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The universality of load subjects in distribution network brings challenges to the
reliability of distribution network planning results. In this paper, a two-stage
dynamic robust distribution network planning method considering correlation
is proposed. The method evaluates the correlation between random variables
using the Spearman rank correlation coefficient, and converts the correlated
random variables into mutually independent random variables by Cholesky
decomposition and independent transformation; expresses the source-load
uncertainty by a bounded interval without distribution, and describes the active
distribution network planning as a dynamic zero-sum game problem by
combining with the two-phase dynamic robust planning; use the Benders
decomposition approach to tackle the issue; mathematical simulation is used
to confirm the accuracy and efficacy of the method. The results show that the
dynamic robustness planning method of active distribution network taking into
account the correlation can accurately simulate the operation of active
distribution network with uncertain boundaries, which enhances the reliability
and economy of the active distribution network planning results.
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1 Introduction

As new energy technology advances, distributed energy has increasingly become a
significant component of the energy system (Liu et al., 2016; Xiao et al., 2021). Securing the
dependability and safety of distribution network planning and construction is pivotal for the
effective rollout of distributed energy accessibility and utilization (Li et al., 2021a; Yang et al.,
2022a; Zhang et al., 2022).

In order to plan and coordinate the optimal operation of Distributed Generation (DG)
more reasonably, distribution network planning is gradually evolving from the traditional
passive mode to the active mode (Chen et al., 2021; Li et al., 2023a). That is to say, the
traditional idea of planning passively adapting to the actual operation should be abandoned,
and the active decision-making idea of taking operation optimization into consideration and
fully tapping the optimization potential in the operation process should be changed (Yang
et al., 2018; Li et al., 2020a; Shen et al., 2021).

Research on active distribution network planning addresses uncertainties, such as
distributed generation output, as crucial elements (Fang et al., 2022; Xu et al., 2023).
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The objective is to enhance the resilience, cost-effectiveness, and
flexibility of the network while facilitating the widespread
integration of renewable energy sources and advancing intelligent
power grid development (Yu et al., 2023). Analyzing uncertainties in
active distribution network planning is a crucial focus for the future
of power grid planning and operation (Yang et al., 2022b; Yu et al.,
2022). At present, there are four main methods to study uncertainty:
probabilistic programming, Monte Carlo simulation, chance-
constrained and robust optimization (Gao et al., 2021; Wang
et al., 2021; Li et al., 2023b). Probabilistic planning takes
uncertain factors as random variables, and through probabilistic
modeling and simulation, the operation results of power grid under
different possible scenarios can be obtained, so as to formulate a
more robust planning scheme (Tao et al., 2017; Tan et al., 2019; Tan
et al., 2020). However, probabilistic planning requires a large
amount of data to support, and involves the modeling and
calculation of multiple probability distributions, resulting in high
computational complexity (Zhou and Zhao, 2013; Zheng et al.,
2018). Monte Carlo simulation obtains the operation results of
power grid under different scenarios through multiple random
sampling calculations, and makes a more comprehensive
assessment of power grid planning and decision-making (Peng
et al., 2015; Zeng et al., 2015; Chen et al., 2018). However, it is
highly dependent on the accuracy of the distribution network
uncertainty model and system data, and the data quality directly
affects the credibility of the simulation results (Wang et al., 2023;
Zhang et al., 2023). Chance constraints regard the possible changes
of uncertain factors as “opportunities,” and set corresponding
constraints to limit the risk or uncertainty of the planning
scheme, to ensure the planning scheme’s robust performance in
diverse uncertain conditions (Wang et al., 2019; Su et al., 2021; Zhou
et al., 2023). However, as the structure of distribution network
becomes more and more complex, the introduction of chance
constraints may increase the computational complexity of the
optimization problem, which requires more computing resources
and time (Liao et al., 2018). Robust optimization, as an optimization
method to find the solution with the best stability in the case of
considering uncertainty, does not need to know the exact probability
distribution, and only needs to use the uncertainty set to describe the
uncertainty range of distributed generation output, which is more in
line with the practical application requirements (Luo et al., 2018; Li
et al., 2020b). Zhang et al. (2019) describes the uncertainty of
distributed generation in the form of uncertainty set, and solves
the distribution networkmodel through Benders algorithm. Sui et al.
(2020) puts forward the idea of discrete uncertain set modeling to
obtain more accurate extreme distributed power fluctuation
scenarios. Xiao et al. (2022) extends the robust optimization
method of distribution network to the new urban distribution
network with integrated charging and storage stations and hot
spot cogeneration units. As an uncertainty modeling method
based on the worst case, robust optimization can effectively
guarantee the robustness of the system in the uncertain
environment (Fu et al., 2023; Zhu et al., 2023). However, as
mentioned above, the existing planning methods based on robust
optimization do not consider the correlation between multiple
uncertain factors, but treat these uncertain factors as independent
events, and then obtain the overall worst scenario by simply adding
the worst scenarios of all uncertain factors. However, in the actual

operation of active distribution network, some uncertainties are not
independent events, but have a certain probability correlation (Li
et al., 2021b). In this case, the worst scenario of multiple
uncertainties often does not occur at the same time. If this
probability correlation is ignored in the process of robust
optimization, it will inevitably lead to too conservative planning
results. Thereby reducing the effectiveness and economy of the
planning decision scheme.

In summary, this paper proposes a two-stage dynamic robust
planning method for active distribution networks that considers
correlations. Initially, the Spearman rank correlation coefficient is
employed to assess the correlation among random variables, and the
correlated random variables are transformed into independent
random variables by Cholesky decomposition and independent
transformation. The polyhedron uncertainty set method is
employed to represent source load uncertainty using a
distribution-free bounded interval. Combined with the two-stage
dynamic robustness programming, the active distribution network
planning is described as a dynamic zero-sum game problem between
the uncertainty decisions controlled by nature and the human
decisions controlled by investors. Finally, the Benders
decomposition method is used to solve the problem and the
optimal distribution network planning scheme is obtained. The
simulation results based on a standard example show that the
suggested approach can enhance the reliability and cost-
effectiveness of the dynamic distribution system.

This paper makes the following key contributions:

(1) The method for dynamic robust optimization of second order
considering correlation is adopted to transform the active
distribution network planning problem into a dynamic zero-
sum game problem between nature and investors. The planning
is designed and corrected by two-stage active decision, and the
reliability of the planning results is improved.

(2) The uncertainty of DG and load are represented by
undistributed bounded intervals by using polyhedral
uncertainty set representation method. By integrating the
specifics of the distribution network planning project, we
conduct precise simulations of the active distribution
network system’s operation under uncertain conditions. This
contributes to enhanced reliability and cost-effectiveness in the
results of active distribution network planning.

2 Treatment of correlation of random
variables and description of its
uncertainty

2.1 Treatment of correlation of random
variable

There is usually a certain correlation among wind energy, solar
power and load in distribution network, and the reliability and
economy of distribution network planning scheme will be directly
affected by the direct use of historical load data with correlation in
distribution network power flow calculation. In view of this, in this
study, the Spearman rank correlation coefficient is applied to depict
the correlation among random variables. This is complemented by
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an examination of the traits within the rank correlation matrix, uses
Cholesky decomposition and correlation independence
transformation method to transform the random variables with
correlation into independent random variables, and transforms the
historical data with correlation into independent sample
combinations.

On this basis, the method of non-parametric kernel density
estimation is employed to model the probability density for both
photovoltaic output and load. This process determines the marginal
probability distribution model through the following specific steps:

1) Correlation processing of original samples of random
variables

Historical sample data of random variable PV output and load
can be expressed as H � [h1, h2,/,hl]T, and its correlation
coefficient matrix can be expressed as:

CH �
1 ρh1h2 / ρh1hl

ρh2h1 1 / ρh2hl
..
. ..

.
1

ρhlh1 ρhlh2 / 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (1)

The correlation coefficient is computed using the following
formula:

ρhihj �
Cov hi, hj( )

σhiσhj
� Cov hj, hi( )

σhiσhj
� ρhjhi (2)

In Eq. 2: ρhihj and Cov(hi, hj) represent the correlation
coefficient and covariance of the random variables hi and hj. σhi
and σhj represent the standard deviations of the random variables hi
and hj, respectively.

The correlation coefficient matrix CH is a positive definite
matrix, which is decomposed by Cholesky to obtain:

CH � GGT (3)
In Eq. 3: G is the lower triangular matrix, and each element can

be solved by the following formula:

gkk � ρhkhk − ∑k−1
m�1

g2
km

⎛⎝ ⎞⎠1/2

, k� 1, 2,/,l

gik �
ρhihk − ∑k−1

m�1
gimgkm

gkk
, i � k+1,/,l

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(4)

Formula 2 shows that the correlation coefficient matrix CH of
random variables is a symmetric matrix. Then there is an orthogonal
matrix D that can convert the historical sample matrix H with
correlation into an uncorrelated sample matrix Q:

Q � DH (5)
Considering that the correlation coefficient matrix of the matrix

Q is an identity matrix:

CQ � ρ Q,QT( ) � ρ DH,DTHT( )
� Dρ H,HT( )DT � DCHD

T

� DGGTDT � DG( ) DG( )T � I
(6)

It can be deduced from the above formula, and can be obtained
by substituting Formula 5:

Q � G−1H (7)
To sum up, the original sampling data matrix H of random

variables with correlation can be represented as the sampling data
matrix Q � [q1, q2,/,ql]T of random variables with mutual
independence.

2) Modeling of PV output and load fluctuation probability
density

Using independent PV output and load sample data, this paper
employs the non-parametric kernel density estimation method
introduced in Xiao et al. (2022) to build the probability density
model for PV output and load fluctuation. The process is outlined as
follows:

The output of a single photovoltaic unit or the load fluctuation of
a single station area were sampled after correlation processing and n
samples were obtained. Carry out correlation processing on that
original data of the output of a single photovoltaic unit or the load
fluctuation of a single substation area and then sample to obtain n
samples, that is q̂m � [q̂m1 , q̂m2 ,/,q̂mn ], m ∈ [1, l]. At this time, the
probability density function of PV unit output or load fluctuation of
single substation area at point x is, and then its nonparametric
kernel density estimate is:

f̂ x( ) � 1
nh
∑n
i�1
K

x − xi

h
( ) (8)

In Eq. 8: xi is the ith sample data of PV output or load. h is the
bandwidth, also known as the smoothing coefficient, which can be
obtained according to the empirical formula in Sui et al. (2020).K(·)
is the kernel function.

The selection of kernel functions is diverse, but Sui et al. (2020)
points out that different kernel functions have little effect on the
accuracy of nonparametric estimation. Therefore, The Gaussian
function is commonly utilized as the kernel for estimating the
probability density of fluctuations in PV output or load. It can be
seen from Formula 8 that the non-parametric kernel density
estimation of the probability density model of the output of a
single photovoltaic unit or the load fluctuation of a single
substation area can be rewritten as:

f̂ x( ) � 1���
2π

√
nh
∑n
i�1
exp −1

2
x − xi

h
( )2[ ] (9)

According to the Formula 9, the probability density function of
photovoltaic output f(PPVG) and the probability density function of
load fluctuation f(PL) can be obtained according to the historical
photovoltaic output data and load data of the region.

2.2 Determination of uncertain
parameter set

The central concept of robust planning is to model the system’s
operation under uncertain conditions, based on which the planning
and decision-making scheme for the integration of adverse scenarios
is formulated, and the key is to construct the uncertain
parameter set.

Aiming at the prediction uncertainty of wind power output,
photovoltaic power output and load fluctuation in distribution
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network planning, this paper takes the historical data of wind power
output, photovoltaic power output and load as the data base,
assumes that all wind turbines, photovoltaic units and loads in
the distribution network have the same timing characteristics,
incorporates the polyhedron uncertainty set characterization
method introduced in Xiao et al. (2022). Wind power output,
photovoltaic output, and load uncertainties are individually
represented by an undistributed bounded interval denoted as Ω .

PW
p,t,h � SWp λ

W
h , P

W,PRE
p,t,h � SWp

�λ
W
h ,

~P
W

p,t,h � SWp
~λ
W

h P
P
p,t,h � SPpλ

P
h ,

PP,PRE
p,t,h � SPp

�λ
P
h , ~P

P

p,t,h � SPp
~λ
P

h

PL
p,t,h � βpP

L
base 1 + δ( )t−1λLh

PL,PRE
p,t,h � βpP

L
base 1 + δ( )t−1�λLh

~P
L

p,t,h � βpP
L
base 1 + δ( )t−1~λLh

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(10)

In Eq. 10: SWp and SPp indicate the installed capacity of wind
power and photovoltaic units respectively; λWh and λPh respectively
represent the output of wind power and photovoltaic power of the
system at time h (per unit value); �λ

W
h 、 ~λ

W
h and �λ

P
h、

~λ
P
h are the mean

value and fluctuation value of wind power and photovoltaic output,
respectively (per unit value). PW

p,t,h、 PW,PRE
p,t,h and ~P

W
p,t,h respectively

represent the actual value, predicted value and fluctuation range of
wind power output at node p at time h of typical day in year t.
PP
p,t,h、 PP,PRE

p,t,h and ~P
P
p,t,h respectively represent the actual value,

predicted value and fluctuation range of wind power output at node
p at time h of typical day in year t. λLh represents the system load
(nominal value) at time h, and �λ

L
h and ~λ

L
h are its average value and

fluctuation range respectively; δ denotes the average annual load
growth rate of the system; βp is the load rate of system node p; PL

base

represents the total system load in the base year; PL
p,t,h、 PL,PRE

p,t,h and
~P
L
p,t,h represent the actual load value, predicted load value and

fluctuation range of node p at time h in year t (the above
fluctuation range can be set by planners, and the predicted
output value of distributed generation can be equivalent to the
average output value of previous years).

Ω �

λWh ∈ �λ
W
h − ~λ

W

h , �λ
W
h + ~λ

W

h[ ]
λPh ∈ �λ

P
h − ~λ

P

h ,
�λ
P
h + ~λ

P

h[ ]
λLh ∈ �λ

L
h − ~λ

L

h ,
�λ
L
h + ~λ

L

h[ ]
∑T
t
∑H
h
∑

p∈ψwind

PW
p,t,h − PW,PRE

p,t,h

~P
W

p,t,h

∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣

swind*H*T

+
∑T
t
∑H
h
∑

p∈ψpvg

PP
p,t,h − PP,PRE

p,t,h

~P
P

b,t,h

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣

spvg*H*T

+
∑T
t
∑H
h
∑

p∈ψload

PW
p,t,h − PW,PRE

p,t,h

~P
W

p,t,h

∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣

sload*H*T
≤ Γ

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11)

In Eq. 11: ψwind、 ψpvg and ψload represent wind power,
photovoltaic and load node sets respectively. swind、 spvg and
sload denote the number of wind power, photovoltaic and load
nodes respectively; H � 24, representing the number of times of
day; t is the planning period; Γ is the conservative index of uncertain
set. The larger the value, the larger the fluctuation range, the more
uncertainties it contains, and the more conservative the set. At the
same time, it also reflects the risk preference of planning decision

makers. The larger the value, the more cautious the planners are
about the changing range of uncertainties.

3 Second-order cone dynamic robust
programming model for distribution
network considering demand-side
response

3.1 A distribution network planning model
incorporating demand-side response

The planning contents include line expansion, location and
capacity determination of DG and location and optimal control
strategy of DR. Distribution network planning mainly involves
equipment investment cost and operation cost. Investment cost is
mainly affected by investment decision variables such as equipment
model, capacity, quantity and installation selection, while operation
cost is not only affected by the above factors, but also dominated by
simulation operation variables such as active management process
of distribution network. In view of this, the paper explores the
influence of user participation in demand-side response on
distribution network planning. It establishes a model for active
distribution network planning that takes demand-side response
into account.

3.1.1 The objective function
In this paper, the demand response of users is considered in

distribution network planning, and it is considered that users will
adjust their power consumption mode according to their own
interests. Usually, the demand side response of users can be
achieved in the following two ways: 1) Users reduce load during
high-price periods and increase load during low-price periods in the
indirect control mode based on time-of-use pricing. This approach
aims to achieve peak clipping and valley filling effects; 2) Active load
adjustment, the user interrupts the load in the corresponding time
period according to the signed contract. In this paper, the second
method is adopted, and combined with the distribution network
planning method proposed in Zhang et al. (2019), established is an
active distribution network planning model that seeks to minimize
the combined investment and operational costs:

min
xinvxope

F xinv, xope( ) � Cinv + Cope

s.tg xinv( )≤ 0
h xinv, xope( )≤ 0

⎧⎪⎪⎨⎪⎪⎩ (12)

In Eq. 12: F(·) denotes the objective function; xinv denotes the
investment decision variables of distribution network, including line
extension decision, DG location decision and DG capacity decision;
xope denotes the simulation operation variables of distribution
network, which mainly includes natural decision variable xN and
demand side response active management decision variable xinv,
including DR location and response electricity quantity; g(·)
denotes investment constraints, usually including equipment
investment installation model, quantity, capacity, etc. h(·)
denotes analog operation constraints, including power balance
constraints, voltage and current constraints, etc.
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3.1.1.1 Investment cost
In this paper, the equipment investment cost Cinv in distribution

network planning primarily comprises line expansion and DG
investment costs.

1) Line expansion cost CLine
LI in investment year

CLine
LI � ∑

pq∈ψline

eLpqcpqlpq p, q ∈ ψload (13)

In Eq. 13: ψline represent a candidate set of lines to be expand; p
and q represent load nodes, and eLpq is a 0–1 variable, indicating
whether to build a new line p-q; cpq is the unit investment cost of line
p-q; lpq represents the length of the line p − q.

2) DG investment cost CDG
LI in investment year

CDG
LI � ∑

k∈ψDG

∑
p∈ψk

ekpc
kSkp (14)

In Eq. 14: ψDG represents the collection of distributed
generation types to be selected, this paper incorporates both
wind power and photovoltaic power generation; ψk is the set of
class k distributed generation installation nodes to be selected;
ekp is a variable of 0–1, which indicates whether node p is
equipped with class k distributed generation; ck represents
the unit capacity investment cost for k-type distributed
generation; Skp is the installed capacity of class k distributed
generation at node p.

Due to the different life cycle of each investment equipment,
it is necessary to transfer it to the same planning cycle for
investment evaluation. For this reason, the paper transforms the
equipment investment cost in the present year into the
equivalent annual value for subsequent years. Then the total
cost of equipment investment in the same planning period is
obtained by converting the equivalent annual value of the cost
of equipment investment into the present value and
accumulating it.

Cinv � ∑
a∈A
∑T
t�1
utλC

a
LI

ut � 1

1 + r( )t

λ � r 1 + r( )EL
1 + r( )EL−1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(15)

In Eq. 15: A represents the set of investment equipment, in this
paper A � Line,DG{ }; Ca

LI represents the investment cost of
equipment a invested in year LI; ut is the present value
transformation factor; λ is the conversion coefficient of equal
annual value; EL is the life of equipment; T is the planning
period, LI≤T≤ LI + EL; r is the social discount rate.

3.1.1.2 Operating cost
The operating cost Cope primarily encompasses power purchase,

power abandonment, network loss, and demand response power
costs within the main network.

1) Power purchase cost Ctrans
t of main grid

Ctrans
t � ∑H*365

h�1
ctransPtrans

t,h

Ptrans
t,h � ∑

p∈ψrest

Ptrans
p,t,h − PDR

p,t,h( )
Ptrans
p,t,h � PL

p,t,h − ∑
k∈ψDG

Pk
p,t,h

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(16)

In Eq. 16: ctrans indicates the power purchase price of the unit
main network; Ptrans

t,h represents the main network purchased electric
quantity of the system at time h in the t year; Ptrans

p,t,h represents the
main network purchased electric quantity of the node p at time h in
the t-th year; PDR

p,t,h denotes the response electric quantity of node p at
time h in the t-th year; Pk

p,t,h represents the output of k-type
distributed generation at node p at time h in year t; ψrest is the
node set where there is no power abandonment in the system;
H � 24, representing the number of hours in a day.

2) Network loss cost Closs
t

Closs
t � ∑Hp365

h�1
∑

pq∈ϕline

clossPloss
pq,t,h

Ploss
pq,t,h � Ipq,t,h( )2eLpqrpq

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (17)

In Eq. 17: closs represents the average network loss price; ϕline is
the system line set; Ploss

pq,t,h denotes the loss of line pq at t year h time;
rpq represents the resistance of line pq; Ipq,t,h denotes the current of
branch pq at time h in year t, which can be obtained by calculating
the power flow of distribution network.

3) Power curtailment cost CDG.abandon
t of distributed generation

CDG.abandon
t � CW.abandon

t + CP.abandon
t

CW.abandon
t � ∑Hp365

h�1
cW.abandon PW,PRE

p,t,h − PW
p,t,h( )

CP.abandon
t � ∑Hp365

h�1
cP.abandon + PP,PRE

p,t,h − PP
p,t,h( )

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(18)

In Eq. 18: cabandon represents the unit power abandonment price;
PDG.abandon
t,h represents the abandoned electric quantity of the system

at the time h in the year t; PDG.abandon
p,t,h indicates the abandoned

electric quantity of the distributed power supply at the node p at the
time h in the year t.

4) DR electricity cost CDR
t

Where: CDR
t indicates the DR response price.

The operating costs of the system in each year in the planning
cycle are converted into present value costs and accumulated to
obtain the total operating costs Cope.

Cope �∑T
t�1
ut Ctrans

t + Closs
t + CDR

t( ) (19)

3.1.2 Constraints
3.1.2.1 Equipment investment constraints
1) DG installation capacity constraints

0≤ Skp ≤ Sk. max
p (20)
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In Eq. 20: Sk. max
p represents the upper limit of the installed

capacity of the k-type distributed power supply at the node p.

2) DR capacity constraint

0≤ SDRp ≤PL.max
p (21)

In Eq. 21: SDRp refers to the DR capacity signed by the power grid
company and the user. PL.max

p represents the maximum value of
node p load.

3.1.2.2 Security constraints of network operation
1) Network power balance constraints

Pp,t,h � Vp,t,h∑Nbus

q�1
Vq,t,h Gpq cos δpq + Bpq sin δpq( )

Qp,t,h � Vp,t,h∑Nbus

q�1
Vq,t,h Gpq sin δpq − Bpq cos δpq( )

Pp,t,h � PL
p,t,h − ∑

k∈ψDG

Pk
p,t,h − PDR

p,t,h

Qp,t,h � QL
p,t,h − ∑

k∈ψDG

Qk
p,t,h − QDR

p,t,h

Gpq �
eLpqrpq

eLpqrpq( )2 + eLpqxpq( )2
Bpq� − eLpqxpq

eLpqrpq( )2 + eLpqxpq( )2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(22)

In Eq. 22: Pp,t,h and Qp,t,h respectively represent the injection
amount of the active power and the reactive power of the node p at
time h in the t-th year;Vp,t,h andVq,t,h denote the voltage amplitudes
of node p and node q at time h in the t-th year; xpq represents the
reactance of the line p-q; Gpq and Bpq represent the real part and the
imaginary part of the nodal admittance matrix, respectively; δpq
represents the phase angle difference of node p and node q.

2) Node voltage and branch current constraints

Vmin
p,t,h ≤Vp,t,h ≤Vmax

p,t,h

Ipq,t,h
∣∣∣∣ ∣∣∣∣≤ Imax

pq
{ (23)

In Eq. 23: Vmin
p,t,h and Vmax

p,t,h respectively the minimum value and
the maximum value of the voltage amplitude of the node p at the
time h in the year t; Imin

pq is the critical overload current of branch pq.

3) DR electric quantity constraint

0≤PDR
p,t,h ≤min SDRp , PL

p,t,h( ) (24)

3.2 A two-stage dynamic robust
programming model

3.2.1 Second order cone transformation
Active distribution network planning involves a mixed-integer

nonlinear programming problem, with the nonlinear terms in the
model adding complexity to the solution. When the active

management measures such as uncertain factors and demand
side response are taken into account, the solution of the model
will be more difficult. Although it can be solved by a similar heuristic
algorithm, its solution efficiency is very low. Therefore, in order to
solve the model conveniently, this paper initially incorporates
second-order cone programming (SOCP) theory to convert the
aforementioned model into a more linear second-order cone
programming model. The process is outlined as follows:

To introduce a variable: Xp,t,h � (Vp,t,h)2/
�
2

√
,

Xq,t,h � (Vq,t,h)2/
�
2

√
, Mpq,t,h � Vp,t,hVq,t,h cos δpq, Npq,t,h �

Vp,t,hVq,t,h sin δpq, and then the network loss term (18) in the
objective function and the constraints (22), (23) in the constraint
conditions can be transformed into the functions represented by
second-order cones as shown in Eqs 25–27, respectively:

Ploss
pq,t,h � G2

pq + B2
pq( )�

2
√

Xp,t,h +
�
2

√
Xq,t,h−2Mpq,t,h( )rpq (25)

Pp,t,h � ∑Nbus

q�1
Mpq,t,hGpq +Npq,t,hBpq( )

Qp,t,h � ∑Nbus

q�1
Mpq,t,hGpq −Npq,t,hBpq( )

Pp,t,h � PL
p,t,h − ∑

k∈ψDG

Pk
p,t,h − PDR

p,t,h

Qp,t,h � QL
p,t,h − ∑

k∈ψDG

Qk
p,t,h − QDR

p,t,h

Gpq �
eLpqrpq

eLpqrpq( )2 + eLpqxpq( )2
Bpq� − eLpqxpq

eLpqrpq( )2 + eLpqxpq( )2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(26)

Vmin
p,t,h( )2/ �

2
√

≤Xp,t,h ≤ Vmax
p,t,h( )2/ �

2
√

G2
pq + B2

pq( ) �
2

√
Xp,t,h +

�
2

√
Xq,t,h−2Mpq,t,h( )≤ Imax

pq( )2
⎧⎪⎨⎪⎩ (27)

At the same time, the equality constraint is added:

Mpq,t,h( )2 + Npq,t,h( )2� 2Xp,t,hXq,t,h (28)

The above equation can also be transformed into the following
second-order cone form by relaxation transformation:�

2
√

Mpq,t,h�
2

√
Npq,t,h

Xp,t,h −Xq,t,h

###########
###########
2

≤Xp,t,h +Xq,t,h (29)

In Eq. 29: ‖ · ‖2 is Euclidean norm. It is proved that the above
relaxation transformation does not affect the planning result, and its
optimal solution must fall on the boundary of the Formula 29.

To sum up, it can be seen that after the second-order cone
transformation, the non-linear term (Eq. 17) of the objective
function in the above model is converted into a linear term, the
node voltage and current constraints remain linear after the
conversion, and the network power balance constraints (Eq. 22)
in the constraints are converted into the form of SOC, while the
equality constraints (Eq. 29) in the form of SOC are added. The
model in this paper can be further written as a second-order cone
programming model:
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min
xinvxope

F xinv , xope( ) � cTxinv + dTxope

s.t 20( ), 27( ) − 29( ){ (30)

In Eq. 30: Xinv represents the investment decision matrix; cT

represents the coefficient matrix of investment decision
variables; xope represents the decision matrix of simulation
operation; dT represents the coefficient matrix of simulation
running variables.

3.2.2 Two stage dynamic robust programming
model

Incorporating the concept of two-stage dynamic robustness, the
active distribution network planning problem in this paper can be
described as a game between the uncertainty decisions controlled by
nature and the human decisions controlled by investors: the
uncertainty of nature tries to deteriorate the operation index of
the active distribution network system, while the human decisions
try to resolve the harm caused by the uncertainty of nature in two
stages. The first stage is the manual decision-making mode
(including line expansion and DG location and capacity
determination in this paper). This stage is a pre-decision-making
process, which needs to make decisions before the uncertainty of
nature (including uncertain variables wind power output,
photovoltaic output and load in this paper) is known. The
second stage is active control decision-making (this paper mainly
considers the control mode of demand side response), which is a re-
decision-making process and a correction decision made after
observing uncertainty. To sum up, the active distribution
network planning model, incorporating demand-side response in
this paper, can be succinctly described as a second-order cone
dynamic robust optimization problem with a two-stage decision
process:

Min
xinv

Max
xN

Min
xDR

cTxinv + dTxope( )
s.t 21( ), 22( ), 27( ) − 30( )

⎧⎨⎩ (31)

In this paper, the uncertainty of nature is expressed by the
undistributed bounded interval Ω. At the same time, considering
that the investment cost in the model is not directly affected by the
natural decision and the demand-side response control decision, the
Formula 9 can be further refined as:

Min
∀xinv

cTxinv + Max
∀PW

p,t,h
,∀ PPVG

p,t,h
,∀ PL

p,t,h
∈Ω

Min
∀PDR

p,t,h

dTxope
⎧⎨⎩ ⎫⎬⎭

s.t 21( ), 22( ), 27( ) − 30( )

⎧⎪⎪⎨⎪⎪⎩ (32)

4 Model solving

The second-order cone dynamic robust programming model for
active distribution networks, considering demand-side response, is
solved using the Benders decomposition method.

In the above dynamic robust programming problem, since
investment decision xinv is given when nature decision variables
PW
p,t,h, P

PVG
p,t,h , P

L
p,t,h and demand-side response decision variable PDR

p,t,h

make decisions, the behavior between nature decision and demand-
side response decision can be described as the following zero-sum
game problem with investment decision xinv as the parameter:

R xinv( ) � Max
xN∈Ω

Min
xDR∈y xinv ,xN( ) d

Txope

s.t 21( ), 22( ), 27( ) − 30( )
⎧⎨⎩ (33)

In Eq. 33: R(·) represents the zero-sum game function between
nature and demand-side response; y(·) represents the
comprehensive functional relationship among demand-side
response decision, nature decision and investment decision. Thus,
the Formula 32 can be converted into the following form:

Min
∀xinv

cTxinv + δ( )
s.t 21( ), 22( ), δ ≥R xinv( )

⎧⎨⎩ (34)

In this paper, the optimal investment decision in the worst case
obtained from the original problem is regarded as the main Benders
decomposition problem, that is, the Formula 34. This problem is a
mixed-integer linear programming problem, directly solvable using
software packages like CPLEX. At the same time, the problem of
obtaining the optimal operation decision in the worst case is taken as
a Benders decomposition sub-problem, that is, the Formula 33. This
problem is a mixed integer second-order cone static robust problem,
which can be solved by YALMIP modeling toolkit and CPLEX
solving toolkit.

To sum up, the Benders decomposition algorithm for the active
distribution network second-order cone dynamic robust
programming problem in this paper can be summarized into the
following specific steps:

(1) Initialization

Taking the initial value of investment decision xinv as xinv1 , the
mixed integer second-order cone static robust problem is solved,
and its optimal initial operation solution xope1 is obtained. At the
same time, let the iteration number k = 1, the lower bound of
convergence LB = 0, the upper bound of convergence UB = 1, and
the convergence error ε> 0.

(2) Determine the lower bound

Solve the following Benders decomposition master problem:

Min
∀xinv

cTxinv + δ( )
s.t 17( ), δ ≥R xinvh( ) h≤ k

⎧⎨⎩ (35)

The optimal solution (xinvk , δk) is obtained, and assume:

LB � cTxinvk + δk (36)

(3) Define the upper bound

Solve the Benders decomposition subproblem as shown in
Equation (3.1). The optimal solution xopek and the optimal value
R(xinvk ) are obtained, and assume:

UB � cTxinvk + R xinvk( ) (37)

(4) Convergence judgment

If UB − LB≤ ε, the algorithm ends and returns to xinvk and xopek ;
Otherwise k � k+1, return to step 2.
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5 Case analysis

5.1 Design of the example

The plan involves constructing and connecting a pair of wind
farms and two solar power stations within a single distribution
system. The total installed capacity of distributed generation is
planned to be no less than 2 MW. At the same time, the line for
new load access is determined, and a set of load active regulation
strategy is formulated to further improve the economy of system
planning and operation on the basis of ensuring the stable and
dependable system operation in the next 5 years. This study uses the
modified IEEE 33-bus system to confirm the effectiveness of the
proposed approach, conducting simulation tests programmed in the
MATLAB environment. Figure 1 displays the adjusted IEEE 33-
node system.

The newly added power supply substations A, B, C and D
respectively correspond to nodes 34, 35, 36 and 37 in the above
figure, and the load reference values of the substations are 50, 90,
120, and 200 kVA respectively. The solid line in the figure represents

the existing line, and the dotted line represents the line corridor to be
built in each new station area; Nodes 4, 7, 10 and 30 are the nodes to
be selected for wind turbine access; Nodes 13, 18, 21 and 32 are the
nodes to be selected for the access of the photovoltaic unit; Nodes 4,
8, 24, and 32 are demand-side response control nodes; The voltage
class of the system is 12.66 kV, the reference power is 100 MV A, the
annual average growth rate of the system load is 10%, and all
interconnection switches are turned off. The relevant reference
prices involved are shown in Table 1 and Table 2.

5.2 Simulation results and analysis of an
example

5.2.1 Correlation processing and uncertainty
analysis of random variables

The actual data of a region is taken as the historical data of
photovoltaic, wind power and load of the system, and the rank
correlation coefficient matrix representing the relationship among
the wind speed, light intensity and load of the region is obtained by
the above method as follows:

CW �
1 −0.126 1 −0.054 8

−0.126 1 1 0.173 0
−0.054 8 0.173 0 1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (38)

At the same time, through independent transformation of the
original data, the correlation among the random variables of load,
wind power and photovoltaic power generation is eliminated to
form mutually independent input random variables, and the per-
unit value change curves of the average time sequence output of
wind power, average time sequence output of photovoltaic power
and load time sequence of the system are obtained by statistics, as
shown in Figures 2–4.

From Figures 2–4, it can be found that after the independent
transformation of random variables, the average output percentage

FIGURE 1
Modified IEEE33 node power distribution system.

TABLE 1 Relevant reference prices.

Project Price (yuan/kWh)

Power purchase price of main network 0.6

Price of power abandonment of distributed energy 0.5

Unit capacity price of wind turbine 10,000

Photovoltaic unit capacity price 13,000

Average network loss price 0.6

DR response price 0.2

Unit cost of new line 10
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of wind power time series decreases significantly on the whole, the
photovoltaic power increases significantly on the whole, and the load
decreases slightly, while the time series change trend of each random
variable remains unchanged on the whole. The main reason for this
phenomenon is that there is a certain negative correlation between
wind power and PV, wind power and load, and a certain positive
correlation between PV and load. In the example of this paper, the
wind power output is affected by the superposition and weakening of
the negative correlation of PV and load at the same time, and the
influence of the positive correlation of load on the output of PV units

is more obvious than that of the negative correlation of wind power,
while the influence of the positive correlation of PV on the load is
relatively smaller than that of the negative correlations of wind
power. The average time-sequence output percentage of wind power
decreases as a whole, the overall photovoltaic power increases
significantly, and the load decreases slightly.

Assume that the annual average load growth rate of the system is
δ� 0.1, and the time series fluctuation ranges of photovoltaic output,
wind power output and load are ~λ

P
h� 0.04, ~λ

P
h� 0.02, ~λ

L
h� 0.03. At

the same time, let the conservative index of the uncertainty set is
Γ � 2. Taking the data of load, wind power and photovoltaic power
as samples, the uncertainties in the time series variations of wind
power, photovoltaic power, and load, post-correlation processing,
are depicted as undistributed bounded intervals in Table 3.

5.2.2 Comparison and examination of planning
outcomes across various scenarios

In order to verify the effectiveness of this study, for the example
in this paper, planning decisions are made in three scenarios:

Scenario 1: a two-stage robust programming model with
demand-side response is established and solved considering the
correlation among wind energy, solar power and load.

Scenario 2: a two-stage robust programming model with
demand-side response is established and solved without
considering the correlation among wind energy, solar power and load.

Scenario 3: Considering the influence of correlation in wind
energy, photovoltaic power and load, the traditional robust
programming model considering demand side response is
established and solved.

TABLE 2 Length of lines to be built.

Line Load node 34 35 36 37

Access node 19 20 21 22 6 7 8 9 14 15 16 17 25 26 27 28

Length/km 12 10 8 14 12 10 14 10 12 10 14 10 12 8 14 10

FIGURE 2
Wind power sequence output model.

FIGURE 3
Photovoltaic time sequence output model.

FIGURE 4
Load timing model.
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In the Matlab environment, The Benders method is applied to
solve the planning model under various scenarios, and the resulting
planning scheme outcomes are presented in Table 4.

5.3 Scenario 1 simulation results and analysis

Table 4 displays the best planning strategy for scenario 1.
The costs for the best planning strategy in Scenario 1 are

displayed in Table 5.

The table above illustrates that the installed capacity of PV units
surpasses that of wind turbines. This is attributed to the inherent
anti-peak regulation characteristics of wind power. Overinvesting in
wind power can lead to significant curtailment of wind energy
during nighttime when demand is low. In contrast, PV output is
primarily concentrated during the daytime, which aligns well with
higher load demands, allowing for efficient absorption. At the same
time, it can be found that the power purchase cost (annual value) of
the main grid of the system increases with the increase of load, while
the cost of power curtailment decreases with the increase of load.
This is because the increased load of the system is borne by two
parts: one part is borne by distributed generation, and the increased
load at night absorbs part of the curtailment, resulting in the
reduction of the cost of power curtailment; The remaining part is
borne by the main network, and the increase of electricity purchased
by the main network leads to the increase of its cost.

The timing uncertainty interval values for the system random
variables in Scenario 1 are presented in Table 6.

From the above table, it can be found that the worst case of the
system corresponding to each moment is that the load is taken to the
upper bound of the uncertainty interval, the wind and solar energy
output are set to the lower bound of the uncertainty interval.
Therefore, it can be found that the best planning strategy of the
system is formulated under the scenario that the system load reaches
the maximum and the wind energy and solar power output reaches
the minimum. This is mainly because after the second-order cone
transformation, the nonlinear terms of the objective function in this
planning model are transformed into the form of second-order cone.
According to the fundamental concept of second-order cone
optimization, the optimal solution of natural decision-making
must be located on the boundary.

The optimal demand-side response strategy in the first year
under the optimal planning scheme in Scenario 1 [see
Supplementary Material (Appendix) for the remaining four years].

From Table 7, it can be seen that in the example of this paper, the
response electric quantity of the demand side of the system is 0 at
time 1, 3, 6 and 7, and the response electric quantity of the demand
side is very small at time 2, 4, 5, 8 and 9, while obvious load shedding
occurs at time 10 to time 24. This is because the wind and solar
power generation at a specific time 1, 3, 6 and 7 can fully meet the
load demand of the system, and the cost of power curtailment is
generated, so there is no need to adjust the demand side response.
Although the wind power and PV output of systems 2, 4, 5, 8 and
9 can meet most of the load demand of the system, a portion of the
load still needs to be acquired from the higher-tier power grid, and
the amount of electricity that can be regulated by demand-side
response is very small, so the amount of load shedding is almost
negligible. However, from time 10 to time 24, the load of the system
greatly exceeds the output of the distributed generation, and there is

TABLE 3 Time series of random variables without distribution and bounded
interval.

Moment Wind power Photovoltaic Load

1 0.55~0.63 0.03~0.07 0.25~0.31

2 0.51~0.59 0.02~0.06 0.20~0.26

3 0.59~0.67 0.02~0.06 0.15~0.24

4 0.49~0.57 0.01~0.05 0.17~0.23

5 0.46~0.54 0.02~0.06 0.18~0.24

6 0.50~0.58 0.20~0.24 0.22~0.28

7 0.42~0.50 0.21~0.25 0.21~0.27

8 0.32~0.40 0.33~0.37 0.24~0.30

9 0.25~0.33 0.52~0.56 0.27~0.33

10 0.13~0.21 0.68~0.72 0.38~0.44

11 0.06~0.14 0.78~0.82 0.54~0.60

12 0.13~0.21 0.83~0.87 0.56~0.62

13 0.06~0.14 0.87~0.91 0.51~0.57

14 0.04~0.12 0.82~0.86 0.51~0.57

15 0.04~0.12 0.77~0.81 0.51~0.57

16 0.13~0.21 0.69~0.73 0.52~0.58

17 0.16~0.24 0.55~0.59 0.54~0.60

18 0.35~0.43 0.38~0.42 0.56~0.62

19 0.44~0.52 0.28~0.32 0.56~0.62

20 0.54~0.62 0.28~0.32 0.59~0.65

21 0.65~0.73 0.09~0.13 0.60~0.66

22 0.75~0.83 0.07~0.11 0.48~0.54

23 0.65~0.73 0.06~0.10 0.44~0.50

24 0.56~0.64 0.05~0.09 0.35~0.42

TABLE 4 Planning results under scenario 1.

Optimal planning scheme WTGs [installed nodes/number/capacity (MW)] 7/6/0.6, 30/8/0.8

Photovoltaic unit [installed node/quantity/capacity (MW)] 13/8/0.8, 32/10/1

Line (access node/load node) 21/34, 6/35, 14/36, 26/37
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a large load space for demand-side response regulation, resulting in
large load shedding during demand-side response regulation.

At the same time, it can be found from the above table that the
general strategy of demand-side response regulation at time 12, 13,

14 and 15 is similar, and time 11 is similar to time 17 and time 18.
This is because the load change between time 12 and time 18 is very
small, but the decrease (increase) of wind power output is just offset
by the increase (decrease) of PV power output between times with
similar regulation strategies, which leads to similar demand-side
response strategies at different times.

5.4 Scenario 2 simulation results and analysis

To better analyze the correlation’s impact on the simulation
planning results in this paper’s example, the optimal planning
scheme from scenario 1 is applied to simulate the operations in
scenario 2. The resulting system operation costs for the five-year
planning period are detailed in Table 8.

It can be seen from the above table that, compared with the
operation cost of the optimal planning scheme under scenario 1, in
scenario 2, under the same investment conditions, the yearly costs
for power procurement, network losses, and load shedding of the
main grid have little change, while the power curtailment cost has
been significantly increased, and the total cost has also been
significantly increased. The reason is that in the example of this
paper, the uncertainty interval characterization in scenario 1 is based
on the data after correlation processing, while the uncertainty
interval characterization in scenario 2 is based on the original
data (see Table 5 for details). Compared with scenario 1, the
lower boundary of the uncertainty range for wind power is
enhanced, whereas for photovoltaic power, it is diminished. The
maximum threshold of the uncertainty interval of the load has been
slightly raised. Therefore, in the daytime, the reduction of the
photovoltaic system’s output unit suppresses the increment of the
output of the wind turbine unit, so the slightly increased system load
leads to a slight increase in the cost of purchasing electricity, network
loss and load shedding in the main network of the system, while the
slightly increased system load at night is not enough to absorb the
significant increase in the output of wind turbine unit, resulting in a
significant increase in system power curtailment cost. To sum up, in
the example of this paper, the uncertainty boundary depicted in
scenario 2 is worse than that in scenario 1, so the planning strategy

TABLE 5 The cost of the optimal planning scheme in scenario 1.

Investment cost/10,000 yuan DG investment costs 3740

Line expansion costs 800

Operating cost/10,000 yuan (Annual value) Year 1 2 3 4 5

Power purchase cost of main network 356.37 392.33 432.01 475.59 523.76

Cost of power curtailment 1.698 1.544 1.247 0.989 0.479

Network loss cost 16.37 18.007 19.808 21.788 23.967

Demand side response cost 23.951 26.346 28.981 31.879 35.067

Operating cost of each year/10,000 yuan (annual value) 398.38 438.23 482.05 530.25 583.28

Operating cost of each year/10,000 yuan (present value) 398.38 402.04 405.73 409.45 413.21

Total operation cost/10,000 yuan (present value) 2028.832

Total cost/10,000 yuan (present value) 6568.832

TABLE 6 Values of uncertainty interval of random variables in scenario 1.

Moment Load Wind power Photovoltaic

1 0.31 0.55 0.00

2 0.26 0.51 0.00

3 0.24 0.59 0.00

4 0.23 0.49 0.00

5 0.24 0.46 0.00

6 0.28 0.50 0.20

7 0.27 0.42 0.21

8 0.30 0.32 0.33

9 0.33 0.25 0.52

10 0.44 0.13 0.68

11 0.60 0.06 0.78

12 0.62 0.13 0.83

13 0.57 0.06 0.87

14 0.57 0.04 0.82

15 0.57 0.04 0.77

16 0.58 0.13 0.69

17 0.60 0.16 0.55

18 0.62 0.35 0.38

19 0.62 0.44 0.28

20 0.65 0.54 0.28

21 0.66 0.65 0.00

22 0.54 0.75 0.00
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obtained by the same planning method in scenario 2 should be more
conservative than that in scenario 1. The best planning strategy in
Scenario 2 verifies the above conclusion.

The best planning strategy in Scenario 2 is presented in Table 9.
The expenses associated with the optimal planning strategy in

Scenario 2 are displayed in Table 10.
From the table above, it is evident that the capacity is

approaching the uncertain boundary of unfavorable natural
decision variables compared to scenario 1, and the artificial
decision is to deal with the more adverse impact of the system
by increasing investment and construction (reducing wind power
installed capacity and increasing photovoltaic installed capacity). By
comparing with the simulation results under scenario 1, it is found
that the total investment cost of the planning scheme without
considering correlation is larger than that of the planning scheme
with considering correlation, and the investment planning and
construction are more conservative.

5.5 Simulation results and analysis of
scenario 3

The most effective planning strategy in Scenario 3 is shown in
Table 11.

The costs in Scenario 2 under the optimal planning scheme are
presented in Table 12.

From the above table, it can be seen that compared with scenario
1, the planning results under scenario 3 have increased significantly in
terms of both investment cost and operation cost. Themain reason for
this phenomenon is that the traditional robust optimization model
requires all variables tomake decisions after the uncertainty is known,
allowing nature (uncertain decision variables) to make decisions first,
and the artificial system observes the strategies of nature and takes
corresponding measures to suppress their adverse effects on the
system, so the artificial decision-making is too general. As a result,
the planning results are often too conservative.

To sum up, the proposed two-phase robust programming
framework, accounting for correlation, considers the impact of
random variable correlation on planning outcomes. At the same

TABLE 7 Optimal demand-side response control strategy in the first year of
scenario 1.

Moment Demand side response electric quantity/MVA

Node 4 Node 8 Node 24 Node 32

1 0 0 0 0

2 8E−11 5.26E−11 4.72E−11 5.6E−11

3 0 0 0 0

4 1.89E−08 8.28E−09 5.9E−09 9.54E−09

5 8.93E−11 5.57E−11 4.85E−11 5.98E−11

6 0 0 0 0

7 0 0 0 0

8 6.4E−10 1.53E−09 3.61E−09 1.09E−09

9 3.11E−03 0.005693 0.024273 0.002173

10 0.010642 0.035474 0.09312 0.027936

11 0.014422 0.048074 0.126194 0.037858

12 0.014895 0.049649 0.130329 0.039099

13 0.013713 0.048712 0.129643 0.035784

14 0.013513 0.045712 0.119993 0.035998

15 0.013613 0.046155 0.121826 0.036485

16 0.01395 0.046499 0.12206 0.036618

17 0.014302 0.047574 0.125294 0.037858

18 0.014895 0.049649 0.130329 0.039099

19 0.015295 0.050649 0.132329 0.040099

20 0.015603 0.052011 0.13653 0.040959

21 0.01584 0.052799 0.138597 0.041579

22 0.013005 0.043349 0.113791 0.034137

23 0.01206 0.040199 0.105523 0.031657

24 0.01017 0.033899 0.088986 0.026696

TABLE 8 The operational expenditure for the optimal planning strategy in Scenario 1 under Scenario 2.

Operating cost/
10,000 yuan

Year 1 2 3 4 5

Power purchase cost of main
network

356.37 392.331 432.015 475.600 523.769

Abandon electricity Cost 8.426 7.103 5.966 5.013 4.343

Network loss Cost 15.440 16.984 18.682 20.551 22.606

Load shedding cost 24.574 27.032 29.735 32.708 35.979

Run in each year Cost/10,000 yuan 407.810 404.810 45.291 489.820 538.802

Run in each year Cost/10,000 yuan 398.389 398.389 408.524 412.272 416.054

Total operation Cost/10,000 yuan 2055.11
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time, the artificial decision-making is further refined, and it is
divided into two stages to resolve the harm brought by the
uncertainty of nature. Compared with the traditional robust

planning model without considering the influence of correlation,
its planning method is finer and the planning result is more
economical.

TABLE 9 Planning results under scenario 2.

Optimal planning scheme Wind turbine [installed nodes/number/capacity (MW)] 4/6/0.6, 30/7/0.7

Photovoltaic unit [Installed nodes/number/capacity (MW)] 13/8/0.8, 32/12/1.2

Line (access node/load node) 21/34, 7/35, 14/36, 28/37

TABLE 10 Cost of optimal planning scheme in scenario 2.

Investment cost/10,000 yuan DG investment costs 3740

Line expansion costs 800

Operating cost/10,000 yuan (annual value) Year 1 2 3 4 5

Power purchase cost of main network 328.77 362.15 398.90 439.26 483.42

Abandon electricity Cost 1.577 1.241 0.827 0.436 0.246

Network loss Cost 12.339 13.573 14.930 16.423 18.066

Demand-side cost 20.457 22.502 24.753 27.228 29.951

Total operation cost/10,000 yuan (annual value) 363.15 399.46 439.41 483.35 531.69

Total operation cost/10,000 yuan (present value) 398.38 366.48 369.84 373.23 376.66

Total operation cost/10,000 yuan (present value) 1884.617

Total cost/10,000 yuan (present value) 6584.617

TABLE 11 Planning results under scenario 3.

Optimal planning scheme Wind turbine [installed nodes/number/capacity (MW)] 7/4/0.6, 30/6/0.7

Photovoltaic unit [Installed nodes/number/capacity (MW)] 13/10/0.8, 32/12/1.2

Line (access node/load node) 20/34, 9/35, 16/36, 26/37

TABLE 12 Cost of optimal planning scheme under scenario 3.

Investment cost/10,000 yuan DG investment costs 3860

Line expansion costs 840

Operating cost/10,000 yuan (Annual value) Year 1 2 3 4 5

Power purchase cost of main network 377.45 418.25 460.52 506.96 558.26

Abandon electricity Cost 4.175 1.544 1.247 0.989 0.479

Network loss Cost 18.447 20.292 22.321 24.553 27.008

Demand-side cost 21.347 23.482 25.830 28.413 31.25

Total operation cost/10,000 yuan (annual value) 421.42 463.56 509.92 560.91 617.00

Total operation cost/10,000 yuan (present value) 398.38 425.29 429.19 433.13 437.10

Total operation cost/10,000 yuan (present value) 2123.106

Total cost/10,000 yuan (present value) 6823.106
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6 Conclusion

In this chapter, the paper introduces a dynamic robust
planning method for smart grid systems that considers
correlation. Firstly, the Spearman rank correlation coefficient
measures the association between different variables. This,
combined with the rank correlation matrix characteristics, is
utilized in the analysis. Cholesky decomposition and
independent transformation are employed to convert correlated
random variables into independent ones, and subsequently, the
polyhedral uncertainty set is employed to represent the
uncertainty. The uncertainties of wind power, PV power and
load are represented by bounded intervals without distribution
respectively. Finally, combined with the idea of two-stage dynamic
robustness, the active distribution network planning problem is
described as a game relationship between uncertain decisions
controlled by nature and artificial decisions controlled by
investors, and a two-stage robust planning model is developed
for a dynamic distribution system, taking into account correlation.
The results based on standard examples demonstrate the following
key findings:

(1) This paper utilizes the Spearman rank correlation coefficient
to assess the correlation between wind power, photovoltaic
power, and load. It combines this with the properties of the
rank correlation matrix, employing methods such as
Cholesky decomposition and related independent
transformation techniques. These steps effectively convert
correlated random variables into independent ones, thereby
providing robust data support for distribution network
planning. Consequently, this leads to a significant
enhancement in the reliability of the distribution network
planning results.

(2) The paper adopts the approach of representing uncertainties in
wind power, photovoltaic power, and load using the
polyhedron uncertainty set representation method. This
method employs undistributed bounded intervals to
encapsulate the range of potential uncertainties.
Additionally, the paper employs the concept of two-stage
robust programming to thoroughly integrate the specific
circumstances of distribution network planning projects.
This enables an accurate simulation of the active
distribution network system’s operation, especially at
uncertain boundaries. As a result, the reliability and
economic efficiency of the active distribution network
planning results experience a notable improvement.
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