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Accurate prediction of ground surface settlements induced by shield construction
is of great significance for ensuring the safety of shield construction. This paper
proposes a ground surface settlement prediction method for shield tunneling
based on Bayesian updating. The sequential observation data during the advance
of excavation is utilized to update the key soil parameters, leading to a more
accurate settlement prediction for the subsequent excavation stages. Response
surfaces are constructed to replace the finite element model as the forward
models for higher computational efficiency. A tunnel excavation project in
Hangzhou, China, is selected to illustrate the effectiveness of the proposed
method. The shield excavation face passes through four soil layers, and two
soil parameters (i.e., Young’s modulus and friction angle) of these soil layers are
selected as random variables to be updated. The results show that the soil
parameters can be effectively updated based on the observation data at
multiple points and various excavation stages. The predictions of ground
surface settlements are improved by using the updated soil parameters. The
prediction accuracy of the proposed method increases as more stages of
observation data are sequentially obtained and incorporated.

KEYWORDS

Bayesian updating, tunnel, response surfacemethod, Markov chain Monte Carlo method,
finite element analysis, uncertainty

1 Introduction

Modern urban development involves the construction of various tunnels, such as
subway tunnels, underpass tunnels, highway tunnels, and water pipelines. Shield
construction has become one of the most commonly used tunnel construction
methods due to its high efficiency and low environmental disturbance. However,
shield construction inevitably causes soil disturbance and tunnel deformation, which
may result in structural damage such as leakage, tube sheet misalignment, and lining
cracks. The soil deformation induced by shield tunneling may damage the surrounding
buildings and ecological environment if the ground surface settlement is too large. The
ground surface settlement becomes more sensitive especially when the tunnel diameter is
large (Xie et al., 2016; Gan et al., 2020). Therefore, in order to ensure the safety of the
tunnel and the surrounding environment, it is important to evaluate and predict the
ground surface settlement induced by shield tunneling.
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Prediction methods for ground surface settlement caused by
shield tunneling consist of empirical or semi-empirical methods
(Peck, 1969), analytical methods (Sagaseta, 1987; Liu et al., 2018;
Litwiniszyn, 2022), numerical simulations (Mazek and Almannaei,
2013; Sharifzadeh et al., 2013; Zhang et al., 2022), and the recently
emerged data-driven methods (Lin et al., 2022a; Lin et al., 2022b).
Among these methods, numerical simulation has been widely used,
as it can simulate the tunneling process under complex geological
conditions and provide a comprehensive view of the soil stresses and
strains induced by tunnel construction (Komiya et al., 1999; Kasper
and Meschke, 2006; Kavvadas et al., 2017). The results of numerical
simulations are mainly dependent on the setting of geomechanical
parameters of the soil mass (Ou et al., 2013; Tao et al., 2024).
Although some geotechnical parameters can be measured from in
situ and laboratory tests, it is still challenging to determine the
reasonable values of soil parameters (Doherty and Bransby, 2021;
Tian et al., 2022; Tao et al., 2023; Huang et al., 2023), due to the
limited number of tests, the dubious representativeness of sampling
points, and the inevitable disturbance of test samples. Inappropriate
soil parameters have a directly adverse impact on numerical
simulation outcomes and provide improper construction guidance.

Using in situmonitoring data for updating soil parameters is an
effective method to determine appropriate soil parameters at various
excavation stages (Arai et al., 1983; Al-Khoury et al., 2001; Feng
et al., 2004). Specifically, soil parameters are updated based on the in
situ monitoring data from the previous excavation stages and then
used to predict the subsequent settlements as the tunneling
proceeds. There are various methods of inverse analysis in
geotechnical engineering, including deterministic and
probabilistic inverse analysis. Deterministic inverse analysis
regards geotechnical parameters as a unique set of values and
ignores the uncertainty associated with the soil properties. The
prediction of soil responses (e.g., ground surface settlement) is
also a unique value using the estimated unique set of soil
parameters. (Yang et al., 2017). On the contrary, probabilistic
inverse analysis can not only identify the soil parameters but also
quantify the uncertainty of the soil parameters. Soil parameters are
treated as random variables to provide all possible geotechnical
responses and their probabilities, which are more in line with actual
engineering practice (Gens et al., 1996; Eclaircy-Caudron et al., 2007;
Yu et al., 2007; Zhao and Yin, 2009; Hashash et al., 2010). Many
inverse analysis methods have been developed based on Bayes’
theorem. For example, Finno and Calvello (2005) presented an
inverse analysis framework that effectively assimilates the
monitoring data to update the soil parameters for braced
excavations. Zhang et al. (2010) used the Markov chain Monte
Carlo simulation in conjunction with the response surface method
to investigate the slope stability. Tao et al. (2020) proposed an
inverse analysis method based on the ensemble Kalman filter for
embankment settlement prediction. Bayes’ theorem has been
extensively applied in geotechnical engineering to address the
uncertainty of geotechnical parameters.

Bayesian methods have also gained attention in tunneling
problems. For example, Park and Park (2015) performed a
probabilistic inverse analysis to estimate the cohesion and friction
angle in a tunneling project. Feng et al. (2019) applied the Bayesian
updating to estimate the parameters of an empirical tunnel
convergence model based on the convergence measurements.

Zhao et al. (2021) integrated the Bayesian method with a multi-
output support vector machine-based surrogate model to update the
rock mechanical parameters for a circular tunnel. However, these
studies only considered the ground surface settlement at a single
point. It is possible that the overall settlement curve is different
although the settlement of a single point is well captured. Moreover,
the differential settlement among adjacent points is more influential
to the surrounding infrastructures compared to the settlement at one
point. Therefore, it is necessary to predict the ground surface
settlement at multiple locations.

This study presents a Bayesian method for an improved
prediction of tunneling-induced ground surface settlement using
the monitoring data at multiple points and various excavation
stages. The soil parameters are identified and updated based on
the multi-point monitoring data as the tunneling proceeds. The
updated soil parameters are then used to predict the ground surface
settlement at the subsequent excavation stages. In order to improve
the computational efficiency, response surfaces are constructed to
replace the finite element model in the Bayesian updating. A tunnel
construction project in Hangzhou is used to show the effectiveness
of the proposed method.

2 Methodology

2.1 Bayesian updating

Soil properties exhibit inherent uncertainty as soil is a natural
material. Thus, it is challenging to obtain reliable geomechanical
parameters. In the numerical calculation of geotechnical
engineering, the geomechanical parameters of soil have a direct
impact on the calculation results. The soil parameters are treated as
unknown random variables x (x = [x1, x2, ., xn], n is the number of
soil parameters). Bayesian updating is an effective method to infer
the soil parameters from limited monitoring data. The Bayesian
formula is written as Equation 1 (Kaipio and Somersalo, 2005):

p x
∣∣∣∣y( ) � L y

∣∣∣∣x( )p x( )
p y( )

(1)

where p(x) is the prior probability density function (PDF) of the soil
parameters x, i.e., the PDF of soil parameters when no observation
data is available. The prior PDF can be determined based on
engineering experience and previous literature (Cao et al., 2016).
L(y|x) is the likelihood function, representing the PDF of the
observation data y given the soil parameters x. p(y) is the
normalization constant with p(y) = ∫L(y|x)p(x)dx. p(x|y) is the
posterior PDF of the soil parameters x, i.e., the PDF of soil
parameters after incorporating the observation data.

In geotechnical problems, the analytical solution of the posterior
distribution of soil parameters is usually unavailable due to the
complexity and nonlinearity of the numerical model. In addition,
the unknown parameters are usually multi-dimensional, because soil
deformation is affected by multiple soil parameters, such as the
friction angle and elastic modulus. For the deformation caused by
tunnel excavation, the consideration of layered soil also leads to an
increase in the number of soil parameters. Calculating the posterior
distribution of each parameter requires sophisticated and
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high-dimensional integrals that are challenging to implement in
practice. Therefore, the MCMC sampling technique is used to
approximate the posterior distribution of soil parameters (Qi and
Zhou, 2017; Zheng et al., 2019).

In this study, the Metropolis-Hastings (MH) algorithm, which is
one of the most commonly used MCMC algorithms in geotechnical
engineering (Emerick and Reynolds, 2013; Juang et al., 2013; Qi and
Zhou, 2017), is used to generate the posterior samples of soil
parameters. The computational steps are as follows.

(1) Determine the first sample value x1 for each random variable,
either by random sampling from a prior distribution of the
parameters or by taking the mean of the prior distribution
directly.

(2) When j = 2, 3, 4, ., N:
a) A candidate value for the jth sample is generated from the

proposal distribution q(xp|x
j−1). Assume that the proposal

distribution q(xp|x
j−1) is a multivariate normal distribution

with mean xj−1 and covariance s × Cprior, where s is the
scaling factor, and Cprior is the covariance matrix of the prior
distribution of the soil parameters. The subscript p is an
abbreviation for proposal, and the superscript j-1 denotes the
j-1st sample.

b) Calculate the probability density ratio r with the formula in
Equation 2:

r � p xp
∣∣∣∣y( )q xj−1

∣∣∣∣xp( )
p xj−1

∣∣∣∣y( )q xp
∣∣∣∣xj−1( )

� p xp
∣∣∣∣y( )

p xj−1
∣∣∣∣y( )

(2)

c) Decide whether xp is accepted or not. Draw a random sample u
from the uniform distribution U [0,1]. If u ≤ min(r,1), then xj =
xp, otherwise xj = xj−1.

d) If j = N, stop MCMC sampling; otherwise, let j = j+1 and repeat
steps a)-d).

The MCMC sampling is deemed to have high efficiency if the
acceptance rate is between 20% and 40% (Gelman et al., 1995). If the
scaling factor s is too large, a large number of samples will be
rejected, then the acceptance rate will be too low, and the Markov
chain will converge slowly. On the contrary, if the scaling factor s is
too small, the proposal samples will move slowly through the
parameter space, resulting in a narrow distribution, a high
acceptance rate, and low sampling efficiency. In order to attain
an effective MCMC sampling, the magnitude of the scaling factor s
must be adjusted by trial computations for specific applications.

2.2 Orthogonal design

Orthogonal design is an experimental design method for studying
multiple influential factors andmultiple levels of these factors. It uses an
orthogonal array to arrange and analyze multi-factor experiments for
the purpose of obtaining reliable data with a small number of trials. In
this paper, an orthogonal design is used to construct a small number of
representative sets of soil parameters that are uniformly distributed in
the parameter space. These parameter sets are then used as input to
obtain the training samples. As a result, the number of numerical

simulations required for constructing reliable response surfaces is
substantially reduced.

In the orthogonal design method, the parameters considered are
called factors. Each factor is assigned with different values within its
own permissible value range, the number of values is known as the
level of each factor. Under a fixed number of factors, the number of
experiments or simulations in the orthogonal design method
increases with the number of levels of the factors (Jiang et al., 2018).

Orthogonal designs are usually expressed as La(b
c), where L

represents the orthogonal table, a represents the number of
experiments, b represents the level of each factor, and c
represents the number of factors. For example, the meaning of
L8(2

7) is explained as follows: the orthogonal design method designs
eight experiments with seven factors (a1, a2, a3, a4, a5, a6, a7), and
each factor has two levels (1, 2), as shown in Table 1.

The orthogonal design must meet the following three
requirements.

(1) For each factor, the occurrence frequency of each level needs to
be the same. For example, in Table 1, Level 1 and Level 2 appear
four times in each column.

(2) For any two factors, each combination of levels must occur an
equal number of times. For example, in Table 1, the
combination of levels for factors a1 and a2, namely, (1, 1), (1,
2), (2, 1), and (2, 2), occurs twice each.

(3) The number of trials cannot be less than the square of the
number of levels.

2.3 Response surface method

Forward model is a crucial part of updating geotechnical
parameters during inverse analysis. In geotechnical engineering,
where suitable analytical models are challenging to derive, numerical
models are more frequently used to calculate the response of
geotechnical structures. However, in general, numerical models
are relatively time-consuming to assess the response of
geotechnical structures, especially for the MCMC method, which
requires 105 to 106 runs of model (Xiao and Cinnella, 2019) and is
computationally too expensive. Therefore, the response surface is
needed as an alternative forward model (Guo and Dias, 2020; Guo

TABLE 1 Orthogonal design table.

No. a1 a2 a3 a4 a5 a6 a7

1 1 1 1 1 1 1 1

2 1 1 1 2 2 2 2

3 1 2 2 1 1 2 2

4 1 2 2 2 2 1 1

5 2 1 2 1 2 1 2

6 2 1 2 2 1 2 1

7 2 2 1 1 2 2 1

8 2 2 1 2 1 1 2
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et al., 2022; Tian et al., 2022; Gu et al., 2023). The fundamental
principle of response surface method (RSM) is to establish a
relationship between the input parameters and the geotechnical
response. This is achieved by using a polynomial function, denoted
as h(x). In this study, a polynomial function including the constant
term, first-order terms, and squared terms is used, which is
written as

h x( ) � a +∑
n

i�1
bixi+∑

n

i�1
cix

2
i (3)

where h(x) denotes the response surface, x = [x1, x2, . . . , xn] are the
input parameters of the numericalmodel, n denotes the number of input
parameters, and a, bi, ci are the regression coefficients of the polynomial
function. The regression coefficients for the response surfacemethod are
obtained by least square method. The main steps are as follows.

(1) For each soil parameter, three representative values are selected
as input values for the finite model. These three representative
values include μ and μ±2σ, where μ represents the mean and σ

represents the standard deviation. The mean and standard
deviation of each soil parameter are determined by the test
data extracted from the geological survey report, existing
relevant literature, and the experience of engineers.

(2) The dataset used for developing the response surfaces is generated
from numerical model simulations. The orthogonal design in
Section 2.2 is adopted to design N sets of input parameters. The
corresponding outputs (i.e., ground surface settlements) are
calculated through N rounds of numerical simulations.

(3) Based on the dataset, non-linear fitting is performed to determine
the regression coefficients of the response surfaces that link the soil
parameters and the geotechnical response. It is worth noting that
the response surface is different for each excavation stages and

monitoring points. It is necessary to construct its own response
surface for eachmonitoring point at each stage. For example, in the
real project studied in this paper, there are five excavation steps, and
the ground surface settlement needs to be calculated at six
monitoring points for each step. Consequently, a total of 5 ×
6 = 30 response surfaces need to be constructed.

2.4 Flowchart of the bayesian updating for
ground surface settlement

The Bayesian updating flowchart is shown in Figure 1. The
method mainly consists of three parts as follows.

(1) Determine the prior distribution of soil parameters. The prior
distribution of key soil parameters is obtained based on the
geological survey report of the project, previous literature, and
engineering experience.

(2) Construct the surrogate model. First, the upper and lower limits
of each soil parameter are determined according to the typical
value ranges of the soil parameters. N sets of soil parameters is
obtained through orthogonal design. These soil parameter sets
are then inputted into the finite element model to obtain N
output sets of ground surface settlements. Nonlinear fitting is
performed to determine the coefficients of response surface for
eachmonitoring point at each excavation stage. The constructed
response surfaces is used to replace the finite element model as
the forward model in the Bayesian updating.

(3) Perform the Bayesian updating. A sequential updating strategy
is adopted as the monitoring data is sequentially recorded with
the progress of tunnel excavation. Specifically, the samples
generated from the prior distribution of soil parameters are

FIGURE 1
Flowchart of the Bayesian updating method for tunneling.
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substituted into the constructed surrogate model. The
monitoring data of step i is used in the likelihood function.
The posterior distribution of soil parameters is derived based on
the MCMC sampling. Under the sequential updating
framework, the posterior distribution of step i is used as the
prior distribution for step i+1. The procedures of data
assimilation are repeated until the last excavation stage.

In practical application, once new observation data become
available, the soil parameters can be immediately updated in real-
time, and the deformation response at the subsequent stages can be
rapidly predicted based on the updated soil parameters. It is worth
noting that the predicted deformation response is not a single value
but a probability distribution.

3 Case study

3.1 Project background

A tunnel project in Hangzhou, China, is used to illustrate the
method. The total length of the tunnel is approximately 6.3 km, with
an overburden depth of approximately 21 m. The inner and outer
diameters of the tunnel are 14.5 m and 13.3 m, respectively. The
tunnel consists of 615 rings in total. The section of the 450th ring has
a thick soft soil layer in the overlying strata. Therefore, the
settlement in this section is likely to be significant, thus it is
selected as the prediction target. As shown in Figure 2, the soil
profile contains a total of seven layers of soil, and the tunnel mainly
crosses the silty clay interspersed with silt, cohesive soil with gravel,
strongly weathered mudstone, and moderately weathered mudstone
layers. There are five monitoring points at the ground surface within

one section, which are at distances of 0 m, 3 m, 7 m, 12 m, 20 m, and
25 m from the tunnel axis, respectively. The ground surface
settlement data observed at multiple monitoring points are
plotted in Figure 3. Each excavation step is defined as 1 day. This
is because the settlement is measured on a daily basis rather than per
ring. The date when the tunnel is excavated to the 450th ring is
denoted as Step 1, and each of the following 4 days is regarded as an
excavation step, e.g., the next day after the excavation of the 450th
ring is called Step 2. The number of rings excavated every day is
shown in Figure 4.

3.2 Numerical model

PLAXIS 3D is used to carry out the numerical simulations. The
3D finite element model of this tunnel project is shown in Figure 4.
Only the left half of the tunnel is modeled due to the geometric
symmetry of the tunnel, with length = 100 m, width = 50 m, and
depth = 60 m.

The tunnel lining segments are simulated using an elastic
material with precast C60 concrete. The thickness is 0.6 m, the
width is 2 m, the unit weight is 24 kN/m3, the Young’s modulus E is
36 GPa, and the Poisson’s ratio ] is 0.2. The Mohr-Coulomb failure
criterion is introduced to simulate the response of the soil. The soil
parameters of each soil layer are shown in Table 2. According to the
parameter sensitivity study in the existing literature (Miro et al.,
2015; Hu and Wang, 2019), the important soil parameters
(i.e., Young’s modulus E and friction angle φ) of each soil layer
are treated as random variables with coefficients of variation of
0.3 and 0.2 (Phoon and Kulhawy, 1999; Mollon et al., 2009; Qi and
Zhou, 2017), respectively. These soil parameters are assumed to
follow lognormal distributions to avoid negative values. Other soil
parameters (e.g., cohesion c) are considered as constants. An
orthogonal design is carried out for 14 random variables to
obtain 72 sets of input parameters, as shown in Figure 5. The
numbers on the left side of the figure indicate the index of the test,
and the number on the top represent a certain soil parameter
(e.g., 1 indicates E1, which represents the Young’s modulus for

FIGURE 2
Project profile.

FIGURE 3
Observed data of ground surface settlement at different
excavation steps.
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the first soil layer). The numbers in the small squares indicate the
level of the parameters, while the values of the levels for a specific
parameter are given in the lower table in Figure 5.

3.3 Construction of response surfaces

For the tunnel project studied in this paper, a single finite element
simulation takes nearly 4 h using a 12th Gen Intel(R) Core (TM) i5-
12600 KF (3.70 GHz) computer processor, which is computationally
expensive. Therefore, the response surface in Section 2.3 is used instead
of the finite element model for the Bayesian updating. The relationship
between 14 random variables (the Young’s modulus and friction angle
of each soil layer) and ground surface settlement is constructed
according to Eq. 3. It is worth noting that the response surface of
each monitoring point varies with the steps. Thus, 6 (number of
monitoring points) × 5 (number of steps) = 30 response surfaces
need to be constructed as described in Section 2.3. The regression
coefficients of response surfaces are obtained using the least square
method. Figure 6 shows the results of the response surface for the
central monitoring point, which is located at the tunnel axis. This
response surface is selected for illustration because the settlement near
the tunnel axis is usually larger than those at other locations. The

settlements calculated from the response surface are generally in good
agreement with those directly calculated from the finite element model,
as the data points fall around the diagonal line, and the mean absolute
error and the coefficient of determination are 3.07 mm and 0.92,
respectively. The approximation accuracy may be further improved
if more data samples and more complex model forms are used.
However, for the tunneling project in this study, the number of data
samples is limited because conducting a single 3D finite element
simulation is time-consuming. A more complex surrogate model
requires more data to estimate the increasing unknown model
parameters. In general, the trained response surface is an acceptable
approximation of the original finite element model, so it can be used as
the forward calculation model in the Bayesian updating.

4 Results

4.1 Updated soil parameters

In the Bayesian updating, the Young’s modulus and friction
angle of the four soil layers traversed by the shield tunneling face are
taken as the key parameters to be updated. The Young’s modulus
and friction angle of the other three soil layers are taken as constants

FIGURE 4
Finite element model.

TABLE 2 Soil parameters for seven layers.

Depth (m) γ (kN/m3) ] c (kPa) E φ

Mean (MPa) COV Mean (°) COV

0.0–3.0 19.3 0.4 2 15 0.3 15 0.2

3.0–7.7 18.5 0.3 3 15.6 0.3 24 0.2

7.7–14.2 17.2 0.3 12 10.5 0.3 9 0.2

14.2–23.6 17.4 0.3 13 10.8 0.3 9.5 0.2

23.6–25.6 19 0.3 9 35 0.3 22 0.2

25.6–32.0 20.3 0.2 69 40 0.3 45 0.2

32.0–60.0 25 0.2 63.8 75 0.3 49 0.2
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(i.e., the mean values shown in Table 2). The prior distributions of
the key soil parameters are summarized in Table 2. The
measurement error is assumed as 5 mm. The length of the
Markov chain in the MCMC algorithm is taken as 12,000. After

removing the first 2000 samples of the burn-in period, one out of
every ten samples is selected as the posterior sample to reduce the
correlation between samples (Ching et al., 2021), so the final number
of the posterior samples is 1,000.

Figure 7 shows the posterior distributions of soil parameters
in each round of Bayesian updating. The soil parameters are
updated step by step. Specifically, the posterior distributions of
soil parameters obtained from the current step are used as the
prior distributions for the next step. As shown in Figure 7, the
posterior distribution of each soil parameter is significantly
changed as the shield tunneling proceeds and more
observations become available. The “short and wide” prior
distribution is gradually updated to a “tall and narrow”
posterior distribution. The values of the parameters become
more concentrated, and the associated uncertainty is
significantly reduced. The coefficients of variation of each
parameter at each step are summarized in Table 3. It shows
that the uncertainty of parameters generally decreases with the
increase of incorporated observations. The Young’s modulus is
more sensitive than the friction angle, which is consistent with
the conclusion from Wang et al. (2022) and Qi and Zhou (2017).

4.2 Ground surface settlement prediction

The soil parameters updated based on the available
observation data are used to predict the ground surface
settlement in the subsequent steps. Figure 8 shows the
estimates of ground surface settlement in each step using the

FIGURE 5
Orthogonal design parameter sets.

FIGURE 6
Comparison of deformation calculated from the response
surface and the finite element model.
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posterior distributions of soil parameters obtained from that
step. Specifically, as shown in Figure 8A, the soil parameters
are updated by incorporating the observation data of Step 1. The
ground surface settlement in Step 1 is then estimated using the
posterior distributions of soil parameters. It is a back analysis
rather than a prediction. The mean and 95% credible interval (CI)
are plotted by solid lines and error bars, respectively. The mean
settlements calculated from the prior distribution of soil
parameters are represented by the dashed lines. It can be seen
that the prior distribution of soil parameters significantly
overestimates the ground surface settlements and produces a
significant bias. This is because the prior distributions of soil
parameters are determined based on the geological survey report
of the project and the relevant publications. The number of tests
provided in the geological survey report is too limited to provide
a stable mean value for a soil parameter. The representativeness
of the sampling locations is also questionable, and there are

inevitable disturbances of test samples. On the contrary, the soil
parameters obtained from the back analysis lead to mean
settlements close to observations and 95% CIs that generally
cover the field observations.

Figure 9 shows the settlement prediction for the next step using
the posterior distributions of soil parameters obtained from the
current step. Specifically, as shown in Figure 9A, the prediction of
the ground surface settlement in Step 2 is based on the posterior
distribution of soil parameters obtained from Step 1. The prediction
of ground surface settlement in Figure 9 is generally less accurate
compared to that in Figure 8. The difference between the settlement
observation and the calculation mean in Figure 9 is larger than that
in Figure 8. It is understandable because Figure 8 shows the back
analysis results for the current excavation step, while Figure 9 shows
the prediction for the next excavation step. In general, as shown in
Figure 9, the 95% CIs of predictions can cover most of the
observations. In Step 4, there are larger deviations between

FIGURE 7
Prior and posterior distributions of the soil parameters at various excavation steps.

TABLE 3 Coefficients of variation of soil parameters.

Parameters Prior Step 1 Step 2 Step 3 Step 4 Step 5

E4 0.30 0.17 0.14 0.11 0.09 0.08

φ4 0.20 0.24 0.21 0.18 0.15 0.11

E5 0.30 0.27 0.14 0.13 0.07 0.05

φ5 0.20 0.18 0.16 0.15 0.13 0.12

E6 0.30 0.29 0.22 0.17 0.14 0.11

φ6 0.20 0.16 0.13 0.12 0.11 0.11

E7 0.30 0.20 0.22 0.24 0.23 0.17

φ7 0.20 0.18 0.16 0.15 0.13 0.12
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predictions and observations at the three monitoring points near
the tunnel axis, which could be attributed to the separation of the
shield tail during that step. The presence of a gap between the
tunnel lining segments and the surrounding soil is a result of
untimely grouting. However, when the soil parameters are
updated by incorporating the observation data of Step 4, the
95% CIs of the predicted surface settlements in Step
5 significantly move towards the field observations. The mean
agrees well with the field observations.

Figure 10 shows the predicted results of ground surface
settlement for Step 5 using the posterior distribution of soil
parameters obtained from different steps. The color blocks with
different colors indicate the 95% CIs of the ground surface
settlement based on the posterior distributions of different steps.

The dashed lines indicate the mean settlements. It can be seen that
the prediction at the beginning clearly underestimates the ground
surface settlement. As the number of available observations
increases and more updates are made, the mean settlement
gradually approaches the actual observations, and the prediction
intervals are slightly narrowed. The root mean square error (RMSE)
is used to measure the deviation between the predicted ground
surface settlement and the field observations in Step 5. The values of
RMSE for each monitoring point at each step are plotted in
Figure 11. The prediction results of each monitoring point using
the prior distribution deviate significantly from the observations,
especially at the monitoring points on the tunnel axis. The deviation
between the predictions and the field observations gradually
decreases as more monitoring data is incorporated. For example,

FIGURE 8
Settlement estimate using the posterior distributions of soil parameters from the current step: (A) Estimate for Step 1; (B) Estimate for Step 2; (C)
Estimate for Step 3; (D) Estimate for Step 4; (E) Estimate for Step 5.
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for the monitoring point on the tunnel axis, the RMSE value is
updated from 32.38 mm using the prior distribution to 3.21 mm
using the posterior distribution in Step 5. This demonstrates the
effectiveness of the proposed method in assimilating observation
data to predict ground surface settlement of subsequent steps. In
addition, it is worth noting that the influence of new observation
data on prediction accuracy gradually diminishes as the tunnel
excavation progresses. For instance, at the monitoring point on

the tunnel axis, the RMSE between Step 4 and 5 is very small,
differing by only 2.56 mm.

5 Conclusion

In this study, an effective Bayesian updating method is
developed for improving the prediction of ground surface

FIGURE 9
Settlement prediction for the next step using the posterior distributions of soil parameters obtained from the current step. (A) Prediction for Step 2;
(B) Prediction for Step 3; (C) Prediction for Step 4; (D) Prediction for Step 5.

FIGURE 10
Settlement prediction of Step 5 using updated parameters from
different steps.

FIGURE 11
RMSE of settlement in Step 5 using updated parameters from
different steps.
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settlement caused by the shield construction. To improve the
computational efficiency, response surfaces are employed to
replace the finite element model as the forward models in the
Bayesian updating framework. Meanwhile, MCMC sampling is
used to obtain the posterior distribution of soil parameters. A
Bayesian sequential updating method is used to incorporate the
observation data at multiple monitoring points during various
excavation stages. A tunnel project in Hangzhou, China, is used
as an example to illustrate the effectiveness of the proposed method.
Based on the results, the following conclusions can be drawn.

(1) This method can effectively identify the soil parameters with
quantified uncertainty. During the Bayesian updating of two soil
parameters (friction angle and Young’s modulus) of each soil layer,
the Young’s modulus is more sensitive to the tunneling-induced
ground surface settlements compared to the friction angle.

(2) The accuracy of ground surface settlement prediction is
improved as the excavation progresses. As more observation
data becomes available, the prediction mean gradually
approaches the actual settlement. The 95% prediction
interval calculated from the posterior distribution of soil
parameters generally covers the actual settlement. In practical
projects, once new observations are recorded, they can be
incorporated to update the soil parameters for improving the
predictions of subsequent settlements.

(3) Response surfaces can replace the finite element model for
calculating tunneling-induced settlements. The response
surfaces can provide multi-point and multi-stage settlement
predictions similar to the finite element model but considerably
reduce the computational cost. The efficiency of Bayesian
updating is significantly improved, thus facilitating more
timely decision-making in engineering.
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