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On the numerical solution of identification hyperbolic-parabolic
problems with the Neumann boundary condition

In the present study, a numerical study for source identification problems with the Neumann boundary
condition for a one-dimensional hyperbolic-parabolic equation is presented. A first order of accuracy
difference scheme for the numerical solution of the identification problems for hyperbolic-parabolic equations
with the Neumann boundary condition is presented. This difference scheme is implemented for a simple
test problem and the numerical results are presented.
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Introduction

Partial differential equations with unknown source terms are widely used in mathematical modeling of real-
life systems in many different fields of science and engineering. They have been studied extensively by many
researchers (see [1-15] and the references therein).

Various local and nonlocal boundary value problems for hyperbolic-parabolic equations with unknown
sources can be reduced to the boundary value problem for the differential equation with parameter p

u'(t)+Aut) =p+ f(t), 0<t<1;
u'(t)+ Au(t) =p+g(t), —1<t<0;
w(0+) = u(0—), «'(0+)=1u'(0—);

u(=1)=¢, uN)=v¢, —-1<AI<1

(1)

in a Hilbert space H with self-adjoint positive definite operator A. The solvability of problem (1) in

the space C(H) of continuous H-valued functions wu(t) defined on [—1,1], equipped with the norm
lullccry = _max lw(t) ||z, was investigated in [16]. In applications, the stability inequalities for the solution of
t

three source identification problems for hyperbolic-parabolic equations were obtained.

The first and second order of accuracy stable difference scheme for the approximate solution of problem
(1) were constructed and investigated in [17] and [18], respectively. The stability estimates for the approximate
solutions of two source identification problems for hyperbolic-parabolic equations were obtained.

In this paper we consider the boundary value problem for hyperbolic-parabolic equations

uy — (a(x)ug)  +06u=p(x)+ f(t,z), 0<z<1, 0<t<I;
ur — (a(@)ug) , 4+ 0u=p(x) +g(t,z), 0<x<1, —1<t<0;
w(0+,z) = u(0—, z), u(0+,2) = w,(0—,2), 0<z<1I; (2)
u(=1,z) = %0(55)’“( ) =¢P(@), 0<z<l
ug(t,0) = uy(t,1) =0, —l<t<1,
where p(z) is an unknown source term. Problem (2) has a unique smooth solution {u(t,z),p(x)} for

the smooth functions a(x), ¢(x), ¥(z), f(t,x), g(t,z) and positive constant §. Note that the boundary
value problem (2) can be reduced to the abstract boundary value problem (1) in a Hilbert space H = L2[0, 1]
with a self-adjoint positive definite operator A* defined by formula A*u(x) = —(a(x)uw)z + du with domain
AT) = {u(z) : w(@), ue(x), (alx)us), € Ly[0,1], ug(0) = uy(1) = 0}.
We construct the first order of accuracy difference schemes for approximate solutions of boundary value
problem (2). We discuss the numerical procedure for implementation of this scheme on the computer. We
provide with numerical illustration for simple test problem.
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Numerical procedure for problem (2)
The solution of problem (2) can be written as following:

u(t,z) =v(t,z)+ 2(x), 0<z<1, —-1<t<1, (3)

where z(z) is the solution of problem
—(a(2)2' () +62(x) = p(x), 0<z<1;
{ Z(0)=2'(1)=0

and v(t, z) is the solution of boundary value problem
vy — (a(z)vg), +0v = f(t,z), 0<z<1, 0<t<I;
vy — (a(x)vgg)x +ov=g(t,x), 0<ax<l, —1<t<O0;
v(0+,2) = v(0—, z), v (0+,2) =v:(0—,2), 0<z<1; (5)
v(l,z) —v(=1,z) =¢(x) —p(x), 0<a<];
va(t,0) = vy (,1) =0, —1<t<1.

Note that from (2)—(4) we get
p(z) = (a(@)vs(L,2)), —6v(L,2) — (al2)y'(x)) +6¢(z), 0<z<1. (6)

Taking into account all of the above, the following numerical algorithm can be used for approximate solutions
of the boundary value problem (2):

1. Obtain approximate solutions of the boundary value problem (5);

2. Approximate the source p(z) by using (6);

3. Obtain approximate solutions of the boundary value problem (4);

4. Obtain approximate solutions of the boundary value problem (2) by using (3).

The first step of the algorithm

Let 7 = 1/N and h = 1/M. We define the grid points xz,, = nh, 0 <n < M and t;, = kr, —N < k < N. For
the approximate solutions of the boundary value problem (5) we construct the first order of accuracy difference
scheme in ¢

k—1 ko g ktl k41 k41 k1 _ kel
v =208 okt ] Upt1l — Up s k+1 _
a’(‘rnJr%) h - a(xnfé) L + 5vn -

T2 h

= f(tkt1,2n), 1<k<N-1 1<n<M-1;

k_ k=1 k k k_ ok
vy — v 1 Upyq — U vy — Uy _4 &
T ‘h<“<xn+;>w—a<xn;>”h" o+ 0up = g (th2n)
_N41<k<0, 1<n<M-—1 (7)
v =) 1 v — ol

0 0
n Unt+1 — Un n—1 0
g )L i = 1<n<M-1;
- h (a(mn+2) h a(xn——) h ) + 6’Un g (th xn) ) SN s )

ol — o N =(2,) — (z,), 0<n< M,

of =k, ok =9k, -N<E<N,

where v¥ denotes the numerical approximation of v(¢, z) at (¢, ¥,,). Note that (7) is the second order of accuracy
scheme in z.

The second step of the algorithm

Once the numerical solution of the boundary value problem (5) is computed, we use (6) to approximate the
source p(z) at grid points as following:
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1 N — ol oN — oV
pn= 4 (a($n+;)n+lhn — a(xn_é)nhnl) — ol —

—% (a(xn+§) . —a(xn_%)w(xn) _hw(xn_l)) +0(xn), n=1,2,...,.M—1.

The third step of the algorithm

For the approximate solutions of boundary value problem (4) we have

1 Zn+l — % Zn — Zn—1
_E (G/(xn-‘ré)nhn - a’(xn—l)nhn> + (52’” = Pn, n = 1727 cee 7M - 17
21 = 20y, AM = ZM-1-
Solving this system for zg, 21, 22,..., 2y and then using (3), we finally obtain the approximate solutions of
boundary value problem (2)

ub =ovF +2,, n=01,....M, k=-N+1,...,N—1. (8)

Numerical Illustration

We consider the initial-boundary value problem

Ut — Uge +u=p(x) + ((1* +2)e " —1)cosmz, 0<z<1, 0<t<l

Up — Uge +u = p(z) + (7T2€7t

u(0+, ) = u(0—, x), u(0+,2) = w(0—,z), 0<z<1; (9)

fl)cosmn, O<ax<l, —-1<t<O;

u(—1,z) = e' cosma, u(l,2) =e cosmr, 0<x<1;

ug(t,0) = uy(t,1) =0, —1<t<1.

The exact solution of the problem (9) is
u(t,r) =etcosma, 0<x<1, —1<t<1

with the source term p(x) = cosmz, 0 <z < 1.
The first order of accuracy auxiliary difference scheme (7) for the initial-boundary value problem (9) has
the following form

k—1 k k41 k+1 k+1 k+1
Un, — 2vn + Un+ _ Un—1— 2Un + Up41

2 h2
1<k<N-1, 1<n<M-1;

+oith = (7% +2)e” "+ — 1) cos Ty,

k_ k=1 k ko ok
v — Up_1 — 20 + 5y _
n n_ ndl oy gk = (7T26 B —1) cosTan;

T a h?
—N+1<k<0, 1<n<M-1; (10)
10 0 9,0 4,0
Un "% Un-1 h; n+1+’l)0=(7T26_t0—1)COS7T1'n, 1<n<M-1;
i
vflv—v;N—(e l—el)cosmrn, 0<n<M;

of —ob =0k, —ok, =0, —N<Ek<N,

which can be written in the matrix form

AVn+1+BVn+CVn71 =¢n, 1<n<M-1
Vi=VWo, Vu=Vu_i,
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where
0 0 0 0 0 0 T
0 a O 0 0 0
0 0 a 0 0 0O 0
0 0 0 a 0 0 O 0
A = C =
0 0 0 a 0 0 O 0
0 0 0 0 0 b O 0
0 0 0 0 0 0 b 0
L0000 .- 0000 - b (2N+1)x (2N +1)
-1 0 0 --- 0 0 0 o 0 --- 0 0 17
-1 ¢ 0 0
0 -1 ¢ 0 0 0 O
B 0 0 0 -1 ¢ 0 0 0 0 0 0
10 0 0 0 ¢ 1 0 0 0 0 0
0 0 0 0 1 -2 d 0 0 0 0
0 0 0 0O 0 1 -2 d 0 0 0
L 0 6o0.. 09090 00 - 1 -2d] (2N+1)x(2N+1)
TN M (e7! —el)cosmay, 1
v N+ 7(72e~t-N+1 — 1) cos ma,
v N2 T(WQe_t*N” — 1) COS Ty,
00 7(m%e~t — 1) cos may
Vi = 1 Pn = 2 —t
Uy, 7(77 e ' — 1) COS Ty,
v2 72((7r2 +2)e"t2 — 1) COS Ty
vl 72((7r2 +2)e b — 1) COS Ty
N 2((.2 —
L Un 4 (2N+1)x1 L T ((ﬂ- + 2)6 - 1) COSTTTn | (2N+1)x1
2 2 272 2
with a = f%, b= 2 c=1+ h—ngT, d=1+ % +72and o = 71+—72— + 7. To solve the matrix equation

(11), we use the modified Gauss elimination method [19]. We seek the solution of the matrix equation (11) by
the following form:

Vn:an,+1vn+1+ﬂn+la n:M717~'~7271;
Var = (I —an) ™" Bur,

where [ is a (2N 4+ 1) x (2N + 1) identity matrix, o, (1 < n < M) are (2N + 1) x (2N + 1) square matrices
and 3, (1 <n < M) are (2N + 1) x 1 column vectors, calculated as

{ i1 = — (B+Cay) " 4
Bus1 = (B + Cay) ™ (¢ — CB)

forn=1,2,...,M — 1. Here o is an identity matrix and /3; is a zero vector.
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The numerical solutions are computed using the first order of accuracy scheme (10) for different values of
M and N. With the obtained numerical solutions we approximate the source p(z) at grid points as following:
oN =208+l v cosmw, i —2cosma, + COS Tyt
v, —e

— 1
Pn = 2 — Un h2

+e

COSTTLy, n=1,....,M — 1.

Finally, solving the system

_Zn—l — 2Zn + Zn+1
h2

21 = 20, AM = ZM—1-

+2p=Pn, n=12,....M—1,

for zg, 21, 22, ..., 2y and then using (8), we obtain the numerical solutions of problem (9).
We compute the error between the exact solution of problem (9) and corresponding numerical solution by

”EUHOO =

) ||Ep||oo = max |p($n) _pn‘ ,

ok
|u(tk’ Tn) = Un 0<n<M

max
—N<k<N, 0<n<M

where u(ty, z,,) is the exact value of u(t,z) at (tx,z,) and p(x,) is the exact value of source p(z) at z = x,; uk

and p, represent the corresponding numerical solutions. Table shows the errors between the exact solution of
the problem (9) and the numerical solutions computed by using the first order of accuracy scheme for different
values of M and N. We observe that the scheme has the first order convergence as it is expected to be.

Table

The errors between the exact solution of the problem (9) and the numerical solutions computed
by using the first order of accuracy difference scheme for different values of h =1/M and 7 =1/N

| Epll oo Order | Bl oo Order
1.3246 x 107! - 2.1520 x 1071 -
7.4275 x 1072 | 0.8346 | 1.1722 x 10~ | 0.8764
4.0124 x 1072 | 0.8884 | 6.1093 x 102 | 0.9402
60 | 2.1234 x 102 | 0.9181 | 3.1190 x 10~2 | 0.9699
20 [ 1.1072 x 1072 | 0.9394 | 1.5758 x 10~2 | 0.9850

o

o

e I e el
I
SIS
I

Conclusion

In the present study, the numerical study for source identification problems with the Neumann boundary
condition for a one-dimensional hyperbolic-parabolic equation has been conducted. In particular, the first order
of accuracy difference schemes for the approximate solutions of the boundary value problem (2) has been
constructed and the numerical algorithm for implementation of this scheme has been presented. Numerical
example has been provided.

Finally, we note that the second order of accuracy difference schemes for the approximate solutions of
boundary value problem (2) can be constructed and implemented in the similar way.
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M.A. Ambipansiesa, M. Ambipasibies

IlIerTik maptel Heiliman Typinge 0oJiaThbiH MIeHTU(DPUKAITASAITBIK,

rmnep60ﬂa—napa60ﬂaﬂbn§ ecenTep,zLi CaH/ABbIK IIIEelly TYypPaJibl

IIlerTik mapter Heiiman Typingeri 6ip esmremai rurepbosia-miapaboJiaiblK, TYPAeri TeHaey VIIH Ke3Jep-
i maeHTUGUKAIUAIAY ecebiH CaHMBIK 3epTTey HoTmzKeci yeurablrad. [llerrik maprter Heftman Typiageri
runepboJIa-rapabosIaabIK TYPAEri TeHaeyep YIIiH Ko3Aepi uaeHTu(OUKaInsIay eceOiH CaHIbIK, eIy YIITiH
JRJIiTi OipiHIm peTTi alfbIpbIMABLIK opMyJIachl Kearipiired. By dopMyrna KapanaiibiM ecerr yIniH mnaiia-
JIAaHBIJIFAH, COHBIMEH KATap CAHJIBIK €CEeNTeyJIep HOTMKeci OepiireH.

Kiam cesdep: ke3nepai unentudukanusiay ecebi, rumepbosa-mapabosanbik auddepeHnnaiabpl TeHILY,
aMBIPBIM/IBIK, CXEMA.

M.A. AmpipasisieBa, M. Ambipaibies

O 4gucjgeHHOM peaiennnm I/I,HeHTI/ICl)I/IKaJ_[I/IOHHLIX

FHHGp6OHO—H&p&60HquCKHX 3aJa4 C I'PaHUYHbIM YCJIOBUEM Heiimana

74

B craTbe npencraBieHo unc/ieHHOE MCC/IE0OBAHNE 33191 UACHTU(MDUKAINI HCTOTYHUKOB C TPAHUIHBIM YCJIO-
BueM Heiimana /1151 0JTHOMEPHOIO TUIIEPOOIO-TTapaboImIecKoro ypasaenusi. [IpegcraBiiena pa3HoCTHAs CXe-
Ma IIePBOT'0 IOPsIKA TOYHOCTH JJIs YUCJIEHHOIO PENIeHNs 3024 HAeHTU(MUKAINY [T THIePO0I0-11apabosin-
YeCKUX YpaBHEHWII ¢ TPAHUYHBIM ycjoBrmeM Heiimana. DTa pasHOCTHAsI CXeMa PeaJM30BaHa JJTsi IIPOCTOM
TECTOBOH 3aa4u.

Kmouesvie carosa: 3aiada nAeHTU(MUKAIIMA UCTOYHUKA, THIEepOosIo-Tiapadbosmdeckue auddepeHiuaibHbie
yPaBHEHUsI, PASHOCTHBIE CXEMBI.
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