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This article presents a DOD-SOH equalization method for a DRB system based on
the Deep DQN algorithm. The proposed method utilizes DQN to learn the
operational processes of the system. By integrating the advantages of DRB
with SOH equalization theory and the DQN algorithm from the perspective of
DOD, our method significantly improve battery performance and ensure cell
balancing. To begin with, we present a dynamic reconfigurable battery system
with a simple topological structure and outline its switching control process.
Additionly, we provide an analysis of the SOH balancing principle and elaborate on
the control process of DQN algorithm. Finally, subsequent simulations are carried
out, and the simulation results demonstrate outstanding performances in
reducing the variance of SOHs, which indicates an enhancement in the level of
SOH balancing as well.
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1 Introduction

The development of energy storage science and technology has greatly propelled the
advancement of various intelligent electrical devices in recent years (Lawder et al., 2014; Li
et al., 2021; Abomazid et al., 2022). With ongoing technological advancements and
breakthroughs in battery materials, battery management, and battery systems, the
development of battery energy storage has become increasingly significant. Under
traditional methods, battery system configurations often employ fixed series and parallel
connections, resulting in inevitable differences among individual battery cells. Consequently,
battery systems are prone to the “barrel effect,” wherein cells with lower capacity discharge
first, and cells with poorer health degrade faster. This imbalance leads to premature failure of
the battery system, causing issues such as capacity loss, reduced energy efficiency, and
shorter cycle life.
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In order to overcome the challenges posed by differences among
individual battery cells, the concept of a dynamic reconfigurable
battery system has been proposed (Kim and Shin, 2009; Ci et al.,
2012; Ci et al., 2016). This system involves high-speed MOSFETs
connected in series and parallel to each individual battery cell,
controlling the opening and closing of switches based on the
real-time state of the battery to achieve SOH equilibrium. In
recent years, there has been a growing body of research in the
field of DRB, with much of the focus on circuit topology design and
control. (Morstyn et al., 2016),critically, they have summarized the
existing hardware topologies, and compared their functionalities
and losses. Another study by (Gunlu et al., 2017) proposed a
dynamically reconfigurable independent cellular switch circuit to
facilitate the necessary battery connections, significantly improving
circuit efficiency. Additionally, (Kim et al., 2012), introduced a novel
battery switch topology circuit and high-performance battery
management system to enhance battery energy conversion
efficiency.

The dynamic reconfigurable battery system has proven effective
in overcoming the “weakest link” issue and achieving balance among
individual battery cells. SOH represents the battery’s health status in
terms of the remaining charge capacity, and is often used to
quantitatively measure differences among batteries. Accurately
measuring SOH is not a simple task, but it is an essential step
before implementing SOH balance control. Existing methods for
measuring SOH typically involve model-based and data-driven
approaches. Model-based methods entail constructing
electrochemical and equivalent circuit models, utilizing Kalman
filtering (Duan et al., 2023; Zhao et al., 2018; Chen et al., 2022)
and Gaussian filtering (Wang et al., 2023; Cui et al., 2022; Fan et al.,
2023) to estimate SOH. Data-driven methods primarily rely on
machine learning (Shu et al., 2021; Buchicchio et al., 2023; Raoofi
and Yildiz, 2023) and deep learning (Wang et al., 2022; Khalid and
Sarwat, 2021b; Xu et al., 2023). These methods require feature
extraction, establishing the mapping between features and SOH
for predictive purposes.

For a battery pack, smaller differences in SOH at the end of
discharge significantly improve the pack’s lifespan. A study by (Ma
et al., 2020) proposed a hierarchical SOH balancing control method
by combining passive (Khalid et al., 2021a) or active battery
balancing circuits (Ren et al., 2018) with battery pack SOH
balancing schemes. Similarly, (Li et al., 2018), introduced a
relative SOH balancing method by indirectly balancing SOH
through power redistribution among sub-modules.

While the aforementioned methods for SOH balancing have
shown promising results, they often require detailed modeling of the
battery system or the design of complex balancing circuit topologies.
Typically, these battery models necessitate rich experience and
intricate parameters. In situations where the system is highly
complex, reliance on model-based methods might even be
challenging to implement.

Contrary to model-based approaches, artificial intelligence methods
do not require the establishment of a system model. Instead, they learn
control strategies from vast amounts of historical system data. By
integrating deep reinforcement learning methods (Mnih et al., 2015),
it’s possible to continuously generate training data while the system is
operating, continually adjusting the model’s parameters. This approach
has garnered attention from researchers in recent years (Mocanu et al.,

2019; Wan et al., 2019). In a groundbreaking move, (Yang et al., 2022),
for the first time introduced deep reinforcement learning algorithms into
dynamic reconfigurable battery systems and obtain excellent
performance in battery balance.

Up to this point, there hasn’t been a paper that introduces
artificial intelligence algorithms into the study of SOH balancing in a
DRB system. Traditional methods often rely on sorting algorithms
or expert systems to achieve specific objectives for simpler tasks.
However, for systems with complex features and tasks, solving them
using traditional empirical and model-based approaches can be
challenging. Deep reinforcement learning, on the other hand, can
continuously attempt different actions based on various types of
state values in a battery system. By combining these attempts with
reward values to update network model parameters, even when
dealing with high-dimensional data inputs, it can still achieve
relatively good results for complex tasks.

Therefore, this paper introduces the deep reinforcement
learning algorithm into the dynamic reconfigurable battery
system to address the issue of SOH balancing. Firstly, we
proposes a simple dynamic reconfigurable battery topology and
analyzes the process of battery insertion and removal. Subsequently,
leveraging the principle of achieving SOH balance and combining it
with the DQN algorithm, the paper constructs a simulation model of
the battery system in the Gym environment and conducts
simulation experiments. Finally, the paper evaluates the
simulation training, analyzes and compares the testing process.
The simulation results indicate that the proposed method, in
contrast to traditional approaches, exhibits a significant
advantage in reducing the disparity in SOH between batteries.

2 System model

2.1 Series topology of the dynamic
reconfigurable battery system

The DRBS depicted in the diagram consists of multiple battery
cells connected in series to form a particular branch of the system.
Due to differences in the initial capacity, health status, internal
resistance, and other factors among the batteries, variability among
the batteries is a common issue. Figure 1 illustrates a diagram of
DRB system, focusing on a series-connected branch. This series
branch is formed by N batteries connected in series via
reconfigurable switches. Assuming an external load requires
connection to a specified number of batteries, denoted as K, the
system achieves a reconfiguration through a selection of K out of N
batteries. In order to achieve SOH balance among multiple batteries,
the system typically operates with a discharge principle: batteries
with higher SOH should receive more opportunities for discharge,
while those with lower SOH receive fewer discharge opportunities.

Figure 2 displays the internal structure of the reconfigurable
switch, typically composed of two N-type MOSFETs, S11 and S11′,
which jointly control the connection and disconnection of the
battery. When S11 is conducting and S11 is off, the battery is
engaged for use. Conversely, when S11 is off and S11’ is
conducting, the battery is bypassed. This dual-MOSFET switch
structure is simple in design and offers flexible and convenient
control.
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FIGURE 1
Dynamic Reconfigurable Battery System Topology.

FIGURE 2
Two MOFETs Switches.

Frontiers in Energy Research frontiersin.org03

Yang et al. 10.3389/fenrg.2023.1333147

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1333147


For an entire series branch within the circuit, Figure 3 illustrates
the detailed switching process of two batteries in the circuit,
reflecting changes in the system’s topology. In the configuration
depicted in Figure 3, initially, battery B11 is connected to the circuit,
while battery B12 remains disconnected. When a battery switch is
required in the circuit, the process begins by closing the main branch
switch, Sm2, and opening the main branch switch, Sm11.
Subsequently, the sequence involves opening S11 and S12′,
closing S11′ and S12 to connect battery B12 into the branch.
Finally, the branch’s main switch, Sm12, is opened, and the main
branch switch, Sm11, is closed.

Sm11 and Sm12 employ MOSFET switches to prevent arcing.
The role of the branch diode Dm1 is to prevent localized loop
currents caused by transient voltage fluctuations during the
insertion or removal process of a battery within a particular branch.

2.2 SOH balancing issue

2.2.1 SOH imbalance phenomenon
The batteries within the battery pack exhibit varying capacities

among individual cells. Some battery cells may possess higher
capacities, while others have lower capacities. This disparity leads
to certain battery cells depleting or charging more quickly during the
discharge and charge processes, ultimately shortening the overall
lifespan of the entire battery pack.

Depth of Discharge, often referred to DOD, is typically
considered a key factor influencing the number of cycles a
battery can undergo. As DOD increases, the rate of change in
SOH also accelerates. In a study by (Li et al., 2018), a method

for relative SOH balancing is proposed. By employing different
DOD levels among battery packs within the system, the SOH curves
of different battery packs gradually converge, optimizing the overall
system’s output capacity and lifespan.

To provide a more comprehensive description of the
relationship between DOD, SOH, and cycle life, Figure 4
illustrates the theoretical situation of SOH changes concerning
DOD and the number of cycles. If the SOC is controlled to be
the same as traditional methods, the DODs among different battery
packs will be identical, leading to the SOH of the weaker batteries
deteriorating first to retirement levels, as depicted in Figure 4A.
Adopting the proposed SOH balancing method, the better (poorer)
batteries are subjected to higher (lower) DOD levels initially. As
their SOH levels align, their DODs are then regulated to be the same.
This process results in a uniform decline in the SOH of all battery
packs, as shown in Figure 4B.

2.2.2 SOH balancing objectives
In order to simplify our research focus, our work primarily

concentrates on a single serial branch of the dynamic reconfigurable
battery system. Let us define a serial branch with N batteries, where
the voltage at the two ends of the branch is denoted as V1,V2..,VN,
and the SOC for the batteries is represented as SOC1, SOC2, ..,
SOCN. Additionally, SOH for the batteries is represented as SOH1,
SOH2, .., SOHN. The switches that control the connection or
disconnection of the batteries to the circuit are represented as
SS1, SS2, .., SSN, where the voltage V, SOC, and SOH are
continuous variables typically characterized based on actual
values, and the switch states SS are Boolean variables with values
between 0 and 1. When SSi =1, it indicates that the i-th battery is in a

FIGURE 3
The Transition Process of Individual Battery Cell Deployment.
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connected state, while SSi =0 represents that the i-th battery is in a
disconnected state, where i ranges from 1 to N.

For a typical series-connected battery energy storage system, it is
easier for the batteries within the battery pack to reach retirement
levels with similar SOH when the differences in SOH between
batteries are smaller. Therefore, addressing the issue of SOH
balance should be the primary concern. When battery packs
already have batteries with approximately similar SOH,
maintaining a close proximity of SOC among them can
significantly enhance the overall lifespan of the battery pack.

Here, we first need to introduce a metric to quantify the SOH
disparity within a particular serial branch of the dynamic
reconfigurable system at time t, denoted as δ.

δ � ∑i�N
i�1 SOHi t( ) − SOHmean t( )| | (1)

Here, SOHmean(t) represents the average SOH of the N batteries
at time t, and it is defined by the following formula Eq. 2:

SOHmean t( ) � 1
N

∑i�N
i�1 SOHi t( ) (2)

The control objective of the dynamic reconfigurable battery
system is to minimize the δ value in Eq. 1 during the SOH balancing
phase.

2.3 SOH balancing principles

In typical situations, SOH can be defined based on the
degradation of battery maximum capacity and the increase in
internal resistance. SOH based on capacity degradation can be
defined Eq. 1:

SOH � Qmax

Qrated
(3)

Qmax is the maximum deliverable capacity under the current
conditions, Qrated is the nominal (rated) capacity。

In the paper (Wang and Hong, 2018), the authors propose a
SOH definition based on cycle life, expressed as in Eq. 4:

SOH t( ) � Cleft

Ctotal
� SOH 0( ) − Cacu

Ctotal
(4)

Here, Cleft refers to the remaining number of cycles from the
current state to the end of use, and Ctotal represents the total number
of cycles, Cacu signifies the accumulated cycle life used up to the
present. SOH(0) represents the initial SOH value.

Building upon prior research, this paper defines and analyzes SOH
from the perspective of cycle life (Wang and Hong, 2018) proposes a
method for calculating battery cycle life without considering
temperature. The relationship between total cycle life and DOD can
be expressed in a simplified form by the following Eq. 5.

Ctotal � a · DOD−b (5)
where a and b are parameters that vary for different types of
batteries. To better describe the relationship between SOH, DOD,
and in the subsequent sections, this paper’s case study is proposed
with constant values of a = 694 and b = 0.795 for a typical lithium-
ion batteries (Li et al., 2018; Dallinger et al., 2013)

Where DOD can be expressed in terms of SOC of the battery:

DOD � 1 − SOC (6)
Subsequently, based on Eqs 5, 6, the relationship between the

battery’s cycle life, discharge depth, and SOH can be derived.

SOH t( ) � SOH 0( ) − Cacu

a · DOD−b (7)

It can be observed in Eq. 7 that with an increase in discharge
depth, the rate of change of SOH also accelerates. In theory, by
applying different DODs to batteries with varying health states, the
SOH of different batteries will eventually converge to a single curve.

In order to achieve the goal of SOH balance, we consider the
SOH states of two batteries, denoted as i and j. Let’s assume these
two batteries have different initial SOH values. Their instantaneous
SOH can be represented as:

SOHi t( ) � SOHi 0( ) − Cacu,i

a ·DOD−b
i

SOHj t( ) � SOHj 0( ) − Cacu,j

a ·DOD−b
j

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
i ≠ j( ) (8)

FIGURE 4
SOH variation profiles with (A) SOC balancing control strategy and (B) proposed SOH balancing method.
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From Figure 5 and Eq. 8, it can be observed that with specific
cycle numbers and the application of varying DODs to different
batteries, when certain conditions for DOD application are met, the
SOH levels among the batteries tend to converge.

The subsequent algorithms, while ensuring final SOH balance,
essentially coordinate the simultaneous achievement of a particular
SOH equilibrium level by each battery, as will be detailed in the
following sections.

3 Control strategies

3.1 DQN control framework

The control framework of this article is depicted in Figure 6. It
consists of two neural networks with an identical structure and an
experience replay module, commonly referred to as the agent. The
experience replay area generally stores data collected from the
environment, where each data entry includes a tuple of state,
action, reward, and the next action. Data sampled from the
experience replay is usually shuffled randomly to disrupt the
correlations between the data. Due to the efficient access
characteristics of experience replay, the DQN algorithm does not
need to rely on real-time generated data every time, which reduces
the demands on computational resources.

In addition, The two neural networks are known as the
evaluation neural network and the target neural network. The
evaluation neural network updates its parameters through loss
gradient descent and backpropagation after each decision by the
agent. Meanwhile, the parameters of the target neural network are
copied from the evaluation network every C steps. The evaluation
neural network chooses the next action based on its maximum value
at each decision of the agent. This action is then fed back into the
environment for further decisions.

The entire system forms a closed-loop control, allowing the
agent not only to learn an existing control strategy from historical
data offline but also to update the control strategy parameters
through interaction with the environment. The algorithmic steps
used in training the intelligent agent are summarized in Algorithm 1.

3.2 Details of the DQN network for the agent

3.2.1 State apace
The proposed agent’s state space consists of thirty state values,

which include the SOC, SOH, and switch state for each of the ten
batteries. These values are represented as: SOC1, SOC2, SOC3, SOC4,
SOC5, SOC6, SOC7, SOC8, SOC9, SOC10, SOH1, SOH2, SOH3,
SOH4, SOH5, SOH6, SOH7, SOH8, SOH9, SOH10, SS1, SS2, SS3,
SS4, SS5, SS6, SS7, SS8, SS9, SS10 ϵ S

FIGURE 5
The relationship between DOD, Cycle times and SOH.
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FIGURE 6
System Block Diagram.

FIGURE 7
SOH variation profile.
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3.2.2 Action space
Behavior of individual battery Bi can be represented using a

Boolean matrix ai.

ai � 1, The battery is connected to the circuit
0, The battery is disconnected from the circuit

{ (9)

It is worth noting that here, in Eq. 9 “ai” serves as both the set of
actions that each switch can take and can also be stored as a state
value in the state space. The previously mentioned SS1, SS2, . ,
SS10 represent the individual states that a switch can have. For
example, for a specific individual battery, the state of SSi (i ranges
from 1 to 10) is jointly determined by S11 and S11′ as illustrated in
Figure 2.

3.2.3 Reward space
The smaller the difference in SOH among the batteries, the

better the balance performance. During the SOH balance phase, let
us define the reward at time t as rtin Eq. 10:

rt � −∑i�10
i�1 SOHi − SOHmean| | (10)

A total reward R for one episode is defined as in Eq. 11:

R � ∑t�T
t�1 rt (11)

T represents the number of switch actions taken in one episode.

3.2.4 Learning process
The experience replay memory stores environmental state

information collected from the environment. During the training
process of the neural network, a batch of data is sampled from the
experience replay buffer. The current state value‘s’ and action value ‘a’
are passed to the evaluation neural network, and the resulting next state
value after taking the current action is passed to the target neural
network for forward propagation. The evaluation neural network
calculates the loss gradient based on the Q-values and rewards from
the target neural network and performs backpropagation to update
network parameters, gradually seeking the optimal policy. The number
of input neurons in the neural network corresponds to the quantity of
elements in the state space. The configuration of hidden neurons is
typically predetermined and can be adjusted based on experimental
results. The number of output neurons corresponds to the number of
possible actions, and the output values represent Q-values, indicating
the maximum value of the current action.

The loss function is defined as follows in Eq. 12:

L θ( ) � r + γ( maxQ s , a;( θ− −Q s, a; θ( )) )2 (12)
The gradient value for gradient descent is in Eq. 13:

▽θ L θ( ) � r + γmaxQ s , a; θ−( )( −Q s, a; θ( )) ·▽θQ s, a; θ( ) (13)
The update of the network parameters is

θ � θ + α▽θ L θ( ) (14)
where in Eq. 14, α is the learning rate, generally in the range between
0 and 1.

The target neural network does not undergo backpropagation;
its weight parameters are periodically copied from the evaluation
neural network every few training steps.

3.2.5 Decision-making process
Based on the neural network training in the learning process,

there are typically many possible actions for the current state.
However, taking different actions leads to different output values
from the neural network. The agent selects the action with the
highest Q-value output and applies it to the environment for the
environment to make control decisions.

: 1 Initalize Experience Replay memory D to capacity N;

: 2 InitializebehaviornetworkwithrandomparameterW=W0;

: 3 Initialize target network with parameter W− = W;i

: 4 for episode = 1,M do

: 5 Initialize sequence s1 = {s};

: 6 for t =1,T do

: 7 With probability ε select a random action at;

: 8 otherwise, select at = max a Q(st,A;Q)
: 9 Executeactionat inenvironmentandupdatest tost+1 ,
: 10 observe reward rt and state st+1;
: 11 Store transition (st, at, rt, st+1) in D;

: 12 Experience Replay

: 13 Sample a batch of (S,A,R,S_) randomly from D;

: 14 Set yi =
r,

r+γmaxQ S ,A; θ−( ),{ terminal;
otherwise

: 15 Performagradientdescentstepon (yi − Q\(S,A; θ))2;
: 16 Calculate the update parameter θ_ = θ + Δ θ;
: 17 Update the behavior network parameter θ = θ_
: 18 Update of target network

: 19 Replace θ− = θ every C steps;

: 20 End for

: 21 End for

Algorithm 1. DQN Algorithm.

3.2.6 Detailed implement in a DRB system
In a DRB system, the battery state is taken as the observation

state, and the switch control sequence is taken as the control target.
Reward value rt is derived from evaluating state S.

During the training process, the goal of DQN is to minimize the
error between the estimated Q-values and the target Q-values,
gradually learning a more accurate action-value function. This
enables the agent to make wiser decisions to maximize the
cumulative reward. While in the testing phase, the trained DQN
is used to make decisions in the environment. During testing, the
agent employs its learned Q-values to choose actions in different
states.

In concrete terms, if the state values of the DRB system at a
specific moment are transmitted to the DQN agent, we can obtain

TABLE 1 Neural network parameters.

Parameters Values

Learning Rate α 0.01

Q-network-iteration 100

Input Neural Nodes 30

Output Neural Nodes 120

Number of hidden layer neurons 60
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the optimal switch control strategy for the system at that particular
state.

Furthermore, to better leverage the advantages of the DQN
algorithm and achieve a higher level of SOH balance, we have
introduced an additional evaluation criterion into the testing
results of DQN. When the system meets the specified criterion,
we consider that the balance of SOH has achieved satisfactory
results. This condition is also permissible for practical system
deployment.

Here, we define a new indicator ε, where ε can be calculated in
Eq. 15 as follows:

ε � ∑i�N
i�1 SOHi t( )/SOHmean t( )−1∣∣∣∣ ∣∣∣∣ (15)

ε reflects the degree of difference between the SOH of each
battery at a specific moment and its mean. A smaller ε indicates that
the SOH balance has reached a higher level at that moment.

Meanwhile, the criterion for considering that the SOH has
achieved a good balance is as follows in Eq. 16:

ε≤ 5% (16)
In the actual simulation scenarios, We can set a 5% deviation

band, and theoretically, during the interval from the first entry to the
first exit of ε into this deviation band, we can randomly choose a
termination time for the algorithm. Furthermore, if we select the
minimum value of ε as the termination criterion, it will result in the
best SOH balancing effect.

4 Simulation experiment parameters
and initial value settings

The simulation experiments were conducted in the Gym
environment developed by OpenAI (OpenAI, 2023). Here, Gym
is a toolkit tailored for reinforcement learning algorithms, aiming to
furnish researchers and developers with a standardized interface,
facilitating the seamless design, implementation, and evaluation of
diverse reinforcement learning algorithms.

Initially, a battery discharge model was set up in the configured
environment. Then, using the reinforcement learning DQN
algorithm, appropriate simulation parameters were set to
facilitate the training and testing processes. The neural network
parameters and hyperparameters during the training process are
shown in Tables 1, 2. In order to better demonstrate the effectiveness
of the DQN algorithm, Table 3 provides the initial values of the
battery state information during the algorithm’s testing phase.

TABLE 2 Algorithmic hyperparameters.

Parameters Values

Memory Capacity 2000

Episodes 2000

Batch Size 64

Reward Discount Rate γ 0.9

Exploration rate ε 0.95

TABLE 3 Initial value Configuration.

Cell #1 #2 #3 #4 #5 #6 #7 #8 #9 #10

SOHinit(%) 100 88 92 95 96 98 96 92 90 94

SOCinit(%) 100 85 88 92 86 96 92 90 89 95

FIGURE 8
The value of Ɛ at each episode step in the DQN Algorithm.
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Due to the computational demands of the DQN algorithm in
solving optimal control strategies, a certain amount of computing
resources, typically GPUs, is needed to accelerate the training
process, especially for complex tasks. However, in the simulated

experiments conducted in this study, the training process is not
aimed at achieving an exceptionally fast training speed. The
simulations are run on a personal Huawei laptop equipped with
an AMD Ryzen 7 3700U processor.

FIGURE 9
SOC variation profile.

FIGURE 10
Switch Control Waveform.
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5 Simulation results and discussion

In this section, we evaluated the proposed control framework
based on simulation experiments. We compared the proposed
control method with traditional methods by analyzing battery
discharge curves under the proposed method and assessed the
performance advantages.

5.1 Simulation results

According to Eq. 7, it can be observed that the decay of SOH for
individual batteries is related to the number of cycles and the depth
of discharge. If a specific number of cycles is set, such as 300 cycles in
this simulation, the DQN algorithm will eventually converge to a
certain SOH level. As shown in Figure 7 and Figure 8, to achieve
better practical simulation results, we selected the process from the
initial value to the 40th step based on the changes in values of Ɛ as
our control strategy according to the 5% criteria.

In the task of SOH balancing, the main objective of the control
strategy is to achieve the desired DOD for each battery within a
predetermined number of cycles. The reduction curve of SOCwithin

a single cycle, as shown in Figure 9, also reflects the switching control
process to achieve this control goal. Figure 10 displays the state
changes of the 10 switches in achieving the expected DOD. A state
value of 1 indicates that the switch controls the insertion of the
corresponding battery, while a state value of 0 indicates the removal
of the corresponding battery at that time. The corresponding
insertion and removal principles and processes are illustrated in
Figures 2, 3.

Once a control strategy for a cycle is determined, theoretically, in
the real DRB system, this strategy will be repeated for a set of
numbers to achieve the balance of SOH.

5.2 Performance analysis

Figure 11 shows the change in episode rewards during our
training process. Figures 11A, B represent the changes in reward
values and reward variance values, respectively. The reward values
gradually converge to a relatively stable value as the training
episodes increase. The variance of rewards is initially large at the
beginning of an episode but gradually decreases to a smaller level.
When the reward values stabilize, the variance of rewards also

FIGURE 11
Variations in Reward and Reward Variance over episodes: (A) Reward; (B) Reward Variance.

FIGURE 12
SOH degradation Curves: (A) Conventional Approach, (B) Proposed Method.
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stabilizes at a smaller level, indicating that the training process has
reached a good level of performance at this point. Figure 11 also
reflects, from a certain perspective, the learning process of the agent:
in the initial stages of learning, the agent may be completely
unfamiliar with the environment and undergo exploratory
actions. Over time, the intelligent agent gradually learns the
patterns of the environment, the strategy becomes stable, and
both the reward and its variance decrease, ultimately reaching
stability.

To better illustrate the advantages of the DQN algorithm
combined with SOH balancing theory, we conducted a simulation
comparison between the SOH balancing under the DQN algorithm
and the traditional fixed series-parallel configuration (Li et al., 2018).

As shown in Figure 12A, the initial variance and range of SOH
correspondingly match the variance and range at cycle times = 300,
being 13.43% and 12%, respectively. This indicates that the traditional
fixed series-parallel topology is not effective in addressing the issue of
SOH balance. Batteries with lower SOH will reach retirement levels
prematurely, thereby reducing the cycle life of the battery system.

In contrast, as shown in Figure 12B, our approach, utilizing
DQN and the principle of SOH balance as features, is capable of
reducing the initial SOH variance from 13.43 to 0.21 and decreasing
the SOH range from 12% to 1.56%. This significantly reduces the
variability among batteries when reaching or approaching a certain
ideal DOD level. For example, in this case, the SOH imbalance,
represented by the variance, is reduced by 87%. Consequently, by
reducing this variability among batteries, our method plays a crucial
role in enhancing the overall cycle life of the entire DRB system,
contributing significantly to energy efficiency.

5.3 Further discussions

While our method has indeed achieved outstanding results in
achieving the goal of SOH balance, Figure 9 indicates that this
balance obtained at the expense of sacrificing SOC balance, posing a
challenging and difficult-to-reconcile issue. Our future work will
attempt to comprehensively address the balance between SOC and
SOH from alternative perspectives. Meanwhile, We will fully consider
the challenges presented in achieving a balance between SOC and SOH,
and focus on deploying the DQN algorithm in a real DRB system.

6 Conclusion

This paper introduces a DOD-SOH balancing method for DRB
system based on the DQN algorithm in deep reinforcement learning.
The proposed intelligent agent progresses from initially having no
knowledge of the system’s environmental features to gaining a
profound understanding of the system’s operational procedures.
First of all, we presents a simple dynamic reconfigurable battery
topology, and analyzes the process of battery insertion and removal.
Subsequently, by utilizing the principles of SOH for equilibrium, our
work combines the balancing process with the advantages of the
DQN algorithm in seeking the optimal decision sequence. Finally,
Simulation results indicate that our method exhibits a significant
advantage over traditional methods in reducing the disparity in SOH
among batteries. Future work will be geared toward the deployment

of the proposed method in practical systems, aiming to bridge the
gap between the theoretical framework and real-world application.
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