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On a second-order integro-differential equation with difference
kernels and power nonlinearity

The article studies a second-order integro-differential equation with difference kernels and power nonlinearity.
A connection is established between this equation and an integral equation of the convolution type, which
arises when describing the processes of liquid infiltration from a cylindrical reservoir into an isotropic
homogeneous porous medium, the propagation of shock waves in pipes filled with gas and others. Since
non-negative continuous solutions of this integral equation are of particular interest from an applied point
of view, solutions of the corresponding integro-differential equation are sought in the cone of the space
of continuously differentiable functions. Two-sided a priori estimates are obtained for any solution of the
indicated integral equation, based on which the global theorem of existence and uniqueness of the solution is
proved by the method of weighted metrics. It is shown that any solution of this integro-differential equation
is simultaneously a solution of the integral equation and vice versa, under the additional condition on the
kernel that any solution of this integral equation is a solution of this integro-differential equation. Using
these results, a global theorem on the existence, uniqueness and method of finding a solution to an integro-
differential equation is proved. It is shown that this solution can be found by the method of successive
approximations of the Picard type and an estimate for the rate of their convergence is established. Examples
are given to illustrate the obtained results.
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Introduction

In this paper, we study the second-order nonlinear integro-differential equation

x x

ut(z) = /h(x —t)u/(t) dt + / k(z —t)u"(t)dt, >0, a>1, (1)
0 0

with initial conditions:

u(0) =0, 4/'(0)=0.
On the kernels h(z) and k(x) of equation (1) the conditions:

h e C?[0,00), h"(x) does not decrease on [0,00), h(0) = k'(0) =0 and A”(0) > 0, (2)

k€ C3[0,00), K" (x) does not decrease on [0,00), k(0) = k'(0) = k”(0) =0 and E”(0) >0 (3)

are imposed.
The integro-differential equation (1) is closely related to the convolution type nonlinear integral

equation
X

uo‘(:v):/K(x—t)u(t)dt, x>0, a>1, (4)
0
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at K(x) = h/(z) + k”"(z), arising when describing the processes of fluid infiltration from a cylindrical
reservoir into an isotropic homogeneous porous medium |1, 2|, the shock wave propagation in pipes
filled with gas [3, 4] and others (see [5-7]).

Equations (1) and (4) have the trivial solution u(x) = 0. From the theoretical and applied points
of view, nontrivial nonnegative continuous solutions of these equations are of special interest. Since,
for 0 < a < 1, equations (1) and (4) can only have the trivial solution u(x) = 0 in the cone @ of
the space C[0, 00) consisting of all nonnegative continuous functions on [0, 00), then it makes sense to
study them only for @ > 1. Any solution of equations (1) and (4) in the cone @, including nontrivial
ones, satisfies the condition «(0) = 0. In addition, if u(z) € @ is a nontrivial solution to equation (1)
or equation (4), then for any ¢ > 0 its shifts:

us(z) =u(r—9) at *>0; us(x)=0 at x <6, and u_s(z)=u(r+9) at x>0

are also solutions to these equations, which is verified by direct substitution. Consequently, equations
(1) and (4) can have a continuum of nontrivial solutions in the cone Q). Therefore, to make the problem
of finding non-trivial solutions of equations (1) and (4) correct and since continuous positive solutions
for £ > 0 are of interest from the applied point of view, we will look for solutions to the integro-
differential equation (1) in the cone

Q5 = {u(z): u(z) € C[0,00)NC*(0,00), u(0)=u'(0)=0 and u(z) >0 at x>0},
and solutions of the integral equation (4) will be sought in the cone
Qo ={u(z): u(z) e C[0,00), u(0)=0 and u(x) >0 at x> 0}.
Conditions (2), (3) imply that the kernel K (z) = h/(z) + k" (z) of equation (4) satisfies the condition:
K(z) € C'[0,00), K'(x) does not decrease on [0,00), K(0)=0 and K'(0)> 0. (5)

We consider equation (4) based on the two-sided a priori estimates and the weighted metrics method,
an analogue of the Bielecki method (see [8; 218]).

In contrast to the Bielecki’s method, during the construction of the metric, this study uses an exact
a priori estimate from below of the solution to equation (4) as a weight function, which allows us to
prove the global existence and uniqueness theorem for the solution to equation (4) without restrictions
on the domain of its existence.

For the first time, in works [1, 2|, the method of weight metrics was applied to equation (4) under
the condition that K(0) > 0. In addition, in [1, 2|, when constructing the metric, the role of the
weight function is played by the difference between the upper and lower a priori estimates, and for
the correctness of this metric (so that the denominator does not vanish), a specially overestimated a
priori estimate from above is used. As a result, such a metric led to additional restrictions and rather
cumbersome calculations in |1, 2].

This paper shows that any solution to equation (1) in Q3 under conditions (2), (3) is simultaneously
a solution of equation (4) and vice versa, under the additional condition imposed on the kernel K(z) =
h'(z) + k" (x) any solution of equation (4) from Q belongs to the class Q3 and is a solution of equation
(1). The main result of the paper is that, using the above relationship between equations (1) and
(4), the global existence, uniqueness theorem is proved and the method for solving equation (1) is
found. The Picard successive approximation method is applied to solve the considered equation. The
convergence rate estimates are established. Examples are provided to illustrate the obtained results.
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Main part

Before proceeding to the study of equation (1), we first consider equation (4). The next two lemmas
contain information on the properties of non-negative solutions (if they exist) for equation (4).

Lemma 1. Let the condition (5) hold. If uw € Q) is a solution to the integral equation (4), then
the function w(z) does not decrease on [0,00) and is twice continuously differentiable for > 0 i.e.,
u € C?(0,00).

Proof. Let us first prove that the function u(z) does not decrease on the entire semiaxis [0, 00), if
u € Qo and is a solution to equation (4). Let x1,z9 € [0,00) be any number, and x; < x2. Since by
virtue of condition (5), K'(x) > K'(0) > 0 for any x € [0, 00), i.e., the kernel K () increases on [0, 00),
then

1

ua(xg)ua(xl):/[K(xgt)K(J:lt)]u(t)dt+/K(x2t)u(t)dtZO
0 T1

consequently, u(z2) > u(z1), which is required.
Finally, we prove that v € C?(0,00). Once both parts of identity (4) have been differentiated taking
into account K (0) = 0, obtain

() = éum(m) / K'(x — t)u(t) dt. (6)
0

This means that v/(z) is continuous at z > 0. However, then «”(z) exists and is continuous as the
product of two continuously differentiable functions for any = > 0. Accordingly, u € C?(0, 00) and the
lemma is completely proved.

Lemma 2. Let the condition (5) hold. If a function u € Qg and is a solution to the integral equation
(4), then for any = > 0 the inequalities

x 1/(a-1)
F(z) = c(a) - z¥@ D <u(z) < a; ! /K (t)dt = G(x), (7)
0
where La—1)
_ (K'(0) - (a = 1)>\ /T
C(O‘>_< 2a - (o + 1) > ’
are valid.

Proof. Let u(z) € Qo be a solution of equation (4). Lemma 1 implies that the function u(z) does
not decrease on [0,00) and u € C?(0,c0).
Prove the estimate F(z) < u(x). By differentiating identity (4) twice, in view of condition (5),

obtain:
X

(u*(z))" = /K”(x — tu(t)dt + K'(0)u(x) > K'(0)u(z).
0

Introduce the new function v(x), denoting u®(x) = v(x). The result is the second-order non-linear
differential inequality v” > K’ (O)vl/ @ that does not contain an explicitly independent variable x. By
substituting this inequality v = p, p = p(v) (then v/ = p - p') we get p-p’ > K'(0)v/*. Since

v(x) = /:K(:c —t)o /(@) dt and K (0)=0,
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then

T

V' (z) = / K' (z —t) v/ (¢) dt.

0

Hence, v(0) = v/(0) = 0 and v/(z) > 0. Therefore, writing the previous inequality as pdp > K’(0)v'/*dv
and integrating from 0 to x, we obtain

'(z)) '(0)) -« [2K'(0) - o
[U (2 )] > Ko(éo—i)_)l [,U(x)](a-&-l)/oz or ’U/(ZL‘) > 2[(0;(_2)1 . [U($)](a+1)/(2a).

Now separate the variables and integrate again from 0 to  and obtain

=i ()@ >y 2K,
a—1 a+1

' a-1\2 2K(0)-a ]
[o(a)]"/* > [( %0 > e e = F).

or

Recalling that u“(x) = v(x), from the last inequality we obtain the provable lower bound: u(z) > F(z).
It remains to prove the upper estimate, i.e. u(z) < G(x). Since K(x) and u(z) are nondecreasing
functions, by applying the Chebyshev inequality (17.6) [6] in (4) obtain:

u(r) < /K(t)u(t) dt for any x > 0. (8)
0
Hence,
T —1/a
K(z)u(x) /K (t)wu(t)dt < K(z).
0
Therefore, once the integration has taken place, get:
z 1o o 1\ WD) z 1/(a-1)
/K(t)u(t)dt g( . > /K(t)dt — G(a). )
0 0

Using estimate (9) by inequality (8) obtain: u(x) < G(x), which is required.
Ezxample 1. The function

u(z) = (w‘l)z))l/(al)xz/m—l)

2a- (a+1

is a solution to the equation (4) for K(z) = x.

Example 1 shows that F(z) = u*(x) at K(z) = z, i.e., a priori lower bound of the solution to the
equation (4) is unimprovable.

Obviously, Lemma 2 implies that the solution to equation (4) should be sought in the class

P ={u(x): u(z)eC[0,00) and F(z) <u(x)<G(x)},

as F(0)=G(0)=0and F(z) >0at x > 0.
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Now consider the operator 1

z 1/a
/ K(z—tu®dt| , >0
0

Lemma 3. The operator T' transforms the class P into itself.

Proof. Assume u(x) € P is an arbitrary function. Consequently, we have to prove that (Tu) (x) €
By Theorem 17.9 [6] (Tu) (x) € C][0,00). It remains to prove that F(z) < (Tu)(z) < G x)
u(z) > F(z) and by condition (5) K'(x) > K'(0) > 0, K (0) =0, then

!/Ka%% twm1Mt—d®a_1/}ﬂx—ﬂﬁwﬂym4%:

)&= 1 4 4(t1)/(a1) / (a+1)/ o

> t =

a+1/K dt > c() t [F(x)]%,
0

that is (Tw)(z) > F(x).

On the other hand, since u(z) < G(z) then taking into account condition (6) and the Chebyshev
integral inequality (17.6) [6], where the role of function wu(z) is already played by the function G(z),
which is non-decreasing either (see the proof of Theorem 17.12 [6]) we get:

/ KMG® =[G ie (Tu)(x) < G).

Lemma 3 is proved.
Now consider the class

={u(z): wu(z) € C[0,b and F(z)<u(x) <G(z)},
where b > 0 is any number, and introduce the metric in it p, by imposing Vu(x),v(x) € Py:

_ u(z) —v(z)| .
pp (u,v) = oilj:lg)b " 2/(a=T)gfa where [ > 0 is any number.

It is proved directly in view of the equalities F'(0) = G (0) = 0 and the complete metric space C]0, b]
with Chebyshev metric that the pair (P, pp) forms a complete metric space (see Theorem 17.13 [6]).
Choose a number p € (0,b) so that condition

K'(p) < a- K'(0) (10)

is satisfied and sets

1 K'(z) — K'(0)
—— sup ——————~.
K '(0) u<z<b x

Then, by lemma 18.5 [6], we obtain that the inequality

8=

K(2)e ™ <z K'(n) (11)

holds.
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Theorem 1. If the kernel K (z) satisfies condition (6), then equation (4) has a unique solution u*(x)
in the cone @y (and in P, for any b > 0). This solution can be found by the successive approximations
method using the formula w, = Tu,—1, n € N, which converge to it according to the metric p, at any
b < oo, and the convergence rate estimate

n

7_ e (T'wo, uo) (12)

o () < 1

is valid, where v = K'(p)/[aK'(0)] < 1, and ug(z) € P, the initial approximation (on arbitrary
function).

Proof. Write equation (4) as the operator equation u = T'u. First, show that the operator T acting
according to Lemma 3 from P, to P, is contractive.

Let u,v € Py, be arbitrary functions. It is clear that

[u(z) — v(@)] < 2@ Debp, (u,v)

Therefore, using inequality (11) get

/K(x —t) [u(t) —v(t)]dt| < pp(u,v) /K(:U — t)e Bt hry2/(e=1) gy <
0

(0= 1)K'(n) g

2a/(a—1)'
2a (a+1)

< PR (1) py(u, v / (z —t)t2/ (@Dt = Top(u,v)x
0

Next employing the Lagrange theorem (finite-increments formula) in view of the later estimate (see
the proof of Theorem 17.14 [6]) obtain

() (2) = (T0) ()] < 40— < e )
whence X
(T, 7o) < 00 oy (uv0), (13)

e., the operator T', by condition (10) is a contractive operator. Hence, based on the contraction
mapping principle, the equation u = Tu has the unique solution u*(z) € P,, which can be found by
the formula u,, = T'up—1, n € N, and the estimate (12) is valid.

The only thing left to show is that equation (4) has a unique solution in the cone (. Suppose
Py = Upsg Py. Since equation (4) has the unique solution in P, at any b > 0 and the contraction
coefficient in (13) does not depend on b, equation (4) has the unique solution u*(z) in Py. Since any
solution of equation (4) in Qo satisfies a priori estimates (7), this solution will also be the only one in
Qo-

Theorem 1 is proved.

Let us finally proceed to the study of integro-differential equation (1).

The following lemma establishes the relationship between integro-differential equation (1) and
integral equation (4).

Lemma 4. Let conditions (2) and (3) be satisfied. Then any solution of equation (1) in the cone
Q3 is a solution to integral equation (4) in the cone Q. Conversely, if conditions (2), (3), and the
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additional condition

= t 1/(a—1)
fK'(x—t)[fK(s)ds} dt
lim 2 0
z—0 [ (a—1)/«
[f K(z—t)- t2/(a1)dt}

0

=0, (14)

are satisfied, then any solution of integral equation (4) in the cone Qg belongs to the cone Q2 and is a
solution of equation (1).

Proof. Initially, prove the first part of the lemma. Assume u(z) € Q3 and is a solution to equation
(1). Then, applying the integration by parts formula twice by identity (1) taking into account conditions
(2) and (3), obtain:

xZ x T x

() = O/h(:):—t) du(t) +0/k(:r—t) d (1) :0/u(t)h’(x—t)dt—l—o/u'(t)k:’(x—t)dt _
= [ W (z —tu(t)dt + [ w(t)k"(x —t)dt = | K(x — t)u(t)dt,
/ / /

i.e. u(z) € Qo and is a solution of integral equation (4).

Next, prove the second part of the lemma. Let u(x) € Qo be the solution of integral equation (4).
Therefore by lemma 1, u(z) does not decrease on [0,00) and is twice continuously differentiable on
(0,00), i.e. u € C?(0,00) and satisfies the inequalities F(x) < u(z) < G(x). Prove that u/(0) = 0. By
identity (4) in view of condition (5) get

au®(z)u/( /K':U—t) (t)dt + K(0) /K':E—t t) dt,
whence . .
[ K'(x — t)u(t) dt [ K'(x — t)u(t) dt
/ 0 _ 0
R e [ T @/ =0 (1)
a- [f K(z — t)u(t)dt]
0
Employing a priori estimates (7), by (15) obtain:
x x t 1/(a—1)
[K'(x —t)G(t) dt [K'(z—t) [a;l [ K(s) ds} dt
/ 0 _ 0 0
0<u (I‘) < . (a—1)/a - (a=1)/a
a- [f K(z —t)F(t) dt] a- [f K(z — t)c(a)t2/(0‘—1)dt]
0 0
x t 1/(a—1)
o — 171D 1 [ K'(z 1) [f K(s) ds] dt
= [ ] — 0 0 —0 at x—0,
o o fe(a)) @7/

x (a=1)/c
[[ K(z—1t)- t2/(a—1)dt]
0

by virtue of condition (14). Therefore «'(0) = 0.
Thus, u € C%[0,00), u(0) = ¥/(0) = 0 and u(x) > 0 at z > 0, i.e. u € Q3. All that remains
is to prove that u(z) is a solution of equation (1). Employing the equality K(z) = h'(z) + k" (z),
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commutative property of convolution and applying the integration-by-parts formula twice, taking into
account conditions (2) and (3), by identity (4) we obtain:

() = / B (8) + K (8)]u(z — t) dt = / w(z — t)dh(t) + / w(z — t)dk () =
0 0 0
= [ h(t)d (x —t)dt + [ K' () (z —t)dt = | h(z —t)u'(t)dt + [ o' (x —t)dk(t) =
/ / / /
= [ h(z—t)d (t)dt + | k()" (x —t)dt = | h(x —t)d'(t)dt + | k(z —t)u"(t)dt,
/ / / /

i.e. u(x) is a solution of equation (1).

Lemma 4 is proved.

Lemma 4 implies that under conditions (2), (3), and (14) integro-differential equation (1) and
integral equation (4) are simultaneously solvable or not, while they have the same solutions. Therefore,
based on Theorem 1, the following fundamental theorem is true.

Theorem 2. If conditions (2), (3), and (14) are satisfied, then equation (1) has a unique solution u*
in Q% (and in the space Py at any b > 0). This solution can be found in the space P, using the Picard
successive approximation method u, = Tu,—_1, n € N, which converge to it according to the metric py
at any b < oo, and estimate convergence rate (12) is valid.

Ezample 2. When o > 1, h(z) = 22 and k(z) = 23, ie., at K(z) = 8z, in the cone Qp integral
equation (4) has the unique solution

271/(a=1)

U*(l‘) _ 4(0[ - 1) :EQ/(oz—l)'
ala+1)

When K (z) = 8z condition (14) takes the form

A(a) - lim 2B/ — o where A(a) =

z—0 a—+1

8- 4ﬁ(a — D a(a+1)]@ Ve
o=

Hence, for 1 < a < 3, the function u*(z) is also the unique solution of integro-differential equation
(1) in the cone Q3.

In particular, when a = 2, h(z) = 22 and k(z) = 23, equations (1) and (4) have the unique solution
u(z) = 222 in the cones Q2 and Qo, respectively.

Note also that u* € Q% only if 1 < a < 3, since

v [Aa =12 g (3—a)/(a—1)
e I

and therefore u* ¢ Q2 at o > 3. This shows that condition (14) is essential to the validity of Lemma
4 and Theorem 2.

Following the monograph [6; 211] it can be proved that for 0 < a < 1, as in the case of the
corresponding linear equations obtained for av = 1, equations (1) and (4) have only a trivial solution
u(xz) = 0 in the cone of the space of functions continuous on C' € [0, 00) consisting of non-negative
functions continuous on the half-axis [0, c0).

Consequently, based on the results obtained non-linear homogeneous integral and integro-differential
equations type (1) and (4) except for the trivial solution u(x) = 0 can have the non-trivial solution
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u(z) # 0 at a > 1 strictly positive at = > 0. This is the fundamental difference between the theory
of the considered nonlinear equations and the well-developed so far theory of the corresponding linear
homogeneous integral and integro-differential equations, which have only the trivial solution u(z) = 0.
In addition, the theory of nonlinear equations differs from the theory of the corresponding linear
equations not only in the obtained results but also in research methods related to the choice of space
and nonlinearity properties.

In conclusion, following the works [9-12], it is possible to study integro-differential equations of the
form (1) with variable coefficients and inhomogeneities in the linear part, as well as systems of such
equations. Other methods for studying nonlinear equations of the convolution type are given in many
research works, such as [13], [14].
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Hlewen memaekemmir nedaz0euKasbly YHUBEPCUMEMI;
A.A. Kadwpos amuindazo. [llewen memaexemmix yrusepcumemi, I'posnuti, Pecet

AMBIPpBIMABIK IAPOJIaPhl >K9HE JI9PEXKeJIK ChI3BIKTBIK eMecTiri oap
eKiHIT peTTi mHTerpo-andPepeHnnaJJIbIK TeEHAEY TYPaJibl

Maxkasiaia aiflbIpBIMIBIK, SITPOJIAPHI KOHE JIOPEKETIIK ChI3BIKTHIK, €MECTIri 6ap eKiHIi peTTi mHTerpo-audde-
peHnmaabIK TeHaey 3eprresred. Ocbl TEHIEY/IiH MUINHAPIIK pe3epByapaaH M30TPONTHI OipTEKTI Keyek-
Ti oprara CYHBIKTBIKTBIH WHQUILTPAIUASACHI, T'a3 TOJITBIPBLIFAH KYyObIpJIaparbl COKKbI TOJKBIHIAPBIHBIH
TapaJjybl »KoHe T.0. IIPOIeCTEpiH CHIATTay Ke3iHJe TYBIHIANTHIH YHIPTKI TYpiHmeri mHTerpajablk TeHe-
yMeH OailTaHBICHl aHBIKTAIIbI. Ko/imanbalibl KaFbIHAH OChl MHTETPAJIIBIK, TEHICYIIH Tepic eMec y3imicci3
HIenriMIepi epekiie KbI3bIFYIIbLIBIK, TYIbIPa/ibl, COHABIKTAH UHTEIPO-auddepeHInaIbiK, TeHJIEY/ IiH COUKeC
memriMaepi y3imiccis-auddepennnantanaTelH KeHICTIK KOHYChIHIa 13nemineni. Kepcerinren uaTerpasapk
TeHJEY/IH Ke3 KeJreH MIeNmiMi YIriH eKi »KaKThbl alpuopJibl Oarajgap aJbIHFaH, OHBIH HETi3iHJe IIerriMHiH
bap 6osybl MeH Gipereiyririnig raJsaMIbIK T€OpeMachl cCaJIMaKThl METPUKa 9/liciMeH oJsiesienred. bepinren
WHTErpaJIIBIK- 1 depEeHIMAIBIK TeHIEYIIH Ke3 KeJITeH MIentiMi 6ip Me3rijiie HHTerpaJsIblK TeHIeYIiH I1e-
mriMi OOIATHIHBI YKOHE KEPICIHITe SApOFa KOCHIMIIA IMAPT KONBIIFaH Ke3/e OCbl MHTErPAJIIBIK TEHIEY/IiH, Ke3
KEJIPEH IIEeNTiMi OChbl MHTErpasIblK-auddepeHnaiablK TeHAeyaiH memmiMi 6oaTbiHbl Kepceriiren. Ocbl
HOTUXKEJIEPl MaiilajlaHa OTBIPHIN, WHTErPo-auddepeHnnaIIblK TeHaeyaiH 6ap 6oJybl, Gipereityiri koHe
mrermiMin Taby oici TypaJsbl FasaMIblK TeopeMa masenneHmi. bym memivai moitexti [Tukapa tunTi xKybi-
KTayJsap 9/iiciMmeH Tabyra 60/1aThIHBI KOPCETIJIII, OJIaP/IbIH XKUHAKTBLIBIK, XK bIJT/IaM/IbIFbIHA Oara OeJIrijieHreH.
ATbIHFAH HOTHKEJIEP]l KOPCETY VIIMH MBICAJIIAD KeJITipireH.

Kiam cosdep: maTErpo-muddepEeHITNAIIBIK, TEHIEY, TOPEXKEITIK ChI3BIKTHIK, EMECTIK, affbIPDBIMIBIK, SIIPOJIAD,
CaJIMaKThl METPHUKA DJIiCi.

C.H. Acxabos

Yeuenckutl 20cydapcmseermviti nedazo2uteckutl YHUSEPCUMeE;
Yewenckutli 2ocydapcmeentnti ynusepcumem umeru A.A.Kadwposa, I'posunti, Poccus

O6 unTerpo-auddpepeHnnaILHOM ypaBHEHUN BTOPOTO ITOPSIKA
C PA3HOCTHBIMU SAPaMU U CTENEHHOI HEeJIMHEIHOCTHIO

B crarpe paccmorpeno muTerpo-mumddepeHinaibHoe ypaBHEHNEe BTOPOTO HOPSIKA C PA3HOCTHBIME $i]I-
paMU U CTEIEHHO} HEJMHEHHOCTHIO. YCTAHOBJIEHA CBA3b 9TOI'0 YPABHEHUs C MHTEI'DAJIBHBIM ypaBHEHHEM
TUIA CBEPTKY, BO3HUKAOIIMM TPU OIMUCAHWH IIPOIECCOB WH(MDUIBTPAIIUN KUJIKOCTHA W3 IUJIUHIPUIECKO-
ro pe3epByapa B M30TPOITHYIO OJHOPOIHYIO MOPHUCTYIO CPELY, PACIPOCTPAHEHHS YJIapPHBIX BOJIH B TPyOax,
HAIIOJIHEHHBIX T'a30M, U apyrux. 1IockosbKy, ¢ IpUKIIa HON TOYKU 3peHUs, OCOOBIil MHTEPEC IIPEeJICTABIIA-
IOT HEOTPUIATEJbHbIE HEIPEPLIBHBIE PEIIEHUs TOTO HHTErPAJHLHOIO yPABHEHUsI, PEIIeHUsl COOTBETCTBY-
IOIEro MHTErpo-a1nddepeHnuaibHOr0 YPaBHEHNSI PA3bICKUBAIOTCS B KOHYCE NMPOCTPAHCTBA HEIIPEPBIBHO-
muddepenupyembix dyskimit. [loyyeHbl JByCTOPOHHIE alpUOPHBIE OLEHKHU JJIsI JIFOOOTO PEIeHusl yKa-
3aHHOTO WHTEIPAJIHLHOTO yPAaBHEHUsI, HA OCHOBE KOTOPBIX METOJIOM BECOBBIX METPUK JIOKA3aHA TVIOOATbHAS
TeopeMa CyIeCTBOBAHUs U eQMHCTBeHHOCTH perienus. [lokazano, 4To m0b0e penrenne TaHHOTO MHTEIPO-
muddepeHnaIbHOIO YPABHEHUS SIBJISETCS OJITHOBPEMEHHO W PEIeHNeM WHTErpaJibHOTO ypaBHEHUsd, U, 00-
paTHO, TPU JTOMOJHUTEIBHOM YCIOBAU HA SIAPO, YTO JIIOOOE PEIeHWe 3TOTO WHTErPAJIBHOTO yPABHEHUST
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SABJISIETCSI PEIIEHUEM JTAaHHOTO MHTerpo-anddepeHnnaabHOro ypaBHeHus. VMcnonb3ys yKa3aHHbIE PE3YJIbTa~
TBI, JIOKa3aHa II00aJIbHAsI TEOpEMa O CyIIeCTBOBAHHY, €IMHCTBEHHOCTH U CIIOCOOE HAXOXKEHUs PEIICHUST
nHTErpo-auddepeHnnaabHOro ypaBaenns. [loka3ano, IT0 9TO pereHne MOXKHO HANTH METOIOM IIOCTIE0-
BATEJIbHBIX NIPHUOJINKEHNY TNKAPOBCKOT'O THIIA, IIPU 9TOM U YCTAHOBJIEHA OI[EHKA CKOPOCTH MUX CXOIMMOCTH.
IIpuBeneHs! IpUMeEDHI, WILIIOCTPUPYIONINE II0JIyYeHHbIE PE3YIbTAThI.

Kmouesvie caoga: maTErpo-nuddepeHnuaibHOe YPaBHEHNE, CTENEeHHAs HEJTMHEHOCTh, PA3HOCTHBIE sIIpa,
METOJ] BECOBBIX METPHUK.
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