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A comparison between the fourth order linear differential
equation with its boundary value problem

In this paper, we study a fourth order linear differential equation. We found an upper bound for the solutions
of this differential equation and also, we prove that all the solutions are in L* (0,00). By comparing these
results we obtain that all the eigenfunction of the boundary value problem generated by this differential
equation are bounded and in L* (0, o0).

Keywords: linear differential equation, eigenvalue, eigenfunction, upper bound, linearly independent solution,
L? (0, 00), wrongskian, Gronwall inequality, Variation of parameters.

Introduction

The method of finding an upper bound for the solutions of a differential equation has been
investigated by many authors. In papers [2,4] by authors were investigated the solutions of the second

order linear differential equation. They obtained some important properties of this equation such that
all solutions of the differential equation are bounded and in the space L? (0, 00). Here L? (0, 00) is the
space of all functions f which are continuous and satisfy the conditions:

| 1@k < .

0

The estimate of upper bounds for the eigenfunctions of a boundary value problem was investigated by
many authors. In papers [2-6, 10| by authors were investigated a second order differential equation of
the form

v +q@)y=Np()y,zel0a].

They found a normalized eigenfunctions for this problem and an upper bound for this solution under
a certain condions.
Methods of finding of general solution of a fourth order differential equation were studied by many
authors, see: [1,7-9,11].

This paper is specified to study some important properties of solutions of a fourth order linear
differential equation of the form:

yW (@) +{g@) +r@}y@) =0, 0<z<oo, (1)

where 7 (z) is a function satisfying the condition:

/OO Ir (x)| dz < oo. (2)
0

We investigate whether the solutions of (1) are related to any general properties such as boundedness
of the solutions of the differential equation

Yy (@) +q(@)y@) =0, 0<a <o (3)
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Let L*(0,00) is the space of all continuous functions f for which satisfy the condition

/Oo|f(x)]4dx<oo.
0

In this paper we show that all solutions of (1) are in L*(0,00). It is based on the fact that the
solutions of (3) are in L* (0, 00) under the condition (2). Moreover, we show that eigenfunctions of the
boundary value problem which is generated by the differential equation y® (z) +{\ 4+ r (z)} y (z) = 0
are bounded under a certain condion.

Let f(x) and g (x) be real-valued, continuous, and nonnegative in [a, b] and suppose that
f (@) < e+ [ f(t)g(t) dt , in [a,b] where ¢ > 0 is a constant. Then,

f (@) < ¢ elaa®it, (4)
This is known as Gronwall inequality [2].
Ezxpression for the solutions

In this section we found a general solutions for (1) by using the method of variation of parameter.
We need some properties of the differential equations (1) and (3) which are immediate consequence of
the results of chapter two in [2].

Lemma 1. There are solutions ¢; (z), {j =1,2,3,4} of (3) such that
W (¢1, ¢3, 2, $4) = 1 in [0, 00).

Proof. Let y1 (x), w2 (z), wy3(x) and y4 (z)be a fundamental system of solution of (3), then we
obtain W (¢1, ¢3, ¢2,¢4) = ¢ in [0,00), where ¢ is a non zero constant , we take ¢1 (z) = y1 (x),
o2 (x) = yo(x), ¢3(xr) =ys(x) and ¢4(x) = y“—éx), then we can easily establish that
w (¢17 ¢3, P2, ¢4) =1

Lemma 2. 1f ¢; (x), {j =1,2,3,4} are as in Lemma 1 and #(z) is any solution of (1), then there
are unique constants c; for j =1 : 4 such that

Y (x) = c1é1 (x) + capa () + c3¢3 () + cags (v) + 1o (), (5)
where
@) = [ 1026067 (061 (@) + 5 ()03 () 61 () 1 (2) + 6 ()55 (004 (061 (o)

—y (1) b3 () by () 61 (x) — 62 (t) b3 (£) by () b1 () — &g (1) b5 (t) 64 (1) 61 (@)
—61 (t) b () by (t) b2 () — ¢y (£) b3 (t) by (t) b2 (x) — &y (t) P (t) 6a (1) b2 (@)
0y (1) 03 (1) by () D2 () + 1 () b3 (t) by () P2 () + ) (t) s (t) P (£) P2 ()
61 () ¢y () 6y (£) 03 () + 6y (1) P2 () By () $3 () + by (£) by (£) ba (t) &5 ()
—y (1) ¢ (t) ¢>§g (t) 3 (x) = 61 (1) 40 as; (t) ¢5 () — as;’ (1) czs% (t) da (1) b3 (x)
—d1 (1) by (1) b3 () da (x) — by () G2 (t) G5 (£) 4 (x) — 1 (£) Py (£) b3 (t) da (2)
o () 2 (L) 5 (£) Pa () + 61 (£) By () P () da (%) + by () by (t) B3 (t) a ()]
xr (t) 1 (t) dt.

Proof. If 1 (x) is a solution of (1), then as we see in [2| by using variation of parameter there is
unique constants c;such that

Y (x) = c191 (7) + ca¢2 (7) + c3¢3 (7) + cags (z) + 2o () , (6)

where

Yo () = c1 (z) ¢1 () + 2 (2) P2 () + ¢3 (x) d3 (2) + ca () Pa (2) (7)
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and

T W (@1, ¢3, P2, 04) (t)
W (¢1, @3, P2, d4) (1 )r(t)w(t) dt. (8)

From Lemma 1 it follows that W (¢1, ¢3, ¢2, ¢4) = 1.Therefore, (8) has the form

= [ W (60,00, (00 0) . (9)
For r = 1, we have that
0 ¢2 (t) 3 (t) 4 (t)
Wi (1, P2, ¢3, ¢4) (t) = 8 gif Eg j;" Eg 23 8
L o¢y (t) o5 (1) ¢y (1)

1"

= ¢ () ()¢ (t) + 65 () &3 (1)

( ( G (1) + 62 (1) &3 (1) ba (£) — 65 () &3 (1) 64 ()
— 2 (1) b3 (1) 5 () — b (1) &5 (¢)

b4 (1) .
That is

Wi (41, b2, 03,01) (1) = @2 (t) b5 (t) &y () + ¢y () (><z>4(t>+¢>;(t)¢§ (t) ¢4 (t)
—y () b3 (1) by () — 2 (L) 5 (£) Py (£) — oy (1) o

For r = 2,3, 4,applying the same way, we obtain

Wa (61,02, 03, 04) (t) = —1 () ¢ () by () — &y (£) b3 (t) by () — &y () b3 (t) da (L)
oy () 03 (t) dy () + b1 (£) b3 () by (£) + by (t) b () Pa (1)

Wi (61, 60,03, 62) (£) = 61 (£) &2 (1) &1 (1) + 61 (1) & ()¢(t)+¢>1()¢> (t) ¢4 (1)
— 61 (1) b2 (8) &y (1) — 1 (1) 6a (8) & (1) — 61 (1) b (1) 64 (1),

Wi (b1, 02,63, 04) (1) = —1 (£) by (£) P35 () — by () b2 () b3 () — ¢y (1) &5
67 (t) 62 (t) bs () + 1 () by (1) b3 (1) + 1 (t) &,

Substituting these values of W, in (9) and then (9) in (7), we get the result.

- S

Bounded solution

In this section we obtain that all solutions of (1) are bounded. It is based on boundednees of
solutions of (3) and condition (2).

Theorem 1. Let that all solutions and their derivatives up to order three of (3) be bounded in
[0,00) and the condition (2) is hold, then all the solutions of (1) are bounded in [0, c0).

Proof. Let ¢1 (z),¢2 (z), ¢3 (z) and ¢4 (z) be four linearly independent solutions of (3) such that
W (p1, P2, p3,04) = 1 and let ¢ (z) be any solution of (1), then by Lemma 2 there are constants
c1,C2,c3 and ¢4 such that
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Then by hypothesis there are constants C, ko, k1, k2 such that |r ()] < C in [0, 00), and
4 PENT!
S5 15 @)ldr < ko, 52|65 @) dw < ki, J57 |0 @) dr <k for j=1,2,3,4.
Now, applying the Holder’s inequality for integral, we get

1"

| / (62 (£) b3 () by (£) b1 (x) + oy (1) b3 () by (£) 61 () + &5 (t) b5 (t) G4 (t) D1 ()
—y (£) @3 () by () b1 (x) — 2 () g () by () B1 (x) — By () B3 (t) Ga (£) B ()
—1 (t) @3 () by () b2 () — ) (1) P3 () by (t) B2 (x) — &y (£) by (t) Ga (t) b2 ()
oy () s (L) 6y (£) P2 () + 61 (£) b5 () By () d2 (%) + by (t) b3 (t) ba (t) 2 ()
o1 (1) dy () by (£) 03 () + ) (1) d2 () by (£) B3 (2) + &y (£) by (t) Ga (£) 63 ()
—y (£) @2 () ¢y () b3 () — 1 () By () by (t) B3 (x) — By () Do (t) Ga (£) b3 ()
—p1 (t) by (1) b3 () da () — by () B2 (t) G5 (£) 4 (x) — ) (£) Py (£) b3 (t) da ()
6y (£) 62 (t) by () da () + b1 (1) by () B3 () b4 (%) + by (£) 5 (t) 63 (t) 64 ()]
|

X
=
—~
~
~—
<
—
~
S—
QU
~

IN

6C |41 (z k0k1k2i[/0 I (¢ 4dt} 6C |2 (z kokll-@i[/ I (¢ \dt}

+6C |3 (2)] (ko ko) {/Ox |4 (8)] dt] : +6C |4 (2)] (kokikz) T [/0 ¥ (¢ )’464 :

= 6C(kokik2)® (|61 (2)] + |62 ()] + |03 (2)] + | (2)]) UF ().

Now, from the equation (11) it follows that

[ (@)] < ler] [¢1 (@) + lea| 92 (@) + es| [@3 (2)] + [l |da (2)]

+6C (kok1k2) T (|61 (2)] + |62 ()] + |63 (2)] + |6 (2) )T ().

Then
W@ < (el |61 (@) * lca| [@2 ()| + les| |@s (2)] + lea| |4 (2)]
+6C (kok1ka) T (|61 (2)] + |62 (2)] + |és (2)] + |6 (2)]) UF ()
Using the elementary inequality for any two real numbers z,y
(z+y)* <8 (z* + %)

and equation (12), we get

@) < (el lo1 @) +leal 162 (@) + les| @3 (@)] + lea] [da (2)])*
+1296C* (kokika) (|61 ()] + |2 ()] + 63 ()] + |4 (2)) !0 (2) .

Using the elementary inequality for any real numbers a, b, ¢, d
(at+btetd)* <64 (a*+b*+ct+d?)
and equation (13), we obtain
@)t < 64 (jerl! o @I+ leaf! o2 (2)]* + lesl” s (@)|° + leal* 161 (2)]*)

18294404 (kok1ks) ( 61 ()" + |2 (@)* + |¢3 (@)|* + |pa (w)l4)
XU (x).

(12)

(13)

(14)
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Integrating (14) over [0, X], we can write

X X X
/ W @)de < 64’ / 61 (@) de + |caf? / (62 (2)|*de
0 0 0
X X
es)! /0 163 (2)*dz + |eaf* /0 64 ()] dz)
X
+82944C* (koky k) /O (161 (@) + |62 (x)]*
s @) + [oa (@) (2) da
<

64ko (Jea|* + leal® +lesl* + el )

+829440* (kok1ko) /O X( 61 ()" + o2 (2)[*
+ |3 (@) + |64 (@)1 (2) da.
That means
W (2) < 64k (Jeaf* + leal® +lesl* + Jeal )
+82044C" (o) [ T @1+ 6@+ @1+ o @)) ¥ @)da

Then, using the Gronwall’s Inequality, we obtain

w(X) < 64k (lal" +leaf* + sl + el )
829440 (kokik2) [5° (1o1(@)|"+ [2(a)*+ |¢3(@)|"+ |a(2)|*)de
This means that ¥ (z) is a bounded as X — oco. Thus we get v (z) € L* (0, 00).

Corollary 1. Let A be a complex parameter and there be a value A\g such that all solution and their
derivatives up to order three of the equation

yW+{A-Q(@)}y (@) =0 (15)

are in L* (0,00) when A = \g. Then all solutions of the equation are in L* (0, 00) for every .
Proof. We can write

A=Q(x) =X+ Q(x)+ (A= o).

Then the differential equation has the following form
v+ {0 - Q@)+ (A= )}y () =0.

Comparing with (1) and (3), we obtain ¢ (z) = Ao — @ (z) and r (z) = XA — Ag. This means that r (x)
is a constant function which is bounded in [0,00). Then by using the Theorem 3 we obtain that all
solutions of (15) are in L* (0, 00) for every \.

Conclusion

In the present paper, we study some properties of a general linear differential equation of fourth
order in infinite interval of the form: y¥ (z) + {¢ (z) + 7 (x)} y (z) = 0, 0 < z < oo, where 7 (x)
is a function which satisfies the condition: [ |r (x)|dz < co. A simple application of this result is
provided.
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Kapsan X.®. ?Ksemep, Panmo P.K. Pacyn

Teprianii perTi cbI3BIKTHI AnddepEeHITNATIIbIK
TeHaey/dl OHbIH HIeTTIK ecebiMeH CaJIbICTBIPY
Makasaga TepTiHim perTi chI3bIKTHI auddepeHnnaiabK TeHIeY KapacTbipbliran. ABropaap 6y audde-
PEHIAJIBIK, TEHJEY/IiH >KOFaprbl OaraMbIH, COHBIMEH KaTap OapJIblK IIerriMi L4(0, 00) TabbLIATHIHIBIFBIH

JTRJIEJIIIETeH. AJIBIHFAH HOTUXKEJIEP/Ii CAJIBICThIPa KeJie, ochl auddepeHnuaablK TeHACYIACH TYbIHIAFaH [1eT-
TiK ecenTiy O0apJIbIK MEHIMKTI DYyHKIMSIAPHI IIIEKTEITEH KOHE L4(0, 00) OPHAJIACKAH GOJIBIT TaOBLIAIBI.

Kiam cesdep: cbI3bIKTHI AudHePeHIUIAIbIK, TEHIEY, MEHIIIKTI MOH, MEHIIIKT] (DyHKIINS, YKOFaprbl HaraMbl,
CHIBBIKTHI ToyeJIci3 merrimi, L2 (0, infty), Bpouckuan, ['poHyOIIIa TEHCI3AIN], TYPAKTHIHEI BAPUAIMIAY.
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Kapsan X.®. ?Ksemep, Panmo P.K. Pacyn

CpaBHeHue JmHeitHOro AuddepeHnuaapbHOTO ypaBHEHA A
9eTBEepPTOTO TOPHAIKA C ero KpaeBoii 3ajadveit

B crarbe usydeHo smHeitHoe nuddepeHIaibHOe ypaBHEHNEe YeTBEPTOro Iopsiaka. ABropamu HafijeHa
BEPXHsIsl OLEHKA JJIsl PellleHuit 5Toro audhepeHnnanibHOro ypaBHeHUs], a TaK¥Ke JOKA3aHO, YTO BCE Pelle-
must naxonsares B L*(0,00). CpaBHUBAS 3TH PE3YJILTATH, ABTOPHI MPUITLIA K BBIBOJLY, YTO BCE COBCTBEHHbIE
dyHKIMK KpaeBoil 3aja4uu, NOPOXKAeHHbIE 3TUM JuddepeHIaNbHBIM yPABHEHNEM, ODAHUYEeHBl U HAXO-
nsrest B L0, 00).

Kmouesvie caosa: nuneitnoe muddepeHmaabHoe ypaBHeHne, COOCTBEHHOe 3HaYeHne, COOCTBeHHAas (DyHK-
IS, BEPXHss OIEHKa, JHHeino Hesapucumoe pemrenne, L2(0, infty), Bponckuan, nepasencrso ['ponyosiia,
BapHAIWsl [IOCTOSIHHBIX (IIapaMeTpPOB).
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