
Frontiers in Neurology 01 frontiersin.org

Strengthening deep-learning 
models for intracranial 
hemorrhage detection: strongly 
annotated computed 
tomography images and model 
ensembles
Dong-Wan Kang 1,2,3, Gi-Hun Park 4, Wi-Sun Ryu 4, 
Dawid Schellingerhout 5, Museong Kim 6,7, Yong Soo Kim 8, 
Chan-Young Park 9, Keon-Joo Lee 10, Moon-Ku Han 3, 
Han-Gil Jeong 3,6* and Dong-Eog Kim 11,12*
1 Department of Public Health, Seoul National University Bundang Hospital, Seongnam, Republic 
of Korea, 2 Department of Neurology, Gyeonggi Provincial Medical Center, Icheon Hospital, 
Icheon, Republic of Korea, 3 Department of Neurology, Seoul National University Bundang 
Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea, 4 JLK Inc., 
Artificial Intelligence Research Center, Seoul, Republic of Korea, 5 Department of Neuroradiology 
and Imaging Physics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United 
States, 6 Department of Neurosurgery, Seoul National University Bundang Hospital, Seoul 
National University College of Medicine, Seongnam, Republic of Korea, 7 Hospital Medicine 
Center, Seoul National University Bundang Hospital, Seoul National University College of 
Medicine, Seongnam, Republic of Korea, 8 Department of Neurology, Nowon Eulji Medical 
Center, Eulji University School of Medicine, Seoul, Republic of Korea, 9 Department of Neurology, 
Chung-Ang University Hospital, Seoul, Republic of Korea, 10 Department of Neurology, Korea 
University Guro Hospital, Seoul, Republic of Korea, 11 Department of Neurology, Dongguk 
University Ilsan Hospital, Goyang, Republic of Korea, 12 National Priority Research Center for 
Stroke, Goyang, Republic of Korea

Background and purpose: Multiple attempts at intracranial hemorrhage (ICH) 
detection using deep-learning techniques have been plagued by clinical 
failures. We aimed to compare the performance of a deep-learning algorithm 
for ICH detection trained on strongly and weakly annotated datasets, and to 
assess whether a weighted ensemble model that integrates separate models 
trained using datasets with different ICH improves performance.

Methods: We used brain CT scans from the Radiological Society of North 
America (27,861 CT scans, 3,528 ICHs) and AI-Hub (53,045 CT scans, 
7,013 ICHs) for training. DenseNet121, InceptionResNetV2, MobileNetV2, 
and VGG19 were trained on strongly and weakly annotated datasets and 
compared using independent external test datasets. We then developed a 
weighted ensemble model combining separate models trained on all ICH, 
subdural hemorrhage (SDH), subarachnoid hemorrhage (SAH), and small-
lesion ICH cases. The final weighted ensemble model was compared to four 
well-known deep-learning models. After external testing, six neurologists 
reviewed 91 ICH cases difficult for AI and humans.

Results: InceptionResNetV2, MobileNetV2, and VGG19 models 
outperformed when trained on strongly annotated datasets. A weighted 
ensemble model combining models trained on SDH, SAH, and small-lesion 
ICH had a higher AUC, compared with a model trained on all ICH cases 
only. This model outperformed four deep-learning models (AUC [95% C.I.]: 
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Ensemble model, 0.953[0.938–0.965]; InceptionResNetV2, 0.852[0.828–
0.873]; DenseNet121, 0.875[0.852–0.895]; VGG19, 0.796[0.770–0.821]; 
MobileNetV2, 0.650[0.620–0.680]; p < 0.0001). In addition, the case review 
showed that a better understanding and management of difficult cases may 
facilitate clinical use of ICH detection algorithms.

Conclusion: We propose a weighted ensemble model for ICH detection, 
trained on large-scale, strongly annotated CT scans, as no model can 
capture all aspects of complex tasks.

KEYWORDS

deep-learning algorithm, intracranial hemorrhage (ICH), weighted ensemble 
model, strongly annotated dataset, neuroimaging

1 Introduction

Intracranial hemorrhage (ICH) occurs in the intracranial space 
and encompasses the following six types: epidural hemorrhage 
(EDH), subdural hemorrhage (SDH), subarachnoid hemorrhage 
(SAH), intraparenchymal hemorrhage (IPH), intraventricular 
hemorrhage (IVH), and mixed hemorrhage. A timely and accurate 
diagnosis of ICH and its subtypes is critical for treatment, because 
of the high mortality and morbidity. In addition, assessing the 
location and extent of ICH is important for outcome prediction. 
However, neuroradiology training requires a significant investment 
of time and resources; accordingly, neuroradiologists are scarce in 
many countries (1). Without neuroradiologists’ assistance, doctors 
who see ICH patients often misdiagnose (2).

Deep-learning algorithms have recently made progress in 
accurately detecting ICH on CT scans (3). Several studies have 
investigated deep-learning algorithms in detecting ICH. Lee et al. 
(4) trained a simple artificial neural network model on 250 brain CT 
scans, including 150 cases of ICH. The model had a suboptimal 
sensitivity of 0.83 and specificity of 0.76. This study included a 
relatively small number of cases and did not perfectly detect small 
lesions. Kuo et  al. (3) trained ResNet on 4,396 head CT scans, 
including 1,131 cases of ICH. Two radiologists verified the pixel-
wise labels for acute ICH. The model exhibited an AUC of 0.98, but 
they did not externally validate the model. Sage et al. (5) proposed a 
model that used two branch ResNet-50 architectures to train 
3-channel images with different Hounsfield unit windows and 
3-channel images with consecutive slices, and determined the final 
result by random forest. The model showed an accuracy of 0.891 for 
SDH, 0.743 for EDH, 0.933 for IPH, 0.967 for IVH, and 0.897 for 
SAH. Salehinejad et al. (6) trained the SE-PreNetXt architecture to 
demonstrate ICH detection on real-world data. They performed 
external validation on an emergency department dataset without 
exclusion and achieved the excellent AUC values except for EDH 
cases. The relatively low accuracy for EDH in these two studies 
might have been due to the lack of EDH cases in the Radiological 
Society of North America (RSNA) training dataset (7). Taken 
together, although a number of novel methods have been proposed, 
AI performance may be hampered by relatively low accuracy for 
small lesions or low accuracy for the particular subtype due to its 
paucity in the training datasets. Insufficient data or weak annotations 
have been employed in the majority of published research (3, 7, 8). 

Establishing large datasets with expert annotations is difficult 
because it requires a lot of effort and resources (9). In the 
classification-based deep learning using images with labels that are 
relatively easy to obtain (presence vs. absence of ICH), saliency maps 
could not locate the exact location of lesions (10). Whether ICH 
detection performance improves when training on a strongly 
annotated dataset with pixel-level annotations needs to 
be investigated.

Another unresolved problem with ICH detection algorithms to 
date is the difficulty of differentiating between distinct subtypes, 
especially SDH and SAH (11). ICH subtypes are defined based on 
the location of hemorrhages within the anatomic structures, such as 
the brain parenchyma, ventricle, dura, and subarachnoid space. 
Therefore, each subtype has a distinct morphology, location, and 
spatial correlation with adjacent tissue. To be specific, SDH is more 
likely to present in the subacute stage and has reduced CT 
attenuation, similar to that of brain tissue. SAH may also appear 
isoattenuation if there is only a small amount of blood mixed with 
cerebrospinal fluid (12). Moreover, a pseudo-SAH is not an 
uncommon finding; it manifests as high-attenuation areas along the 
basal cisterns, Sylvian fissure, tentorium cerebelli, or cortical sulci. 
Seyam et al. (11) demonstrated that a commercially available deep 
learning algorithm used in the real world exhibited particularly low 
accuracy for SDH and SAH, highlighting the need to acknowledge 
the limitations of AI tools. Wang et al. proposed an AI algorithm 
consisting of a 2D CNN classifier and two sequence models and 
trained on 25,000 CT scans from the RSNA dataset. The proposed 
model accurately classified ICH subtypes and showed AUCs of 0.964 
and 0.949 for two external validation datasets. However, the model 
had relatively low predictions for small SDH (13). Deep learning 
algorithms with better performance for all ICH subtypes are needed, 
and we propose a weighted ensemble model in this study.

In this study, we investigated the following two hypotheses. (1) 
We investigated whether a deep-learning model performs better if it 
is trained on a large annotated dataset with slice-wise manual 
segmentation, compared to the one trained on a weakly annotated 
dataset. (2) We aimed to determine if a weighted ensemble model, 
which integrates multiple models trained on distinct datasets of ICH 
subtypes, could effectively minimize prediction errors and preserve 
the robustness of each individual model across ICH subtypes and 
sizes. In addition, six experts reviewed challenging ICH cases after 
external testing of the final model.
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2 Methods

2.1 Model development with weakly and 
strongly annotated datasets

2.1.1 Datasets

2.1.1.1 Weakly annotated dataset
We used open data from the RSNA comprising 27,861 brain CT 

scans (3,528 hemorrhages). Per slice, the neuroradiologists labeled 
the presence/absence of a hemorrhage without spatial annotation (7).

2.1.1.2 Strongly annotated dataset
We used 53,045 brain CT scans (7,013 with and 46,032 without 

ICH) from the AI-Hub directed by the Korean National Information 
Society Agency.1 The AI-Hub dataset was collected from six Korean 
university hospitals in 2020 as part of a large-scale data collection 
initiative for cerebrovascular disease. Each hospital’s neuroradiologist 
interpreted the CT scans, labeled the presence of hemorrhage per 
slice, and manually segmented the outline of the hemorrhage.

2.1.2 Training and validation dataset
A schematic overview and summary of each deep-learning 

model used in this study are shown in Figure  1 and 
Supplementary Table S1, respectively. To compare the performance 
of the deep-learning models trained on weakly and strongly 
annotated datasets, and to account for different data sizes, 
we randomly selected the same number of slices with and without 
hemorrhage (n = 6,500 each) from the RSNA and AI-Hub datasets. 
For CT scans with hemorrhage, the same number of slices as those of 
IPH, IVH, SDH, EDH, and SAH (n = 1,300) were included, i.e., the 
hemorrhagic types were balanced. All training dataset images were 
pre-processed into four-channel input data (Supplementary Figure S1).

2.1.3 External test dataset
Two datasets were used for the external testing of the deep-

learning models. The first dataset comprised 600 brain CT scans (327 
with and 273 without ICH) from a tertiary hospital in Korea 
[Dongguk University Medical Center (DUMC)]. The second was an 
open dataset (Qure.ai) comprising 386 CTs (160 with and 226 without 
ICH). A vascular neurologist and neuroradiologist performed 
consensus labeling for the DUMC dataset, and three neuroradiologists 
labeled the Qure.ai dataset using a majority vote. The study protocol 
was designed in accordance with the Declaration of Helsinki. This 
study was approved by the institutional review board of DUMC and 
JLK Inc. (No. DUIH 2018–03-018 and 20,220,407–01), and the 
requirement to obtain informed consent was waived due to data 
anonymization, inability to contact patients, and minimal risk.

2.1.4 Pre-processing
A four-channel input image was used to develop the model. As 

previously described (5, 14–16), CT windowing was used to generate 
three different images:(1) a stroke window (width 40 and level 40), 
(2) brain window (width 80 and level 40), and (3) bone window 

1 https://aihub.or.kr/aidata/34101

(width 3,000 and level 500). A 3D U-net model developed in-house 
was used to strip the skull (17). We applied the skull stripping model 
to the 2) brain window image to create a 4) brain window with skull 
stripping (Supplementary Figure S1).

2.1.5 Comparison of models trained with weakly 
and strongly annotated datasets

DenseNet121 (18), InceptionResNetV2 (19), MobileNetV2 (20), 
and VGG19 (21) were used for model development to compare deep-
learning models trained on datasets with weak and strong 
annotations. For models using weakly annotated datasets, we used 
slice-wise hemorrhage labeling for both the RSNA and AI-Hub 
datasets (Supplementary Figures S2A,B). For classification loss, 
we compared the slice-wise model output and ground-truth labeling. 
The same input image was fed into the deep-learning model trained 
on the strongly annotated AI-Hub dataset (Supplementary Figure S2C). 
Our aim was to use strong annotation to improve classification 
performance. Thus, we utilized them to train the saliency map to 
locate the exact lesions more precisely. We extracted the saliency map 
from the last convolutional layer of each deep-learning model, 
compared it to the ground-truth hemorrhage segmentation, and 
computed the segmentation loss in addition to the classification loss 
to train the hemorrhage location.

We tested each model on an external test dataset and calculated 
sensitivity, specificity, and AUC and the threshold of 0.5 as the model’s 
performance. We  used 500 bootstrap replications to calculate 95% 
confidence intervals. We used the DeLong test for AUC comparison (22).

2.2 Ensemble model

2.2.1 Training and test dataset
Considering class imbalance, we  randomly selected an equal 

number of brain CT scans with and without ICH from the AI-Hub 
dataset (6,963 each). For each training dataset consisting of only SDH, 
SAH, and small-lesion cases, we also balanced the number of normal 
and lesion cases equally (SDH, 1,432 each; SAH, 690 each; small 
lesion, 1,142 each). We trained five U-net based segmentation models 
(Supplementary Figure S3): Lesion segmentation model using all 
training datasets (Model 1), lesion subtype pre-trained segmentation 
model using all training datasets (Model 2), SDH model (Model 3), 
SAH model (Model 4), and small lesion (≤ 5 mL) model (Model 5). A 
summary of each model and the training dataset is shown in Figure 2. 
The DUMC and Qure.ai datasets were used for external testing.

2.2.2 Ensemble base models
Five deep-learning models were trained using 2D U-net with the 

Inception module (Supplementary Figure S3) (23, 24). For the lesion 
subtype pre-trained segmentation model (Model 2), a pre-trained 
model in which down-sampling layers of U-net were pre-trained 
using hemorrhage subtype labeling was used. The Dice loss function, 
Adam optimizer, and a learning rate of 1e-4 were used for model 
training. The hyperparameters of each ensemble base model used in 
this study are shown in Supplementary Table S2.

To determine whether the ensemble of base models (Models 1–5) 
improved the performance of hemorrhage detection in SAH, SDH, 
and small hemorrhage cases, we  combined the base models and 
evaluated the performance of each combination model. From the two 
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external test datasets, we extracted SAH, SDH, and small hemorrhage 
cases (with the same number of normal CT scans) to test the 
combination model.

2.2.3 Weighted ensemble model
To ensemble the five base models using distinct datasets, their 

outputs needed to be assigned appropriate weight values according 
to the input data. Hence, we developed an additional weight model 
using input data comprising five-channel segmentation results from 
five base models, ranging from zero to one. Using random initiative 
weight values, the model was trained to select the weight values that 
minimized the Dice loss between the predicted segmentation at the 
pixel probability threshold of 0.5 and ground-truth segmentation 
(Figure 3; Supplementary Figure S4).

2.2.4 Post-processing
Five different hemorrhage detection models and the weighted 

ensemble model yielded five segmentation outputs and weight values 
per slice. The segmentation outputs and weight values were then 
multiplied using the following equation: The highest pixel probability 
value was selected as the maximal probability at the slice level 
(max[HemorrhageSlice]).

 
f Slice max

SegOut Pixel WeightOut Pixeli i i( ) =
( ) ∗ ( )










=∑ 1
5

5 

SegOuti = output of each segmentation model; WeightOuti = weight 
values for each segmentation model.

We used the following equation to calculate the hemorrhage 
probability per case, in which max (HemorrhageSlice) indicates the 
maximal slice probability.

∑ 1
number of  slice with Hemorrhage

ii= HemorrhageSliceProbablity
 =

of  Case number of  slice with Hemorrhage

2.3 Review of “difficult” ICH cases

After external testing of the weighted ensemble model, we defined 
the difficult ICH cases for expert reviews. “Difficult-for-AI” cases 
were chosen from the DUMC dataset when a) the probability of 
lesion ≤0.6 among cases annotated as hemorrhage or b) the 
probability of lesion ≥0.4 among cases annotated as no hemorrhage. 
“Difficult-for-humans” cases were selected from the Qure.ai dataset 
if the three annotators had not unanimously agreed with the ground 
truth during the initial labeling process.

Six neurology experts with six to eighteen years of clinical 
experience re-annotated the presence vs. absence of ICH in these two 
types of difficult images. The sensitivity, specificity, and accuracy of the 
weighted ensemble model and each expert were calculated. The inter-
rater agreement among the experts was also calculated. If the ground 
truth and the opinions of six experts did not concur, a consensus 
meeting was held to amend the ground truth with a majority (4 or 
higher) vote. After the consensus meeting, the sensitivity, specificity, 
and accuracy of the weighted ensemble model and those of the six 

FIGURE 1

A schematic of this study. (A) Comparison of the performances of models trained on weakly annotated datasets with models trained on a strongly 
annotated dataset. (B) Development of the weighted ensemble model. (C) Comparison of the final weighted ensemble model with other AI models. 
(D) Expert review of “difficult” ICH cases. ICH, intracranial hemorrhage; RSNA, the Radiological Society of North America; IPH, intraparenchymal 
hemorrhage; SDH, subdural hemorrhage; IVH, intraventricular hemorrhage; EDH, epidural hemorrhage; SAH, subarachnoid hemorrhage; DUMC, 
Dongguk University Medical Center.
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experts were re-calculated. Cases where the weighted ensemble model 
made incorrect predictions were subjected to qualitative assessments.

3 Results

3.1 Baseline characteristics of the datasets

The AI-Hub dataset, in which the presence of each hemorrhage 
subtype was labeled per slice and the hemorrhage was manually 
segmented, had 53,045 cases (mean 57.5 years, 47.5% female), and 
13.2% (7,013) had ICH. In the RSNA dataset with the presence of each 
ICH subtype being labeled per slice, 39.6% (7,449) of 18,938 cases had 
ICH. Table 1 shows the proportion of each ICH subtype in the AI-Hub 
and RSNA datasets. The baseline characteristics of the external 
datasets from DUMC and Qure.ai are also presented in Table 1.

3.2 Comparison of models trained with 
weakly vs. strongly annotated datasets

A dataset with strong annotations (AI-Hub dataset with location 
information) and two datasets with weak annotations (AI-Hub dataset 

without location information and RSNA dataset) were utilized for the 
training of four well-known deep-learning networks: DenseNet121, 
InceptionResNetV2, MobileNetV2, and VGG19. We tested four trained 
models on a composite of the DUMC and Qure.ai datasets. When trained 
using the RSNA dataset, the accuracies of DenseNet121, 
InceptionResNetV2, MobileNetV2, and VGG19 was 0.771 (95% 
C.I. 0.767–0.775), 0.770 (95% C.I. 0.766–0.774), 0.649 (95% C.I. 0.645–
0.653), and 0.708 (95% C.I. 0.704–0.712), respectively. When trained 
using the AI-Hub dataset without location information, the accuracies 
were 0.812 (95% C.I. 0.809–0.816), 0.810 (95% C.I. 0.807–0.814), 0.645 
(95% C.I. 0.641–0.650), and 0.707 (95% C.I. 0.705–0.711), respectively. 
When trained using the AI-Hub dataset with location information, the 
accuracies of all deep-learning networks except for DenseNet121 
improved significantly, with the values being 0.756 (95% C.I. 0.753–0.761), 
0.818 (95% C.I. 0.812–0.820), 0.658 (95% C.I. 0.655–0.664), and 0.862 
(95% C.I. 0.859–0.865), respectively (Table 2; Supplementary Figure S5).

3.3 Development of a weighted ensemble 
model

To improve the detection of SDH, SAH, and tiny lesions, which is 
regarded to be challenging, we designed a weighted ensemble model 

FIGURE 2

Summary of each deep-learning model and the training dataset used. EDH, epidural hemorrhage; IPH, intraparenchymal hemorrhage; IVH, 
intraventricular hemorrhage; SAH, subarachnoid hemorrhage; SDH, subdural hemorrhage.
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using multiple distinct datasets that not only had strong annotations 
but also reflected the various ICH features.

We first generated “Ensemble basic,” a weighted ensemble of two 
models, a lesion segmentation model (Model 1) and a subtype 
classification/segmentation model (Model 2), which were trained 
using CT images encompassing all ICH subtypes. Overall ICH 
detection accuracy measured by using a composite dataset of DUMC 
and Qure.ai, was 0.938 (95% C.I. 0.922–0.953, Table 3). The accuracy 
for SDH and SAH cases was, respectively, 0.893 (95% C.I. 

0.865–0.919) and 0.944 (95% C.I. 0.942–0.945). Next, to further 
increase the accuracy in the diagnosis of SDH, SAH, and small 
lesions, we additionally developed models 3, 4, and 5, which were, 
respectively, trained on only SDH cases, only SAH cases, and only 
small lesions ≤5 mL. We  then investigated whether the model 
performance was improved by combining Models 3, 4, or 5 with the 
weighted ensemble models for Models 1 and 2. “Ensemble SDH” 
showed an increased accuracy for SDH compared to “Ensemble 
basic,” from 0.893 (95% C.I. 0.865–0.919) to 0.927 (95% C.I. 

TABLE 1 Baseline characteristics of the datasets.

Training dataset Test dataset

AI-Hub RSNA DUMC Qure.ai

Country South Korea Unites States South Korea India

Number of cases 53,045 18,938 600 386

Age (mean ± S.D.) 57.5 ± 19.9 N/A 65.7 ± 14.9 N/A

Female Sex 25,185 (47.5%) N/A 213 (35.5%) N/A

Normal 46,032 (86.8%) 11,439 (60.4%) 273 (45.5%) 226 (58.5%)

ICH 7,013 (13.2%) 7,499 (39.6%) 327 (54.5%) 160 (41.5%)

  IPH 1,744 (24.9%)† 1,008 (13.4%)† 221 (67.6%)† 45 (28.1%)†

  IVH 135 (1.9%)† 239 (3.2%)† 8 (2.4%)† 0 (0%)†

  EDH 159 (2.3%)† 73 (1.0%)† 1 (0.3%)† 0 (0%)†

  SDH 1,442 (20.6%)† 1,298 (17.3%)† 15 (4.6%)† 0 (0%)†

  SAH 700 (10.0%)† 456 (6.1%)† 82 (25.1%)† 0 (0%)†

  Mixed 2,833 (40.4%)† 4,425 (59.0%)† 0 (0%)† 115 (71.9%)†

†The percentages indicate the proportion of each subtype to the total number of lesions.
RSNA, the Radiological Society of North America; DUMC, Dongguk University Medical Center; ICH, intracranial hemorrhage; IPH, intraparenchymal hemorrhage; IVH, intraventricular 
hemorrhage; EDH, epidural hemorrhage; SDH, subdural hemorrhage; SAH, subarachnoid hemorrhage.

FIGURE 3

Comprehensive workflow of the developed weighted ensemble model. The process includes pre-processing, skull stripping, ensembling models with 
weight model, and post-processing.
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0.903–0.948; P for AUC difference = 0.0002). For SAH, “Ensemble 
SAH” showed a comparable accuracy to “Ensemble basic” (0.952 
[95% C.I. 0.951–0.954] vs. 0.944 [95% C.I. 0.942–0.945], P for AUC 
difference = 0.2439). “Ensemble small lesions” showed a comparable 
accuracy for total ICH compared to “Ensemble basic” (0.946 [95% 
C.I. 0.931–0.960] vs. 0.938 [95% C.I. 0.922–0.953], P for AUC 
difference = 0.1180). Finally, we developed a final weighted ensemble 
model that ensembles all models 1 to 5 and showed a significantly 
higher accuracy for total ICHs (0.951 [95% C.I. 0.937–0.964], P for 
AUC difference = 0.0379), compared to “Ensemble basic”.

3.4 Comparison of the final weighted 
ensemble model with AI models that were 
previously built

We compared the performance of the final weighted ensemble 
model with that of four well-known deep-learning models by using a 
test dataset that combines the DUMC and Qure.ai datasets. The 
weighted ensemble model significantly outperformed the other models 
in terms of sensitivity, specificity, and AUC (Figure 4 and Table 4, AUC 
[95% C.I.] of ensemble model, 0.953 [0.938–0.965]; InceptionResNetV2, 
0.852 [0.828–0.873]; DenseNet121, 0.875 [0.852–0.895]; VGG19, 0.796 
[0.770–0.821]; MobileNetV2, 0.650 [0.620–0.680]; p < 0.0001) 
Additional tests using either the DUMC or Qure.ai dataset showed 
similar results (Supplementary Figure S6).

3.5 Review of “difficult” 161 ICH cases

A total of 91 cases from the DUMC dataset were selected as 
difficult-for-AI cases: 17 cases from those classified as ICH that AI 
identified with a lesion probability of ≤0.6 and 74 cases from those 

classified as normal that AI identified with a lesion probability of 
≥0.4 in external testing. A total of 70 cases from the Qure.ai datasets 
were selected as difficult-for-humans based on the three annotators’ 
disagreement. Six experts re-annotated these 161 cases for the 
presence vs. absence of ICH; there was complete agreement among 
the six experts for 81 cases, whereas there was at least one 
disagreement for 80 cases. For all 161 cases, the final weighted 
ensemble model showed an accuracy of 0.441, sensitivity of 0.431, 
and specificity of 0.462. The accuracies of the six experts were 0.671, 
0.764, 0.708, 0.640, 0.683, and 0.714, with the interrater agreement 
(the Fleiss’ kappa value) being 0.536.

Among 95 cases where one or more experts disagreed with the 
initial ground truth, 80 were unanimous, five were disagreed upon by 
one expert, seven were disagreed upon by two experts, and three were 
disagreed upon by three experts. In 48 cases, the ground truth was 
changed following discussion and majority voting in the consensus 
meeting. The accuracy, sensitivity, and specificity of the 
weighted ensemble model for the revised ground truth was, 
respectively, 0.491, 0.457, and 0.525, without showing significantly 
differences when compared with those for the original ground truth. 
Supplementary Table S3 shows the qualitive assessments of the cases 
where the weighted ensemble model predicted incorrectly.

4 Discussion

This study demonstrated that (a) a deep-learning algorithm for 
detecting ICH trained with a strongly annotated dataset 
outperformed models trained with a weakly annotated dataset, and 
(b) a weighted ensemble model that integrated separate models 
trained using SDH, SAH, or small-lesion (≤ 5 mL) ICH datasets 
achieved a higher AUC than four previous deep-learning models on 
external testing.

TABLE 2 Comparison of models trained with weakly and strongly annotated datasets.

Value
(95% C.I.)

RSNA dataset AI-Hub without location 
dataset

AI-Hub with location dataset

AUC Sensitivity Specificity AUC Sensitivity Specificity AUC Sensitivity Specificity

DenseNet121

0.771 

(0.767–

0.775)

0.616 (0.611–

0.620)

0.754 (0.745–

0.765)

0.812 

(0.809–

0.816)

0.554 (0.548–

0.558)

0.887 (0.880–

0.895)

0.756 

(0.753–

0.761)

0.693 (0.688–

0.698)

0.657 (0.647–

0.668)

P for AUC difference Reference p = 0.0003 (*0.0039) p < 0.0001 (*0.0030)

InceptionResNetV2

0.770 

(0.766–

0.774)

0.623 (0.618–

0.628)

0.724 (0.716–

0.736)

0.810 

(0.807–

0.814)

0.658 (0.654–

0.663)

0.825 (0.817–

0.834)

0.818 

(0.812–

0.820)

0.745 (0.741–

0.750)

0.725 (0.715–

0.735)

P for AUC difference Reference p < 0.0001 (*0.0031) p < 0.0001 (*0.0031)

MobileNetV2

0.649 

(0.645–

0.653)

0.599 (0.595–

0.605)

0.600 (0.589–

0.611)

0.645 

(0.641–

0.65)

0.599 (0.595–

0.605)

0.608 (0.598–

0.620)

0.658 

(0.655–

0.664)

0.708 (0.704–

0.713)

0.499 (0.488–

0.510)

P for AUC difference Reference p = 0.4221 (*0.0047) p = 0.0227 (*0.0040)

VGG19

0.708 

(0.704–

0.712)

0.569 (0.564–

0.574)

0.754 (0.745–

0.764)

0.707 

(0.705–

0.711)

0.460 (0.455–

0.465)

0.876 (0.869–

0.884)

0.862 

(0.859–

0.865)

0.816 (0.812–

0.820)

0.731 (0.721–

0.741)

P for AUC difference Reference p = 0.6526 (*0.0032) p < 0.0001 (*0.0029)

Area under the curve (AUC), sensitivity, and specificity of four deep-learning networks trained on RSNA dataset, AI-Hub dataset without location information, and AI-Hub dataset with 
location information were shown. The AUC of each of the four deep-learning networks trained on the RSNA dataset was set as a reference, and the AUCs of the remaining models were 
compared using the DeLong test. C.I., confidence interval. *Standard error.
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TABLE 3 The structures of five weighted ensemble models and accuracies for all cases, SDH cases, and SAH cases.

Combination of 
the models

All (492 ICH, 494 normal) SDH (43 SDH, 494 normal) SAH (117 SAH, 494 normal)

AUC Sensitivity Specificity AUC Sensitivity Specificity AUC Sensitivity Specificity

Ensemble basic 1 + 2 0.938 

(0.922–

0.953)

0.982 (0.966–0.992) 0.702 (0.662–0.744) 0.893 

(0.865–

0.919)

0.977 (0.877–0.999) 0.702 (0.662–0.744) 0.944 

(0.942–

0.945)

0.992 (0.953–1.000) 0.702 (0.662–0.744)

P for AUC difference Reference Reference Reference

Ensemble SDH 1 + 2 + 3 0.936 

(0.920–

0.951)

0.957 (0.935–0.973) 0.781 (0.757–0.830) 0.927 

(0.903–

0.948)

0.977 (0.877–0.999) 0.781 (0.757–0.830) 0.941 

(0.940–

0.943)

0.992 (0.953–1.000) 0.781 (0.757–0.830)

P for AUC difference p = 0.7612 (*0.0060) p = 0.0002 (*0.0092) p = 0.6537 (*0.0071)

Ensemble SAH 1 + 2 + 4 0.944 

(0.928–

0.958)

0.963 (0.943–0.978) 0.777 (0.753–0.826) 0.868 

(0.837–

0.896)

0.860 (0.721–0.947) 0.777 (0.753–0.826) 0.952 

(0.951–

0.954)

0.983 (0.940–0.998) 0.777 (0.753–0.826)

P for AUC difference p = 0.3337 (*0.0057) p = 0.1695 (*0.0186) p = 0.2439 (*0.0069)

Ensemble 

small lesions

1 + 2 + 5 0.946 

(0.931–

0.960)

0.970 (0.950–0.983) 0.775 (0.738–0.813) 0.874 

(0.843–

0.901)

0.860 (0.721–0.947) 0.775 (0.738–0.813) 0.950 

(0.948–

0.951)

0.983 (0.940–0.998) 0.775 (0.738–0.813)

P for AUC difference p = 0.1180 (*0.0053) p = 0.2023 (*0.0155) p = 0.3621 (*0.0063)

Ensemble all 1 + 2 + 3 + 4 + 5 0.951 

(0.937–

0.964)

0.943 (0.919–0.962) 0.826 (0.794–0.862) 0.893 

(0.864–

0.918)

0.884 (0.749–0.961) 0.826 (0.794–0.862) 0.958 

(0.958–

0.960)

0.974 (0.927–0.995) 0.826 (0.794–0.862)

P for AUC difference p = 0.0379 (*0.0064) p = 0.9845 (*0.0194) p = 0.0644 (*0.0077)

The area under the curves (AUCs) of “Ensemble basic” for total ICH, SDH, and SAH were set as references, and the AUCs of the remaining models were compared using the DeLong test. ICH, intracranial hemorrhage; SDH, subdural hemorrhage; SAH, subarachnoid 
hemorrhage. *Standard error.
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Medical image segmentation requires a lot of labor and resources 
(25). Although many transfer learning methods for weakly or 
partially annotated data have been developed (26), there is still a need 
for large-scale annotated data. To the best of our knowledge, no deep-
learning algorithm for ICH detection has been developed using large-
scale CT scans with segmentation annotation. We found that the 
accuracy of three of the four previously reported deep-learning 
models improved after training with strongly annotated datasets, 
compared to weakly annotated datasets. Due to the large number of 
small ICH lesions or those with similar attenuation to normal tissue, 
it might be helpful to supervise the deep-learning model with the 
lesion’s location information. This could minimize the “location loss” 
of the saliency map, leading to better ICH detection.

Compared with magnetic resonance imaging, CT is less 
expensive, faster, and better at detecting ICH. However, some ICHs 
are more likely to be misdiagnosed due to their varied location and 
shape, small lesion size, and similar attenuation to adjacent tissue 
(13). For example, SDH an SAH are often difficult to distinguish 
from adjacent tissue (11), despite their distinct locations and 
shapes. Although there are classification methods for small lesions 
(27), a new deep learning strategy based on more comprehensive 
feature data may improve ICH detection performance. Weighted 
ensemble models can preserve the relative importance or 
performance of each base model by assigning different weights (28, 
29). Song et al. (28) demonstrated improved model performance 
from heterogeneous multi-omics data by weighted ensemble, while 
preserving the local structure of each original sample feature 
obtained by different methods. Yin et al. (29) classified the amino 
acid sequence of influenza virus into eight segments and trained 
each model on each segment with ResNeXt, and developed a 
weighted ensemble model that showed improved performance. 
We  achieved higher ICH detection accuracies using weighted 
ensemble models that combined multiple separate models trained 
with datasets specialized for SDH, SAH, or small lesions. Employing 
the weighted ensemble models, we  also observed an increasing 
trend in specificity.

Despite recent development of many deep-learning algorithms 
for imaging diagnosis of ICH, their clinical application has yet to 
be  accomplished. In addition to technical challenges such as the 
domain shift problem and the shortcut problem, there are also 
instances where determining the ground truth is difficult or inter-
physician agreement is limited (30–32). After our expert meeting, as 
high as 30% (48/161) of difficult ICH cases, which however 
represented only 4.9% of the total test dataset cases (n = 986), required 
re-labeling of their ground truth. This may explain why it is 
challenging for AI to learn medical images that are difficult for 
experienced clinicians. Moreover, the re-labeling did not improve the 
accuracy of ICH detection by our weighted ensemble model trained 
with a total of 13,926 strongly annotated CT data. Further studies are 
required to investigate if fine-tuning a model after training with a 
larger high-quality training dataset, where difficult data are 

FIGURE 4

Receiver Operating Characteristic (ROC) curves representing the 
performance of the deep-learning models. DenseNet121, 
InceptionResNetV2, MobileNetV2, VGG19 trained on strongly 
annotated datasets and the final weighted ensemble model were 
applied to a test dataset combining the DUMC and Qure.ai datasets.

TABLE 4 The performance of the weighted ensemble model and four well-known deep learning networks, DenseNet121, InceptionResNetV2, 
MobileNetV2, and VGG19 on a test dataset.

Total dataset

AUC Sensitivity Specificity

Ensemble model 0.953 (0.938–0.965) 0.928 (0.901–0.949) 0.857 (0.824–0.887)

P for AUC difference Reference

InceptionResNetV2 0.852 (0.828–0.873) 0.802 (0.765–0.837) 0.715 (0.674–0.755)

P for AUC difference p < 0.0001 (*0.0128)

DenseNet121 0.875 (0.852–0.895) 0.856 (0.822–0.886) 0.709 (0.667–0.749)

P for AUC difference p < 0.0001 (*0.0119)

VGG19 0.796 (0.770–0.821) 0.751 (0.711–0.789) 0.705 (0.663–0.745)

P for AUC difference p < 0.0001 (*0.0144)

MobileNetV2 0.650 (0.620–0.680) 0.632 (0.588–0.675) 0.573 (0.528–0.617)

P for AUC difference p < 0.0001 (*0.0178)

The external test datasets were a composite of the DUMC and Qure.ai datasets containing 487 cases with ICH and 499 cases without hemorrhage. All AUCs derived from other deep learning 
models were significantly (DeLong test, all p < 0.001) lower than that of the Ensemble model. *Standard error.
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augmented, could increase the robustness, generalization, and 
discriminative power of the deep-learning algorithm.

Noisy labels have a negligible effect on the model performance in 
large datasets. In a handwritten number dataset, increasing the 
accuracy of random labels by only 1% significantly improved the 
model performance (33, 34). However, if difficult cases are mixed at 
a low frequency across a dataset, noisy labels may affect ICH 
detection. There is a high demand in the medical profession for a 
model that can accurately diagnose both easy and complex cases. 
False positives and negatives may result in unnecessary and missed 
therapy, respectively. Future research should investigate if (a) using 
weighted ensemble models and (b) expert review of difficult cases and 
adding them to a training dataset could overcome these challenges.

Our study has limitations. First, except for age and sex, no clinical 
information was available. The strongly annotated dataset consisted 
of patients from hospitals in South Korea only. Second, the 
classification and segmentation of some training data may not 
be accurate, because of the inclusion of difficult cases. Third, the 
accuracies for SDH and SAH cases were lower than the accuracy for 
all cases, although we  showed comparable accuracies and higher 
specificities for them before and after applying the weighted ensemble 
model. In the test datasets, the “difficult” cases included a number of 
SDH and SAH cases. The SDHs and SAHs in the difficult cases had 
similar locations or attenuations to normal structures such as the falx, 
tentorium cerebelli, and venous sinus. Although we did not double-
check the ground truth in the training dataset, the ground truth in 
the training dataset may not be 100% accurate. In future research, it 
may be  necessary to establish the ground truth through expert 
opinion, especially in difficult cases. Fourth, it was not possible to 
compare the previously published AI algorithms for ICH detection 
to the same test dataset. Fifth, the proportions of mixed hemorrhages 
were high in the RSNA and AI-Hub datasets.

In conclusion, we developed a weighted ensemble model for ICH 
detection by training with strongly annotated CT scans obtained from 
multiple centers. Although challenging cases existed, external testing 
with a dataset from different ethnic origins demonstrated excellent 
performance of our model. We also showed that a better understanding 
and management of cases that are challenging for AI and humans is 
required to facilitate clinical use of ICH detection algorithms.
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