance is poor.

(2) Virtual boreholes can be effectively added by using Delaunay
triangle and Thiessen polygon intersection. This method can
effectively apply KNN algorithm to geological modeling.
According to the addition of profile and virtual boreholes,
increasing the appropriate number of uniformity points can
effectively improve modelling accuracy. At the same time, the
influence of distance should be considered simultaneously with
uniformity. In the case of a distance that is too close, model
accuracy will be negatively improved.

(3) Data encryption, data standardization, model verification, and
optimization algorithms for virtual drilling processing can
effectively improve the accuracy of the model. Borehole
encryption has a great influence on the prediction accuracy
of the model. When the encryption degrees are 0.1 and 1, the
accuracies are 95.5% and 58.5%, respectively. Compared with
grid and random search, Bayesian optimization can improve
model accuracy by 5.24% and has better average performance in
complex geological areas. Standardization and 5-fold cross-
validation can also greatly improve the accuracy of the model.

(4) The combination of KNN algorithm and Kriging algorithm has
better modeling effect. Through the verification method
described in this paper, the accuracy of the model can be
effectively verified. For the stratum modeling using this
combined algorithm, it has a 10% improvement. The up-and-
down hybrid modeling can increase by 20%. The distribution of
virtual boreholes has a great influence on the upper and lower
hybrid modeling, so it is necessary to pay attention to the
distribution of boreholes when modeling. The two improved
methods can eventually show better modeling results.

(5) The machine learning algorithm mainly reduces the degree of
mutation of the initial model, makes the overall model and
stratum connection smooth, and is more in line with geological
structure and geological genesis. In complex geological areas,
there are many stratigraphic overlaps in stratigraphic modelling,
which cannot be effectively visualized for lenses, karsts and
other areas but have a better visualization effect on the
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stratigraphic pinch-out phenomenon. The mixed modelling
approach has a large mutation in the stratum pinch-out area,
and the effect of pinch-out geological construction is poor, while
in abrupt areas such as karsts and lenses, it has a good
processing effect.

(6) The method described in this paper has high requirements for
data uniformity, and a reasonable virtual borehole layout is
needed. In the case of poor borehole distribution, borehole
addition is also needed. However, this method is simple, easy to
use and interpretable. In the complex geological area with less
known data, the combination of KNN algorithm and Kriging
algorithm can effectively improve the accuracy of the model. It
has good visualization effect for complex geology such as
stratum pinchout and karst. At the same time, this method
can greatly improve the efficiency of geological modeling and
provide a reliable basis for the development, utilization and
planning of underground space.
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