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A comparison between the fourth order linear differential
equation with its boundary value problem

In this paper, we study a fourth order linear differential equation. We found an upper bound for the solutions
of this differential equation and also, we prove that all the solutions are in L4 (0,∞). By comparing these
results we obtain that all the eigenfunction of the boundary value problem generated by this differential
equation are bounded and in L4 (0,∞).
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Introduction

The method of finding an upper bound for the solutions of a differential equation has been
investigated by many authors. In papers [2,4] by authors were investigated the solutions of the second

order linear differential equation. They obtained some important properties of this equation such that
all solutions of the differential equation are bounded and in the space L2 (0,∞). Here L2 (0,∞) is the
space of all functions f which are continuous and satisfy the conditions:∫ ∞

0
|f (x)|2dx <∞.

The estimate of upper bounds for the eigenfunctions of a boundary value problem was investigated by
many authors. In papers [2–6, 10] by authors were investigated a second order differential equation of
the form

y
′′

+ q (x) y = λ2ρ (x) y, x ∈ [0, a] .

They found a normalized eigenfunctions for this problem and an upper bound for this solution under
a certain condions.
Methods of finding of general solution of a fourth order differential equation were studied by many
authors, see: [1, 7–9,11].

This paper is specified to study some important properties of solutions of a fourth order linear
differential equation of the form:

y(4) (x) + {q (x) + r (x)} y (x) = 0, 0 ≤ x <∞, (1)

where r (x) is a function satisfying the condition:∫ ∞

0
|r (x)| dx <∞. (2)

We investigate whether the solutions of (1) are related to any general properties such as boundedness
of the solutions of the differential equation

y(4) (x) + q (x) y (x) = 0, 0 ≤ x <∞. (3)
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Let L4 (0,∞) is the space of all continuous functions f for which satisfy the condition∫ ∞

0
|f (x)|4dx <∞.

In this paper we show that all solutions of (1) are in L4 (0,∞) . It is based on the fact that the
solutions of (3) are in L4 (0,∞) under the condition (2). Moreover, we show that eigenfunctions of the
boundary value problem which is generated by the differential equation y(4) (x) + {λ+ r (x)} y (x) = 0
are bounded under a certain condion.

Let f(x) and g (x) be real-valued, continuous, and nonnegative in [a, b] and suppose that
f (x)≤ c+

∫ x
a f(t)g(t) dt , in [a, b] where c > 0 is a constant. Then,

f (x)≤ c e
∫ x
a g(t)dt. (4)

This is known as Gronwall inequality [2].

Expression for the solutions

In this section we found a general solutions for (1) by using the method of variation of parameter.
We need some properties of the differential equations (1) and (3) which are immediate consequence of
the results of chapter two in [2].

Lemma 1. There are solutions φj (x) , {j = 1, 2, 3, 4} of (3) such that
W (φ1, φ3, φ2, φ4) = 1 in [0,∞).

Proof. Let y1 (x) , y2 (x) , y3 (x) and y4 (x)be a fundamental system of solution of (3), then we
obtain W (φ1, φ3, φ2, φ4) = c in [0,∞), where c is a non zero constant , we take φ1 (x) = y1 (x) ,

φ2 (x) = y2 (x) , φ3 (x) = y3 (x) and φ4 (x) = y4(x)
c , then we can easily establish that

W (φ1, φ3, φ2, φ4) = 1.
Lemma 2. If φj (x) , {j = 1, 2, 3, 4} are as in Lemma 1 and ψ(x) is any solution of (1), then there

are unique constants cj for j = 1 : 4 such that

ψ (x) = c1φ1 (x) + c2φ2 (x) + c3φ3 (x) + c4φ4 (x) + ψ0 (x) , (5)

where

ψ0 (x) =

∫ x

0
[φ2 (t)φ

′
3 (t)φ

′′
4 (t)φ1 (x) + φ

′′
2 (t)φ3 (t)φ

′
4 (t)φ1 (x) + φ

′
2 (t)φ

′′
3 (t)φ4 (t)φ1 (x)

−φ′
2 (t)φ3 (t)φ

′′
4 (t)φ1 (x)− φ2 (t)φ

′′
3 (t)φ

′
4 (t)φ1 (x)− φ′′

2 (t)φ
′
3 (t)φ4 (t)φ1 (x)

−φ1 (t)φ
′
3 (t)φ

′′
4 (t)φ2 (x)− φ′′

1 (t)φ3 (t)φ
′
4 (t)φ2 (x)− φ′

1 (t)φ
′′
3 (t)φ4 (t)φ2 (x)

+φ
′
1 (t)φ3 (t)φ

′′
4 (t)φ2 (x) + φ1 (t)φ

′′
3 (t)φ

′
4 (t)φ2 (x) + φ

′′
1 (t)φ

′
3 (t)φ4 (t)φ2 (x)

+φ1 (t)φ
′
2 (t)φ

′′
4 (t)φ3 (x) + φ

′′
1 (t)φ2 (t)φ

′
4 (t)φ3 (x) + φ

′
1 (t)φ

′′
2 (t)φ4 (t)φ3 (x)

−φ′
1 (t)φ2 (t)φ

′′
4 (t)φ3 (x)− φ1 (t)φ

′′
2 (t)φ

′
4 (t)φ3 (x)− φ′′

1 (t)φ
′
2 (t)φ4 (t)φ3 (x)

−φ1 (t)φ
′
2 (t)φ

′′
3 (t)φ4 (x)− φ′′

1 (t)φ2 (t)φ
′
3 (t)φ4 (x)− φ′

1 (t)φ
′′
2 (t)φ3 (t)φ4 (x)

+φ
′
1 (t)φ2 (t)φ

′′
3 (t)φ4 (x) + φ1 (t)φ

′′
2 (t)φ

′
3 (t)φ4 (x) + φ

′′
1 (t)φ

′
2 (t)φ3 (t)φ4 (x)]

×r (t)ψ (t) dt.

Proof. If ψ (x) is a solution of (1), then as we see in [2] by using variation of parameter there is
unique constants cjsuch that

ψ (x) = c1φ1 (x) + c2φ2 (x) + c3φ3 (x) + c4φ4 (x) + ψ0 (x) , (6)

where
ψ0 (x) = c1 (x)φ1 (x) + c2 (x)φ2 (x) + c3 (x)φ3 (x) + c4 (x)φ4 (x) (7)
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and
cr (x) =

∫ x

0

Wr (φ1, φ3, φ2, φ4) (t)

W (φ1, φ3, φ2, φ4) (t)
r (t)ψ (t) dt. (8)

From Lemma 1 it follows that W (φ1, φ3, φ2, φ4) = 1.Therefore, (8) has the form

cr (x) =

∫ x

0
Wr (φ1, φ3, φ2, φ4) (t)r (t)ψ (t) dt. (9)

For r = 1, we have that

W1 (φ1, φ2, φ3, φ4) (t) =

∣∣∣∣∣∣∣∣
0 φ2 (t) φ3 (t) φ4 (t)

0 φ
′
2 (t) φ

′
3 (t) φ

′
4 (t)

0 φ
′′
2 (t) φ

′′
3 (t) φ

′′
4 (t)

1 φ
′′′
2 (t) φ

′′′
3 (t) φ

′′′
4 (t)

∣∣∣∣∣∣∣∣
= φ2 (t)φ

′
3 (t)φ

′′
4 (t) + φ

′′
2 (t)φ3 (t)φ

′
4 (t) + φ

′
2 (t)φ

′′
3 (t)φ4 (t)− φ′

2 (t)φ3 (t)φ
′′
4 (t)

−φ2 (t)φ
′′
3 (t)φ

′
4 (t)− φ′′

2 (t)φ
′
3 (t)φ4 (t) .

That is

W1 (φ1, φ2, φ3, φ4) (t) = φ2 (t)φ
′
3 (t)φ

′′
4 (t) + φ

′′
2 (t)φ3 (t)φ

′
4 (t) + φ

′
2 (t)φ

′′
3 (t)φ4 (t)

−φ′
2 (t)φ3 (t)φ

′′
4 (t)− φ2 (t)φ

′′
3 (t)φ

′
4 (t)− φ′′

2 (t)φ
′
3 (t)φ4 (t) .

For r = 2, 3, 4,applying the same way, we obtain

W2 (φ1, φ2, φ3, φ4) (t) = −φ1 (t)φ
′
3 (t)φ

′′
4 (t)− φ′′

1 (t)φ3 (t)φ
′
4 (t)− φ′

1 (t)φ
′′
3 (t)φ4 (t)

+φ
′
1 (t)φ3 (t)φ

′′
4 (t) + φ1 (t)φ

′′
3 (t)φ

′
4 (t) + φ

′′
1 (t)φ

′
3 (t)φ4 (t) ,

W3 (φ1, φ2, φ3, φ4) (t) = φ1 (t)φ
′
2 (t)φ

′′
4 (t) + φ

′′
1 (t)φ2 (t)φ

′
4 (t) + φ

′
1 (t)φ

′′
2 (t)φ4 (t)

−φ′
1 (t)φ2 (t)φ

′′
4 (t)− φ1 (t)φ

′′
2 (t)φ

′
4 (t)− φ′′

1 (t)φ
′
2 (t)φ4 (t) ,

W4 (φ1, φ2, φ3, φ4) (t) = −φ1 (t)φ
′
2 (t)φ

′′
3 (t)− φ′′

1 (t)φ2 (t)φ
′
3 (t)− φ′

1 (t)φ
′′
2 (t)φ3 (t)

+φ
′
1 (t)φ2 (t)φ

′′
3 (t) + φ1 (t)φ

′′
2 (t)φ

′
3 (t) + φ

′′
1 (t)φ

′
2 (t)φ3 (t) .

Substituting these values of Wr in (9) and then (9) in (7), we get the result.

Bounded solution

In this section we obtain that all solutions of (1) are bounded. It is based on boundednees of
solutions of (3) and condition (2).

Theorem 1. Let that all solutions and their derivatives up to order three of (3) be bounded in
[0,∞) and the condition (2) is hold, then all the solutions of (1) are bounded in [0,∞).

Proof. Let φ1 (x) , φ2 (x) , φ3 (x) and φ4 (x) be four linearly independent solutions of (3) such that
W (φ1, φ2, φ3, φ4) = 1 and let ψ (x) be any solution of (1), then by Lemma 2 there are constants
c1, c2, c3 and c4 such that
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ψ (x) = c1φ1 (x) + c2φ2 (x) + c3φ3 (x) + c4φ4 (x) +

∫ x

0
[φ2 (t)φ

′
3 (t)φ

′′
4 (t)φ1 (x)

+φ
′′
2 (t)φ3 (t)φ

′
4 (t)φ1 (x) + φ

′
2 (t)φ

′′
3 (t)φ4 (t)φ1 (x)− φ′

2 (t)φ3 (t)φ
′′
4 (t)φ1 (x)

−φ2 (t)φ
′′
3 (t)φ

′
4 (t)φ1 (x)− φ′′

2 (t)φ
′
3 (t)φ4 (t)φ1 (x)− φ1 (t)φ

′
3 (t)φ

′′
4 (t)φ2 (x)

−φ′′
1 (t)φ3 (t)φ

′
4 (t)φ2 (x)− φ′

1 (t)φ
′′
3 (t)φ4 (t)φ2 (x) + φ

′
1 (t)φ3 (t)φ

′′
4 (t)φ2 (x)

+φ1 (t)φ
′′
3 (t)φ

′
4 (t)φ2 (x) + φ

′′
1 (t)φ

′
3 (t)φ4 (t)φ2 (x) + φ1 (t)φ

′
2 (t)φ

′′
4 (t)φ3 (x)

+φ
′′
1 (t)φ2 (t)φ

′
4 (t)φ3 (x) + φ

′
1 (t)φ

′′
2 (t)φ4 (t)φ3 (x)− φ′

1 (t)φ2 (t)φ
′′
4 (t)φ3 (x)

−φ1 (t)φ
′′
2 (t)φ

′
4 (t)φ3 (x)− φ′′

1 (t)φ
′
2 (t)φ4 (t)φ3 (x)− φ1 (t)φ

′
2 (t)φ

′′
3 (t)φ4 (x)

−φ′′
1 (t)φ2 (t)φ

′
3 (t)φ4 (x)− φ′

1 (t)φ
′′
2 (t)φ3 (t)φ4 (x) + φ

′
1 (t)φ2 (t)φ

′′
3 (t)φ4 (x)

+φ1 (t)φ
′′
2 (t)φ

′
3 (t)φ4 (x) + φ

′′
1 (t)φ

′
2 (t)φ3 (t)φ4 (x)]r (t)ψ (t) dt, (10)

By our hypothesis, there are constants k0, k1, k2 such that
|φj (x)| ≤ k0,

∣∣∣φ′
j (x)

∣∣∣ ≤ k1, ∣∣∣φ′′
j (x)

∣∣∣ ≤ k2 in [0,∞].
Hence from 10 it follows that

|ψ (x)| ≤ (|c1|+ |c2|+ |c3|+ |c4|) k0 + 18k20k1k2

∫ x

0
|r (t)| |ψ (t)| dt.

Then, using Gronwall’s Inequality, we obtain

|ψ (x)| ≤ (|c1|+ |c2|+ |c3|+ |c4|) k0e18k
2
0k1k2

∫ x
0 |r(t)|dt.

Since by our hypothesis
∫ x
0 |r (t)| dt is bounded in [0,∞), then ψ (x) is bounded in [0,∞). which it

completed the proof.

L4(0,∞) property of the solution

In this section we obtain that all solutions of (1) are L4(0,∞) when the solutions of (3) are in
L4(0,∞) and r (x) satisfy the condition (2).

Theorem 2. Suppose that all solutions and their derivatives up to order three of (3) be in L4(0,∞)
and r (x) is bounded in [0,∞). Then all the solutions of (1) are in L4(0,∞).

Proof. Let φ1 (x) , φ2 (x) , φ3 (x) and φ4 (x) be four linearly independent solutions of (3) such that
W (φ1, φ2, φ3, φ4) = 1 and let ψ (x) be any solution of (1), then by Lemma 2 there are constants
c1, c2, c3 and c4 such that

ψ (x) = c1φ1 (x) + c2φ2 (x) + c3φ3 (x) + c4φ4 (x) +

∫ x

0
[φ2 (t)φ

′
3 (t)φ

′′
4 (t)φ1 (x)

+φ
′′
2 (t)φ3 (t)φ

′
4 (t)φ1 (x) + φ

′
2 (t)φ

′′
3 (t)φ4 (t)φ1 (x)− φ′

2 (t)φ3 (t)φ
′′
4 (t)φ1 (x)

−φ2 (t)φ
′′
3 (t)φ

′
4 (t)φ1 (x)− φ′′

2 (t)φ
′
3 (t)φ4 (t)φ1 (x)− φ1 (t)φ

′
3 (t)φ

′′
4 (t)φ2 (x)

−φ′′
1 (t)φ3 (t)φ

′
4 (t)φ2 (x)− φ′

1 (t)φ
′′
3 (t)φ4 (t)φ2 (x) + φ

′
1 (t)φ3 (t)φ

′′
4 (t)φ2 (x)

+φ1 (t)φ
′′
3 (t)φ

′
4 (t)φ2 (x) + φ

′′
1 (t)φ

′
3 (t)φ4 (t)φ2 (x) + φ1 (t)φ

′
2 (t)φ

′′
4 (t)φ3 (x)

+φ
′′
1 (t)φ2 (t)φ

′
4 (t)φ3 (x) + φ

′
1 (t)φ

′′
2 (t)φ4 (t)φ3 (x)− φ′

1 (t)φ2 (t)φ
′′
4 (t)φ3 (x)

−φ1 (t)φ
′′
2 (t)φ

′
4 (t)φ3 (x)− φ′′

1 (t)φ
′
2 (t)φ4 (t)φ3 (x)− φ1 (t)φ

′
2 (t)φ

′′
3 (t)φ4 (x)

−φ′′
1 (t)φ2 (t)φ

′
3 (t)φ4 (x)− φ′

1 (t)φ
′′
2 (t)φ3 (t)φ4 (x) + φ

′
1 (t)φ2 (t)φ

′′
3 (t)φ4 (x)

+φ1 (t)φ
′′
2 (t)φ

′
3 (t)φ4 (x) + φ

′′
1 (t)φ

′
2 (t)φ3 (t)φ4 (x)]r (t)ψ (t) dt. (11)

MATHEMATICS series. № 3(99)/2020 21



Karwan H.F. Jwamer, Rando R. Q. Rasul

Then by hypothesis there are constants C, k0, k1, k2 such that |r (x)| ≤ C in [0,∞), and∫∞
0 |φj (x)|4dx ≤ k0,

∫∞
0

∣∣∣φ′
j (x)

∣∣∣4dx ≤ k1, ∫∞
0

∣∣∣φ′′
j (x)

∣∣∣4dx ≤ k2 for j = 1, 2, 3, 4.

Now, applying the Holder’s inequality for integral, we get

|
∫ x

0
[φ2 (t)φ

′
3 (t)φ

′′
4 (t)φ1 (x) + φ

′′
2 (t)φ3 (t)φ

′
4 (t)φ1 (x) + φ

′
2 (t)φ

′′
3 (t)φ4 (t)φ1 (x)

−φ′
2 (t)φ3 (t)φ

′′
4 (t)φ1 (x)− φ2 (t)φ

′′
3 (t)φ

′
4 (t)φ1 (x)− φ′′

2 (t)φ
′
3 (t)φ4 (t)φ1 (x)

−φ1 (t)φ
′
3 (t)φ

′′
4 (t)φ2 (x)− φ′′

1 (t)φ3 (t)φ
′
4 (t)φ2 (x)− φ′

1 (t)φ
′′
3 (t)φ4 (t)φ2 (x)

+φ
′
1 (t)φ3 (t)φ

′′
4 (t)φ2 (x) + φ1 (t)φ

′′
3 (t)φ

′
4 (t)φ2 (x) + φ

′′
1 (t)φ

′
3 (t)φ4 (t)φ2 (x)

+φ1 (t)φ
′
2 (t)φ

′′
4 (t)φ3 (x) + φ

′′
1 (t)φ2 (t)φ

′
4 (t)φ3 (x) + φ

′
1 (t)φ

′′
2 (t)φ4 (t)φ3 (x)

−φ′
1 (t)φ2 (t)φ

′′
4 (t)φ3 (x)− φ1 (t)φ

′′
2 (t)φ

′
4 (t)φ3 (x)− φ′′

1 (t)φ
′
2 (t)φ4 (t)φ3 (x)

−φ1 (t)φ
′
2 (t)φ

′′
3 (t)φ4 (x)− φ′′

1 (t)φ2 (t)φ
′
3 (t)φ4 (x)− φ′

1 (t)φ
′′
2 (t)φ3 (t)φ4 (x)

+φ
′
1 (t)φ2 (t)φ

′′
3 (t)φ4 (x) + φ1 (t)φ

′′
2 (t)φ

′
3 (t)φ4 (x) + φ

′′
1 (t)φ

′
2 (t)φ3 (t)φ4 (x)]

×r (t)ψ (t) dt|

≤ 6C |φ1 (x)| (k0k1k2)
1
4

[∫ x

0
|ψ (t)|4dt

] 1
4

+ 6C |φ2 (x)| (k0k1k2)
1
4

[∫ x

0
|ψ (t)|4dt

] 1
4

+6C |φ3 (x)| (k0k1k2)
1
4

[∫ x

0
|ψ (t)|4dt

] 1
4

+ 6C |φ4 (x)| (k0k1k2)
1
4

[∫ x

0
|ψ (t)|4dt

] 1
4

= 6C(k0k1k2)
1
4 (|φ1 (x)|+ |φ2 (x)|+ |φ3 (x)|+ |φ4 (x)|) Ψ

1
4 (x) .

Now, from the equation (11) it follows that

|ψ (x)| ≤ |c1| |φ1 (x)|+ |c2| |φ2 (x)|+ |c3| |φ3 (x)|+ |c4| |φ4 (x)|

+6C(k0k1k2)
1
4 (|φ1 (x)|+ |φ2 (x)|+ |φ3 (x)|+ |φ4 (x)|)Ψ

1
4 (x) .

Then

|ψ (x)|4 ≤ (|c1| |φ1 (x)|+ |c2| |φ2 (x)|+ |c3| |φ3 (x)|+ |c4| |φ4 (x)|

+6C(k0k1k2)
1
4 (|φ1 (x)|+ |φ2 (x)|+ |φ3 (x)|+ |φ4 (x)|) Ψ

1
4 (x))4. (12)

Using the elementary inequality for any two real numbers x, y

(x+ y)4 ≤ 8
(
x4 + y4

)
and equation (12), we get

|ψ (x)|4 ≤ (|c1| |φ1 (x)|+ |c2| |φ2 (x)|+ |c3| |φ3 (x)|+ |c4| |φ4 (x)|)4

+1296C4 (k0k1k2) (|φ1 (x)|+ |φ2 (x)|+ |φ3 (x)|+ |φ4 (x)|)4Ψ (x) . (13)

Using the elementary inequality for any real numbers a, b, c, d

(a+b+c+d)4≤64
(
a4+b4+c4+d4

)
and equation (13), we obtain

|ψ (x)|4 ≤ 64
(
|c1|4 |φ1 (x)|4 + |c2|4 |φ2 (x)|4 + |c3|4 |φ3 (x)|4 + |c4|4 |φ4 (x)|4

)
+82944C4 (k0k1k2)

(
|φ1 (x)|4 + |φ2 (x)|4 + |φ3 (x)|4 + |φ4 (x)|4

)
×Ψ (x) . (14)
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Integrating (14) over [0, X] , we can write∫ X

0
|ψ (x)|4dx ≤ 64(|c1|4

∫ X

0
|φ1 (x)|4dx+ |c2|4

∫ X

0
|φ2 (x)|4dx

+|c3|4
∫ X

0
|φ3 (x)|4dx + |c4|4

∫ X

0
|φ4 (x)|4dx)

+82944C4 (k0k1k2)

∫ X

0
( |φ1 (x)|4 + |φ2 (x)|4

+ |φ3 (x)|4 + |φ4 (x)|4)Ψ (x) dx

≤ 64k0

(
|c1|4 + |c2|4 + |c3|4 + |c4|4

)
+82944C4 (k0k1k2)

∫ X

0
( |φ1 (x)|4 + |φ2 (x)|4

+ |φ3 (x)|4 + |φ4 (x)|4)Ψ (x) dx.

That means

Ψ (x) ≤ 64k0

(
|c1|4 + |c2|4 + |c3|4 + |c4|4

)
+82944C4 (k0k1k2)

∫ X

0

(
|φ1 (x)|4 + |φ2 (x)|4 + |φ3 (x)|4 + |φ4 (x)|4

)
Ψ (x) dx.

Then, using the Gronwall’s Inequality, we obtain

Ψ (X) ≤ 64k0

(
|c1|4 + |c2|4 + |c3|4 + |c4|4

)
×e82944C4(k0k1k2)

∫X
0 ( |φ1(x)|4+ |φ2(x)|4+ |φ3(x)|4+ |φ4(x)|4)dx.

This means that Ψ (x) is a bounded as X →∞. Thus we get ψ (x) ∈ L4 (0,∞).
Corollary 1. Let λ be a complex parameter and there be a value λ0 such that all solution and their

derivatives up to order three of the equation

y(4) + {λ−Q (x)} y (x) = 0 (15)

are in L4 (0,∞) when λ = λ0. Then all solutions of the equation are in L4 (0,∞) for every λ.
Proof. We can write

λ−Q (x) = λ0 +Q (x) + (λ− λ0) .

Then the differential equation has the following form

y(4) + {λ0 −Q (x) + (λ− λ0)} y (x) = 0.

Comparing with (1) and (3), we obtain q (x) = λ0 −Q (x) and r (x) = λ − λ0. This means that r (x)
is a constant function which is bounded in [0,∞). Then by using the Theorem 3 we obtain that all
solutions of (15) are in L4 (0,∞) for every λ.

Conclusion

In the present paper, we study some properties of a general linear differential equation of fourth
order in infinite interval of the form: y(4) (x) + {q (x) + r (x)} y (x) = 0, 0 ≤ x < ∞, where r (x)
is a function which satisfies the condition:

∫∞
0 |r (x)| dx < ∞. A simple application of this result is

provided.
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Карван Х.Ф. Жвемер, Рандо Р.К. Расул

Төртiншi реттi сызықты дифференциалдық
теңдеудi оның шеттiк есебiмен салыстыру

Мақалада төртiншi реттi сызықты дифференциалдық теңдеу қарастырылған. Авторлар бұл диффе-
ренциалдық теңдеудiң жоғарғы бағамын, сонымен қатар барлық шешiмi L4(0,∞) табылатындығын
дәлелдеген. Алынған нәтижелердi салыстыра келе, осы дифференциалдық теңдеуден туындаған шет-
тiк есептiң барлық меншiктi функциялары шектелген және L4(0,∞) орналасқан болып табылады.

Кiлт сөздер: cызықты дифференциалдық теңдеу, меншiктi мән, меншiктi функция, жоғарғы бағамы,
сызықты тәуелсiз шешiмi, L2(0, infty), вронскиан, Гронуолла теңсiздiгi, тұрақтыны варияциялау.
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Карван Х.Ф. Жвемер, Рандо Р.К. Расул

Сравнение линейного дифференциального уравнения
четвертого порядка с его краевой задачей

В статье изучено линейное дифференциальное уравнение четвертого порядка. Авторами найдена
верхняя оценка для решений этого дифференциального уравнения, а также доказано, что все реше-
ния находятся в L4(0,∞). Сравнивая эти результаты, авторы пришли к выводу, что все собственные
функции краевой задачи, порожденные этим дифференциальным уравнением, ограничены и нахо-
дятся в L4(0,∞).

Ключевые слова: линейное дифференциальное уравнение, собственное значение, собственная функ-
ция, верхняя оценка, линейно независимое решение, L2(0, infty), вронскиан, неравенство Гронуолла,
вариация постоянных (параметров).
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