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Two-dimensional thermo-viscoelastic waves in layered media

Dynamic problems of deformation of solids have been the subject of numerous studies in the CIS and abroad.
The rejection of a number of simplifying assumptions made in the cited and other published works leads to
the need for further refinement and improvement of mechanical and mathematical models describing the
kinematics and stress state of both the drummer and the barrier. Further, the axisymmetric collision of a
cylindrical indenter with an obstacle in the form of a package of isotropic plates containing free cavities
and rigid inclusions is numerically investigated within the framework of the coupled theory of thermo-
viscoelasticity. Various formulations of the problems of the theory of elasticity and thermo-viscoelasticity
are possible. However, the used formulation in velocities and stresses is one of the most universal, since
it allows solving the main boundary value problems (including mixed ones) by a uniform way. The paper
gives a grid-characteristic scheme and its convergence. In accordance with the theory of A.A. Samarskii,
the stability in the energy norm of the grid problem is proved.

Keywords: two-dimensional thermo-viscoelastic waves, stability of a difference scheme, convergence of a
solution of a difference problem, indenter, deformation, tensor, stresses.

Introduction

Let a deformable continuous (or hollow) cylinder of finite length hg as ¢ < 0 simultaneously performs
translational (with velocity V) and rotational (with angular velocity wg) motion. At the initial moment of time
t = 0, the rotating indenter with its flat base normally collides with the surface of a multilayer plate (barrier)
weakened by cylindrical cavities and inclusions.

To describe the dynamic behavior of an isotropic medium, we use the relations

o+2 = 3K(E+3aT); S;; +E = 2u ey,

61 0
where 0 — is the sum of normal voltages; ¢ — volumetric deformation; S;;,e;; — components of deviators of
symmetric stress and strain tensors; T — temperature increment; K = )\—|—%u — elastic modulus of bulk expansion
— compression (A, 4 — Lame parameters); o — linear thermal expansion coefficient; 6,602 — relaxation times
for ball and deviatoric stresses; a dot above the letters means time differentiation.

Under the conditions of axial symmetry, the written system, which is supplemented by three equations of
motion and the equation of heat conduction, is equivalent to the following dependencies, containing, as unknown
displacement velocities, stresses and temperatures:
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Here u, ¢, w are the components of the velocity vector in the direction of the coordinate axes:
T, 2, @, 045 are the stress components; p is density; K is coeflicient of thermal conductivity; c is specific volumetric
heat capacity with constant strain tensor; p is parameter of connectivity of deformation fields and temperature;
W* is the energy dissipation function [1], which takes a zero value for a perfectly elastic medium (n = 5 = 0).

The connectivity equation is nonlinear due to the presence of a member pTE in it. It should also be pointed
out that the third, seventh and eighth equations form an independent system with respect to the quantities
W, Orep, Ozp-

Various formulations of the problems of the theory of elasticity and thermo-viscoelasticity are possible [2, 3].
However, the formulation used in velocities and voltages is one of the most universal, since it allows one to solve
the main boundary problems (including mixed ones) in a uniform way. Among the first publications, where a
similar form was proposed for writing the defining equations for a linearly elastic medium under plane strain
conditions, the work [4] should be noted.

With a small thermal perturbation, the thermo-viscouselastic properties of the material can be considered
being independent of temperature [5, 6]. In [5], for example, it was shown that when T < 390K the value of
the viscosity coefficient n* = 2ufs for pure aluminum remains unchanged.

The boundary conditions for the considered contact problem are formulated as follows. The outer boundaries
of the deformable mechanical system, as well as the walls of the internal cavities, are free from external forces:
0, =0r, =05, =0 and 0, = 0,, = 0, = 0 (for boundaries that are parallel to the axis  and z, respectively).
If the region 1 < r < 719,21 < 2 < 29 is a rigid inclusion with density p., then at the points of its boundaries

u = 0;
° 2 2 22
=1 {/ log (1, 22) — 0 (1, 21)] rdr + / [ro0ys (12, 2) — 710y (r1, 2)] dz};
Rl N 2gr [ [2 > P O
U= U, e () mose nalrtdr s | (ko (e, 2) = riorp (r2) [ dz gy (4)

M,=m (r% — r%) (22 — 21) s

It is easy to notice that with a sufficiently large inclusion density, located in the initially quiescent medium,
U= w=0.

On a circular platform, collisions rg < r < R, z = 0 can be performed as conditions for rigid coupling of
the end face of the striker with the surface of the obstacle

[u] = [J] = [w] = [02] = [o02] = [024] = 0; (5)
{ [u] =limu(z —0) — limu (2 + 0)},

and the boundary conditions that simulate the absence of friction forces between interacting bodies (smooth
impact). In this case, the first and fifth equations in (5) are replaced by

ory = 0. (6)
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If, in the course of a smooth stroke, the voltage o, or o, vanishes at any point of the contact zone, then
the type of boundary conditions will change and thereafter, for this point, respectively, it is assumed o, = 0 or
0., =0.

On the flat boundaries of the compound of dissimilar materials that make up the layered package, the
conditions of rigid adhesion are carried out (5).

It is assumed that the heat exchange of the mechanical system with the environment, the temperature
of which is considered constant (T¢ = const), is carried out according to Newton’s law with the nonlinear
dependence of the heat transfer coefficient on temperature:

aT,
_Kn = Qg Tn_T y 7
2 — (T~ To) @
where 3 1
To+T T, +To\* BB
_ 10— 40T In n 0 )
as=0,23-10 g( : ) +1,4( e ) <m2K>.

Here T is the surface temperature (n is the direction of the normal to the surface at the boundary points);
£ is the degree of blackness of the body. The temperature dependence of the total heat transfer coefficient,
which reflects the processes of heat transfer by convection and radiation, is borrowed from [6]. Accounting for
nonlinearity in the boundary conditions is due to the fact that, unlike other thermophysical parameters, the
coefficient is most sensitive to temperature changes and its value can vary within very wide limits [7].

At the collision site and at the interfaces between the layers there is an ideal thermal contact location:

oT

[T] = {Kaz} =0. (8)

At the moment of time ¢ = 0 the colliding bodies are free from stresses, and for the impactor the initial
velocities of the translational and rotational motions are given:

G (r,z) =Vo, w(r,z) =wer (ro <r <R, —hg<2z<0).

The initial temperatures of the striker and the obstacle are respectively equal to T* and T,

Note that in the contact interaction of solids, where the fast wave process is usually considered up to
107 — 1073C, the temperature field initiated only by dynamic mechanical effects, can be calculated in the
adiabatic approximation. Boundary and initial conditions for temperature are necessary only in the cooling
problem, when the heated cylinder comes in contact with the surface of the plate and the calculation of their
thermal state is carried out over rather long time intervals.

For the numerical solution of the mixed boundary-value problem (1)—(8), we construct an explicit difference
scheme based on the grid-characteristic approach and the principle of the electrothermal analogy. The expediency
of using an explicit scheme is due to the fact that implicit schemes have a lower resolution when calculating
transient processes in deformable media. Implicit counting, as a rule, does not impose restrictions on the
size of the time step, since in the overwhelming majority they are absolutely stable. However, the region of
dependence of difference equations for them is greatly expanded, as a result of which the profiles of wave
fronts are substantially smoothed out and the whole picture of unsteady wave motion turns out to be blurred.
Moreover, the algorithms of implicit schemes are much more complicated and their implementation requires
much more computational resources.

The domain of applicability of implicit schemes seems to be limited to the class of steady motions, when
time plays a purely auxiliary role in the calculations. In addition, in some problems, some countable regions can
be calculated using implicit schemes, while others can be calculated using explicit ones.

The construction of a difference scheme begins with the construction of a difference grid, according to
which the calculation will be carried out. For this, the area of change of continuous arguments r is divided
into rectangular cells with sides h,; and h,; (i=1,2,..,I;j=1,2,....,J), each cell is assigned a number
(i - %, Jj— %) The calculation is carried out by successive steps in time. The values of the desired functions on
the time layer (n + 1) 7 are determined at fixed grid nodes corresponding to the geometric center of the cells,
but by known solution on the previous layer nr.

Using the central differences for the approximation of the first derivatives but spatial variables, we replace
the hyperbolic equations of the system (1) with their finite-difference analogues:
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In the two-layer difference scheme (9), the auxiliary «large» quantities U, V, W, Z, defined at the points of the
boundaries of the rectangular cells, are calculated using coordinate wise splitting of the spatial two-dimensional
equations (1) and using one-dimensional relations on the characteristics [8].

After obvious transformations, the difference scheme for the heat equation takes the form

Cz—l i1 Tn+11 1 Tn
J7 3 i—5,0—% i-3.J-3%
T
nt1 nti n+s _ ynti n
Uty —utte Ve -y ut o )
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Here ~,

1o is the total thermal conductivity of the cell.
-3

In provmg the stability of the difference scheme from the initial data, we first consider the uncoupled

viscoelastic problem without taking into account temperature additions pgt in the relationship between normal
stresses and strains.

A two-layer difference scheme (9) corresponds to a transition operator H, that translates a solution vector
Fona temporary layer ¢, = n7 into a vector F1 on a layer t,y1 =t, +7

Fy = HF. (11)
The scheme is stable on the initial data, if the condition is met

[H[| < 1. (12)

The operator norm is determined by the energy norm of the vector F:

HﬁH2 —K()+P (1),

7= 1)

where
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Here K (t) and P (¢) up to a constant factor corresponds to a discrete analogue of kinetic and potential energy.
Equality (13) can be written in matrix form:

N2
F
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where the scalar product is defined as follows:

and a positive definite matrix A has the form

p 0
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From (11), (12) we have
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which means the stability of the scheme according to the initial data.
The operator H can be represented as

T T T T T T
H=I+7(H,+H,+Hg) = <1 ————— ) I+ —{I+7H)+— T+ 7.H,)+ — (I+Hp).
Tr Tz B Tr Tz B
Here I is the identity operator; H,., H, are operators containing differential derivatives only with respect to
spatial variables r and z, respectively; 7,., T, are time steps of «one-dimensional» schemes, corresponding to the

operator I +7,.H, and I +7,H, (7. > 0, 7, > 0); the matrix of coefficients, taking into account viscous properties
of the medium,

0 0
0
0
-n+p B p
Hp = p -n+p B
g B -n+pB
n
n
0 n
As by defining the norm
T T T T T T
H][, < -7 % ”I”A"_;HI""TTHTHA—'_;”I"_TZHZHA"’_%||I+TBHB||A7

then for the stability of the scheme specified by the operator H, it is enough to choose a step 7 based on the
condition

1l—-——=—- — >0, (14)
if at the same time the steps 7., 7., T8 ensure the implementation of inequalities
I+ 7 Helly <1, [T+ 7H.|ly <1, [[I+7sHs[l, <1. (15)

Let’s consider the last inequality in (15), in which the matrix I + 7sHp defines the difference scheme
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It is known from the properties of the norm of the matrix that
11+ 78HE[[5, < Am,

where A,,,— the maximum modulo eigenvalue of the matrix I 4+ 7gHg. Therefore, to satisfy the inequality in
question, it suffices to require meeting conditions

1+7n <1; 1+ (8—n) <1,

< .{2 2 }
T Sming —, — ..
n B-n

Since the parameters 7, 5 depend on the indices i, j and n > > 0, then, denoting 7,,, = max M-l j—1,We
%,J ’

of which we have

< 2
get T3 < .

Then, based on the constraint (14) for the stability of a two-dimensional scheme with respect to the initial
data, it suffices that the size of the time step satisfies the inequality

1 1
=+ = +1) <, (16)
T,  Ta 2
where
. T . hzj
Tr = mMin ——, 7, = min .
Wiy -4 B iy i-4

Thus, the stability of the proposed difference scheme (9), further in accordance with the theory of
A.A. Samarskii [9], the convergence of the solution of the difference scheme (9) to the solution of the differential
problem (1), (2) is obtained.
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M.M. Bykenos, A.A. Anamos, E.M. Myxameros

KabarThl opTagarbl eKieJrmeMTi
TEePMOTYTKbIPCEPHIM/II TOJKBIHIAPD

KarTbr nenenin medopMalisiCbIHBIH, JUHAMUKAJBIK, Macesiesiepi TM/] »koHe 1reresiiep/ie KOTEreH 3ePTTey-
JIEPJIiH, TaKbIPBIOLI GOJIIbI. ATasral »KoHe 6acKa YKapHUsJIaHFaH *KyMbICTap/1a KabbUIJaHFaH XKOPaMaJIap/ibl
JKEHIJIJIeTY, COKTBIFY MEH KeJIePIi CUSIKTHI, KHHEMATHKa MEeH KEPHEY KafJallblH CUIIATTANThIH MEXaHUKAJIBIK,
JKOHE MaTeMAaTUKAJIBIK MOJEIbIEP/ Il OaH opi KETUIAIPY MeH YKAKCapTy KarkeTTimirine okesesi. CoHbIMEH
KaTap TepMOTYTKBIPCEPIIM/Ii TEOPUACHIHBIH IIEHOEPiHJIe epKiH KybICTap MeH KATaH KipMeJep/a KaMTUTBIH
M30TPONTHIK, INIACTUHAJIAD TYPiHIe Kezepri 6ap MUINHAPJIK UHIETAHTTBHIH OCHTIK CUMMETPUSIBIK, COKTHI-
FBI CaHIBIK TypAe 3eprresai. CepniMIaiaik TEOPUSCHIHBIH, KOHE KBICBIMHBIH, UKEM/ILIITT TYPAJIbI TEOPUSIIBIK,
€CeNTeP/IiH, 9PTYPJIi TYKBIPbIM/IaAMAIAPBI 00JIybl MYMKIiH. JlereHMeH, KbUIIaM/IBIK IIeH KepHeyJepae maii-
JasaHbLIATEIH dopMynanap oMoebar 6oJibi TabbLIabl, cebebl 01 Herisri mekapaJblK mapTTapapl (apaiac
mIapTTapAbl Koca) GIpKeJKi Typ/e Mmenryre MyMKIHIK TyFbI3abl. Byl KyMBICTa TOP-CHIIATTAMAJIBIK, CXE-
Ma »K9HEe OHBIH KOHBepreuuusicbl 6episirer. A.A. CamapckuiijiiH TeOpHsChIHA CofiKec, TOp ecebi apKbLIbI
SHEPreTUKAJIBIK, HOPMAJIAFbl OPHBIKTBIIBIFBI JI9JIeJIIEHIeH.

Kiam cesdep: exiomeMmi TepMOTYTKBIPCEPITIMII TOJKBIHIAD, ARBIPBIM/IBIK, CXeMAHBIH, OPHBIKTHLIBIFDI, afibl-
PBIMJIBIK, €CEIITiH MIeNIiMiHiH *KUHAKTBIIBIFBI, UHJIEHTOD, JledOopMalins, TEH30D, KEPHEY.

M.M. Bykenos, A.A. Axamos, E.M. Myxameros

JIBymMmepHbIe TEPMOBA3KOYNPYTH€ BOJHbBI
B CJIOUCTBIX CpeJiax

Hunamudeckne 3a1a9u O J1eOPMUPOBAHUN TBEPIBIX TEJI SBUJINCH TPEIMETOM MHOTOYHMCIEHHBIX MCCJIEI0-
Banuii B CHI' u 3a py6exxom. OTka3 OT psifia yHIPOIIAIOMINX [IPEJIION0KEHNI, IPUHATHIX B IATUPYEMBIX
¥ JpYTUX OMyOJUKOBAHHBIX paboTaxX, MPUBOIUT K HEOOXOAMMOCTHU MaJbHEHINEero yTOYHEHUsI U COBEPIIEH-
CTBOBAHUS MEXaHHKO-MATEMATHIECKAX MOJIEJIEN, OMMCHIBAIOMNX KUHEMATHKY U HAIPSKEHHOE COCTOSIHUE
KakK yJapHUKa, Tak ¥ nperpajbl. Jlajee B paMKax CBI3aHHONW TEOPUN TEPMOBSI3KOYIIPYTOCTH YHUCJIEHHO HC-
CJIEJTOBAHO OCECUMMETPHUYHOE COyJApEeHMe MUJINHIPUIECKOrO WHIEHTOPA C MPENsSITCTBUEM B BHJIE MTaKeTa
M30TPOIHBIX IIJIACTUH, COMIEPKAIIEr0 CBOOOIHDBIE MTOJIOCTH U YKECTKWE BKJIIOYEHUSA. BO3MOXKHBI pa3IndHbIE
GbOpPMyYIJIMPOBKY 33129 TEOPUM YIPYTOCTUA U TepMOBA3KOoynpyrocru. OJHAKO MCIIOIb3yeMasi IOCTAaHOBKA B
CKOPOCTSIX U HAIPSIKEHUSIX SIBJISIETCST OJHOU M3 HamboJiee YHUBEPCAJBHBIX, TaK KaK IO3BOJISIET PEINaTh
OCHOBHBIE 'DAHUIHBIE 38J1a9U (B TOM HYHCJIE M CMEIIAHHBIE) €IMHOOOPA3HBIM CrocoboM. B pabore maHbl
CETOYHO-XapPAKTEPUCTUYIECKAsl CXeMa U ee CXOAMMOCTb. B coorBercrBun ¢ teopueit A.A. Camapckoro, J10-
Ka3aHa yCTOWYIMBOCTH B SHEPreTHIECKON HOPME CETOYHOM 3a/Ia9u.

! : IByMepHBbIC T€PMOBA3KOYIIPYTHE BOJIHBI, yCTOMINBOCTD HOCTHOH CXEMBI, CXOJIMMOCTb
Karoweswie caosa e € TePMOBS3KO € BO , ycTO oc a3HOCTHOMI CXEMBI, CXO, oc
pellleHnsT Pa3HOCTHOM 3a/1a4u, UHJIEHTOD, JedopMaliisi, TeH30D, HAIIPSI?KEHNUSI.
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