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Abstract

A linear system of ’n’ second order ordinary differential equations
of reaction-diffusion type with discontinuous source terms is consid-
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1 Introduction
Differential equations with small parameters reflect the rapid progress of sci-

ence and technology and many practical problems, including mathematical bound-
ary layer theory and approximation of solutions are described in [Doolan et al.,
1980], [Roos et al., 1996] and [Miller et al., 1996]. Sometimes, solving mathemat-
ical problems accurately can be very challenging, if even impossible; especially in
these situations, approximations of the solutions are needed. Its derivative often
does not converge uniformly at x = 0 or x = 1 as ε → 0, whereas the gener-
ated asymptotic solution converges uniformly to the solution of reduced difficulty
in the prescribed problem throughout the interval [0, 1]. Several finite difference
methods have been suggested as problems of this type have been taken up for dis-
cussion in [Paramasivam et al., 2013, 2010]. In this paper, we consider the type
of problem below, but we assume discontinuity of the source term at an interior
point of the domain. For second-order singular perturbation problems of reac-
tion diffusion type with discontinuous source term, many authors have studied the
finite-difference and finite-element methods; References are included [Paramasi-
vam et al., 2014, Linβ and Madden, 2009]. Motivated by the works of [Miller
et al., 1996], in the present paper we discussed a approximate solutions generated
by the numerical approach must be globally established at every point throughout
the domain of the exact solution to represent a boundary layer with that method.
A basic interpolation technique, such as piecewise linear interpolation, takes the
numerical solution from a finite-element approach limited to mesh points for the
entire domain. Since our method should be extended to complex situations in
higher dimensions, we consider only finite-element subspaces via piecewise poly-
nomial basis functions. For small values of parameter ε, the strategy proposed in
this work gives better findings and is more suitable.
In the interval Ω = {x : 0 < x < 1}, a singularly perturbed linear system of
‘n’ second order ordinary differential equations of reaction - diffusion type with
discontinuous source terms is considered. Assume that the point d ∈ Ω occurs
as a single discontinuity in the source terms. The jump at d in any function ϕ⃗ is
defined by [ϕ⃗](d) = ϕ⃗(d+)− ϕ⃗(d−).
The self-adjoint two-point boundary value problem that corresponds is

−Eu⃗′′(x) + A(x)u⃗(x) = f⃗(x) on Ω− ∪ Ω+, u⃗ given on Γ and f⃗(d+) ̸= f⃗(d−)
(1)

where Γ = {0, 1}, Ω− = {x : 0 < x < d}, Ω+ = {x : d < x < 1}.
Here u⃗ is a column n−vector, E and A(x) are n×n matrices, E = diag(ε⃗),
ε⃗ = (ε1, · · · , εn) with 0 < εi ≤ 1 for all i = 1, . . . , n. The parameters are
assumed to be distinct and, for convenience, to have the ordering

ε1 < · · · < εn.
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Cases in which any of the parameters are coincident are not considered here for the
sake of convenience. The number of layer functions and, as a result, the number of
transformation parameters in the Shishkin mesh specified in Section 4 is reduced
in these situations. The problem can also be written in the operator form

L⃗u⃗ = f⃗ on Ω− ∪ Ω+, u⃗ given on Γ , and f⃗(d+) ̸= f⃗(d−),

where the operator L⃗ is defined by

L⃗ = −ED2 + A, D2 =
d2

dx2
.

For all x ∈ Ω, it is assumed that the components aij(x) of A(x) satisfy the in-
equalities

aii(x) >
n∑

j ̸=i
j=1

|aij(x)| for 1 ≤ i ≤ n and aij(x) ≤ 0 for i ̸= j (2)

and, for some α,

0 < α < min
x∈[0,1]
1≤i≤n

(
n∑

j=1

aij(x)). (3)

It is assumed that aij, fi ∈ C(2)(Ω), for i, j = 1, . . . , n. Then (1) has a
solution u⃗ ∈ C(Ω) ∩ C(1)(Ω) ∩ C(4)(Ω− ∪ Ω+).
It is also assumed that

√
εn ≤

√
α

6
. (4)

C is a generalised positive constant that is independent of x as well as all singu-
lar perturbation and discretization parameters used in this article. The empirical
results are discussed for the continuous problem are presented on the following
section. In Section 3, piecewise-uniform Shishkin meshes can be used to solve
the boundary and interior layers. The discrete problem is described in Section 4,
and the corresponding maximum principle and stability result are defined. Inter-
polation error bounds is defined in Section 5. The parameter-uniform error esti-
mation is defined in Section 6. The numerical diagrams in Section 8 are included.
Discussion and conclusions is described in Section 9.

2 Analysis of the finite element method
Let V be a given Hilbert space with norm || · ||V and scalar product (·, ·). V is

usually a subspace of the Sobolev space H1(Ω− ∪ Ω+) = H1(Ω−) ∪H1(Ω+).
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Consider the weak formulation, find u⃗ ∈ H1
0 (Ω

− ∪ Ω+)n in particular ui ∈
H1

0 (Ω
− ∪ Ω+) for i = 1, . . . , n such that

βi(ui, vi) = fi(vi) ∀ vi ∈ H1
0 (Ω

− ∪ Ω+) (5)

βi(ui, vi) = −εi(u
′

i, v
′

i)+

( n∑
j=1

(aijuj), vi

)
and

fi(vi) = (fi, vi)

where (ui, vi) =
1∫
0

uivi dx. βi(ui, vi) is a bilinear form on H1
0 (Ω

− ∪ Ω+)n and

fi(vi), a given continuous linear functional on H1
0 (Ω

− ∪ Ω+)n and fi(vi(d+)) ̸=
fi(vi(d−)).

Lemma 2.1. Suppose that the bilinear form βi(·, ·), i = 1, . . . , n, is continuous
on H1

0 (Ω
− ∪ Ω+)n is coercive, that

|βi(ui, vi)| ≤ γ||ui|| ||vi|| (6)

βi(vi, vi) ≥ α||vi||2 (7)

where α and γ are constants that are indepentent of ui and vi. Then for any
continuous linear functional fi(·), the problem (5) has a unique solution.

A natural norm on H1
0 (Ω

− ∪ Ω+)n associated with the bilinear form βi(·, ·) is
the energy norm

||vi||εi = (εi||vi||21 + α||vi||20)
where ||vi||1 = (v

′
i, v

′
i)

1/2, ||vi||0 = (vi, vi)
1/2 on H1

0 (Ω
− ∪ Ω+)n.

Lemma 2.2. A bilinear functional βi(ui, vi), i = 1, . . . , n, satisfies the coercive
property with respect to

||vi||2εi ≤ βi(vi, vi)

Proof. For i = 1, . . . , n

βi(vi, vi) = −εi(v
′

i, v
′

i)+

( n∑
j=1

(aijvj), vi

)

= εi||vi||21 +
1∫

0

( n∑
j=1

(aijvj) · vi
)
dx

≥ εi||vi||21 + α||vi||20
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3 The Shishkin mesh
A piecewise uniform Shishkin mesh with N mesh-intervals is now constructed

on Ω− ∪ Ω+ as follows. Let ΩN = Ω−N ∪ Ω+N where Ω−N
= {xk}

N
2
−1

k=1 ,Ω+N
=

{xk}N−1

k=N
2
+1

Ω
N

= {xk}Nk=0 and ΓN = Γ. The mesh Ω
N

is a piecewise uniform

mesh on [0, 1] that was generated by dividing [0, d] into 2n+ 1 mesh-intervals
as follows:

[0, σ1] ∪ · · · ∪ (σn−1, σn] ∪ (σn, d− σn] ∪ (d− σn, d− σn−1] ∪ · · · ∪ (d− σ1, d].

The points separating the uniform meshes are determined by the n parameters
σr, which are defined by σ0 = 0, σn+1 =

1
2
,

σn = min

{
d

4
, 2

√
εn√
α

lnN

}
(8)

and, for r = n− 1, . . . 1,

σr = min

{
rσr+1

r + 1
, 2

√
εr√
α

lnN

}
. (9)

Clearly

0 < σ1 < . . . < σn ≤ d

4
,

3d

4
≤ 1− σn < . . . < 1− σ1 < d.

Then a uniform mesh of N
4

mesh-points is placed on the sub-interval (σn, d −
σn] , and a uniform mesh of N

8n
mesh-points is placed on each of the sub-intervals

(σr, σr+1] and (d− σr+1, d− σr], r = 0, 1, . . . , n− 1, respectively.
The remaining was generated by dividing [d, 1] into 2n + 1 mesh-intervals as
follows:

[d, d+τ1]∪· · ·∪(d+τn−1, d+τn]∪(d+τn, 1−τn]∪(1−τn, 1−τn−1]∪· · ·∪(1−τ1, 1].

The points separating the uniform meshes are determined by the n parameters
τr, which are defined by τ0 =

1
2
, τn+1 = 1,

τn = min

{
1− d

4
, 2

√
εn√
α

lnN

}
(10)

and, for r = n− 1, . . . 1,

τr = min

{
rτr+1

r + 1
, 2

√
εr√
α

lnN

}
. (11)
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Clearly

d < d+τ1 < . . . < d+τn ≤ 1− d

4
,

3(1− d)

4
≤ 1−τn < . . . < 1−τ1 < 1.

Then a uniform mesh of N
4

mesh-points is placed on the sub-interval (d+τn, 1−
τn] , and a uniform mesh of N

8n
mesh-points is placed on each of the sub-intervals

(d+ τr, d+ τr+1] and (1− τr+1, 1− τr], r = 0, 1, . . . , n− 1, respectively.
In practice, it is convenient to take

N = 8nδ, δ ≥ 3, (12)

where n denotes the number of distinct singular perturbation parameters involved
in the experiment (1). This produces a class of 2n+1 piecewise uniform Shishkin
meshes Ω

N
.

When all of the parameters σr and τr, r = 1, . . . , n, are set to the left, the
Shishkin mesh Ω

N
becomes a classical uniform mesh with the transformation

parameters σr, τr and a scale N−1 from 0 to 1.
The following inequalities hold for the mesh ΩN , s = 1, . . . , n− 1

hk ≤ 2/N for 1 ≤ k ≤ N

hk ≥ 1/N for
N

8
≤ k ≤ 3N

8
and

5N

8
≤ k ≤ 7N

8

hk ≤ 1/N for 1 ≤ k ≤ N

8
and

3N

8
≤ k ≤ N

2

hk ≤ 1/N for
N

2
≤ k ≤ 5N

8
and

7N

8
≤ k ≤ N

hk ≥
N

8s
for

N

8s
≤ k ≤ N

8(s+ 1)
and (d− N

8(s+ 1)
) ≤ k ≤ (d− N

8s
) (13)

hk ≥
N

8s
for d+

N

8s
≤ k ≤ d+

N

8(s+ 1)
and (1− N

8(s+ 1)
) ≤ k ≤ (1− N

8s
)

hk ≤
N

8s
for 1 ≤ k ≤ N

8(s)
and (d− N

8(s)
) ≤ k ≤ N

2

hk ≤
N

8s
for

N

2
≤ k ≤ d+

N

8(s)
and (1− N

8(s)
) ≤ k ≤ N

4 The discrete problem
In this segment, a numerical method for (5) is constructed using a finite el-

ement method with a suitable Shishkin mesh. Let for i = 1, . . . , n and k =
1, . . . , N − 1\{N

2
}, Vi,k ⊂ H1

0 (Ω
− ∪Ω+)n be the space of piecewise linear func-

tionals on Ω− ∪ Ω+, that vanish x = 0, d, and 1.
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The finite element approach is now established for the discrete two-point bound-
ary value problem, Ui,k ∈ Vi,k

βi(Ui,k, vi,k) = f(vi,k), ∀ vi,k ∈ Vi,k, vi,N
2
= 0. (14)

By Lax−MigramLemma implies that

1. The discrete problem has a unique solution,

2. The discrete problem is stable.

From (3) on A implies that for arbitrary x ∈ (Ω− ∪ Ω+)

ξTA ξ ≥ α ξT ξ ∀ ξ on V ∗
i,k

V ∗
i,k is dual space for Vi,k.

Let {ϕi,k : k = 1, · · · , N − 1\{N
2
}} be a basis for Vi,k, where N = N(i, k) is the

dimension of Vi,k. Then

Ui,k =

N
2
−1∑

k=1

Ci,kϕi,k +
N−1∑

k=N
2
+1

Ci,kϕi,k, ϕi,N
2
= 0

where the unknowns Ci,k satisfiy the linear system

AU = B

with A = βi(ϕi,k1 , ϕi,k2), U = Ci,k, B = fi(ϕi,k).
The corresponding difference scheme is

β1(ϕ1,1, ϕ1,1) β1(ϕ1,1, ϕ1,2) · · · β1(ϕ1,1, ϕn,N−1)
β1(ϕ1,2, ϕ1,1) β1(ϕ1,2, ϕ1,2) · · · β1(ϕ1,2, ϕn,N−1)

...
...

...
βn(ϕn,N−1, ϕn,1) βn(ϕn,N−1, ϕn,2) · · · βn(ϕn,N−1, ϕn,N−1)




C1,1

C1,2
...

Cn,N−1

 =


(f1, ϕ1,1)
(f1, ϕ1,2)

...
(fn, ϕn,N−1)


For k = 1, . . . , N − 1

ϕ1,k = ϕ2,k = · · · = ϕn,k

C1,k = C2,k = · · · = Cn,k
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The nonzero contribution from a particular element is

Ai,k =


xk∫

xk−1

ϕi,k−1.ϕi,k−1dx
xk∫

xk−1

ϕi,k−1.ϕi,kdx

xk+1∫
xk

ϕi,k.ϕi,kdx
xk+1∫
xk

ϕi,k.ϕi,k+1dx


Similarly, the local load vector is

Bi,k =


xk+1∫
xk

fi.ϕi,kdx

xk+1∫
xk

fi.ϕi,k+1dx


For k = N

2
, the local load vector (

xk∫
xk−1

fi(
N
2
− 1) +

xk+1∫
xk

fi(
N
2
+ 1))/2

5 Interpolation error bounds
Lemma 5.1. Let u∗

i,k be the Vi,k-interpolant of the solution ui,k of (1) on the
fitted mesh ΩN . Then

max
i=1,...,n

sup
0<εi≤1

||u∗
i,k − ui,k||ΩN ≤ C(N−2lnN)2,

where C is a constant independent of the parameters εi.

Proof. The estimate is obtained separately on each subinterval Ωk = (xk−1, xk) ∈
Ω− ∪ Ω+,
k = 1, . . . , N − 1\{N

2
}. Note that for any function gi,k on Ωk

g∗i,k = gi,k−1ϕi,k−1 + gi,kϕi,k,

and so it is obvious that, on Ωk,

|g∗i,k(x)| ≤ max
Ωk

|gi,k(x)|, (15)

and it’s easy to see that by using sufficient Taylor expansions

|g∗i,k(x)− gi,k(x)| ≤ Ch2
k max

Ωk

|g′′

i,k(x)|. (16)

For i = 1, . . . , n from (16) and using Lemma 3 in [Paramasivam et al., 2014], on
Ωk ∈ Ω− ∪ Ω+,

|u∗
i,k(x)− ui,k(x)| ≤ Ch2

k max
Ωk

|u′′

i,k(x)|
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≤ C
h2
k

εi
. (17)

Also, (17) using Lemma 6 and Lemma 7 are in [Paramasivam et al., 2014] on
Ωk ∈ Ω−, for k = 1, . . . , N

2
− 1

|u∗
i,k(x)− ui,k(x)| = |v∗i,k(x) + w∗

i,k(x)− vi,k(x)− wi,k(x)|

≤ |v∗i,k(x)− vi,k(x)|+ |w∗L
i,k(x)− wL

i,k(x)|+ |w∗R
i,k (x)− wR

i,k(x)|

≤ Ch2
k max

Ωk

|v′′i,k(x)|+ Ch2
k max

Ωk

|wL′′

i,k (x)|+ Ch2
k max

Ωk

|wR′′

i,k (x)|

≤ C(1 +
n∑

q=i

Bq(x)) + C

n∑
q=i

BL
q (x)

εq
+ C

n∑
q=i

BR
q (x)

εq
(18)

The discussion now centres on whether 2
√
εn lnN/

√
α ≥ d/4 or 2

√
εnlnN/

√
α ≤

d/4 should be used. In the first case 1/εn ≤ C (lnN)2 and the result follows at
once from (13) and (17). In the second case σn = 2

√
εnlnN/

√
α. Suppose that k

satisfies N/8 ≤ k ≤ 3N/8. Then hk = 2(d− 2σn)/N and therefore

hk

εn
= 2N−1d− 2σn

εn
,

σn ≤ 1− xk, and so

e−
√
α(1−xk)/

√
εn ≤ e−

√
ασn/

√
εn = e−2 lnN = N−2. (19)

Using (19) and (13) in (18) gives the required result.
On the other hand, if k satisfies 1 ≤ k ≤ N/8 and 3N/8 ≤ k ≤ N/2 and
r = n − 1, . . . , 1, then the discussion now centres on whether 2

√
εr lnN/

√
α ≥

rσr+1/r + 1 or 2
√
εrlnN/

√
α ≤ rσr+1/r + 1should be used.

In the first case 1/εr ≤ C (lnN)2 and the result follows at once from (13) and
(17).
In the second case σr = 2

√
εrlnN/

√
α and s = 1, . . . , n− 2.

1. Suppose that k satisfies N/8(s + 1) ≤ k ≤ N/8(s) and d − (N/8(s)) ≤
k ≤ d− (N/8(s+1)). Then hk = 8n(σr+1 −σr)/N or 8n(σr −σr+1)/N
and σr ≤ 1− xk therefore

hk

εr
= 8nN−1σr+1 − σr

εr
or 8nN−1σr − σr+1

εr
, (20)

Using (20) and (13) in (18) gives the required result.

64



M. Vinoth, M. Joseph Paramasivam

2. If k satisfies 1 ≤ k ≤ N/8(s+ 1) and d− (N/8(s+ 1)) ≤ k ≤ N/2 Then
hk = 8n(σr+1 − σr)/N or 8n(σr+1 − σr)/N and therefore

hk

εr
= 8nN−1 (σr+1 − σr)

εr
or 8nN−1 (σr − σr+1)

εr
, (21)

Using (21) and (13) in (18) gives the required result.

Also, (17) using Lemma 6 and Lemma 7 are in [Paramasivam et al., 2014] on
Ωk ∈ Ω+, for k = N

2
+ 1, . . . , N − 1

|u∗
i,k(x)− ui,k(x)| = |v∗i,k(x) + w∗

i,k(x)− vi,k(x)− wi,k(x)|

≤ |v∗i,k(x)− vi,k(x)|+ |w∗L
i,k(x)− wL

i,k(x)|+ |w∗R
i,k (x)− wR

i,k(x)|

≤ Ch2
k max

Ωk

|v′′i,k(x)|+ Ch2
k max

Ωk

|wL′′

i,k (x)|+ Ch2
k max

Ωk

|wR′′

i,k (x)|

≤ C(1 +
n∑

q=i

Bq(x)) + C
n∑

q=i

BL
q (x)

εq
+ C

n∑
q=i

BR
q (x)

εq
(22)

The discussion now centres on whether 2
√
εn lnN/

√
α ≥ (1−d)/4 or 2

√
εnlnN/

√
α ≤

(1−d)/4 should be used. In the first case 1/εn ≤ C (lnN)2 and the result follows
at once from (13) and (17). In the second case τn = 2

√
εnlnN/

√
α. Suppose that

k satisfies 5N/8 ≤ k ≤ 7N/8. Then hk = 2(1− 2τn)/N and therefore

hk

εn
= 2N−11− 2τn

εn
,

τn ≤ 1− xk, and so

e−
√
α(1−xk)/

√
εn ≤ e−

√
ατn/

√
εn = e−2 lnN = N−2. (23)

Using (23) and (13) in (22) gives the required result.
On the other hand, if k satisfies N/2 < k ≤ 5N/8 and 7N/8 ≤ k < N and
r = n − 1, . . . , 1, then the discussion now centres on whether 2

√
εr lnN/

√
α ≥

rτr+1/r + 1 or 2
√
εrlnN/

√
α ≤ rτr+1/r + 1should be used.

In the first case 1/εr ≤ C (lnN)2 and the result follows at once from (13) and
(17).
In the second case τr = 2

√
εrlnN/

√
α and s = 1, . . . , n− 2.

1. Suppose that k satisfies 5N/8(s+ 1) ≤ k ≤ 5N/8(s) and 1− (N/8(s)) ≤
k ≤ 1− (N/8(s+ 1)). Then hk = 8n(τr+1 − τr)/N or 8n(τr − τr+1)/N
and τr ≤ 1− xk therefore

hk

εr
= 8nN−1 τr+1 − τr

εr
or 8nN−1 τr − τr+1

εr
, (24)

Using (24) and (13) in (22) gives the required result.
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2. If k satisfies N/2 < k ≤ N/8(s+1) and 1− (N/8(s+1)) ≤ k < N Then
hk = 8n(τr+1 − τr)/N or 8n(τr+1 − τr)/N and therefore

hk

εr
= 8nN−1 (τr+1 − τr)

εr
or 8nN−1 (τr − τr+1)

εr
, (25)

Using (25) and (13) in (22) gives the required result.

For k = N
2

, the source terms is assumed by

(

xk∫
xk−1

fi(
N

2
− 1) +

xk+1∫
xk

fi(
N

2
+ 1))/2

hk = (hk−1 + hk+1)/2, hk−1 = (xk−2 − xk−1) and hk+1 = (xk+1 − xk+2),
hk−1 = 8n(σn−1 − σn)/N, hk+1 = 8n(τ1 − τ2)/N

hk

εi
=

hk+1 + hk−1

2εi
=

4nN−1((σn−1 − σn) + (τ1 − τ2))

εi
(26)

Using (26) and (13) in (22) gives the required result.

Lemma 5.2. Let u∗
i,k be the Vi,k-interpolant of the solution ui,k of (1) on the fitted

mesh ΩN . Then

max
i=1,...,n

sup
0<εi≤1

||u∗
i,k − ui,k||εi ≤ C(N−1lnN)2,

where C is a constant independent of εi.

Proof. For i = 1, . . . , n from the definition of the energy norm

||u∗
i,k −ui,k||εi = εi((u

∗
i,k −ui,k)

′
, (u∗

i,k −ui,k)
′
)+α(u∗

i,k −ui,k, u
∗
i,k −ui,k). (27)

Each term on the right is now treated separately. It is easy to see that the second
term satisfies

(u∗
i,k − ui,k, u

∗
i,k − ui,k) ≤ ||u∗

i,k − ui,k||2. (28)

Using integration by parts and noting that (u∗
i,k − ui,k)(xk) = 0, for each k, the

first term can be bounded as follows

εi((u
∗
i,k − ui,k)

′
, (u∗

i,k − ui,k)
′) = εi

N−1∑
k=1,k ̸=N

2

xi∫
xi−1

(u∗
i,k

′(s)− ui,k
′(s))2ds

= −εi

N−1∑
k=1,k ̸=N

2

xi∫
xi−1

(u∗
i,k

′′(s)− ui,k
′′(s))(u∗

i,k(s)− ui,k(s))ds
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= εi

N−1∑
k=1,k ̸=N

2

xi∫
xi−1

ui,k
′′(s)(u∗

i,k(s)− ui,k(s))ds

= (εiui,k
′′, u∗

i,k − ui,k),

where the fact that u∗
i,k

′′ = 0 on each Ωk has been used.
The estimate for the second derivative of the components of ui,k are contains in
[Paramasivam et al., 2014], using lemma 6 and lemma 7 in[Paramasivam et al.,
2014] then gives

|(εiu
′′

i,k, u
∗
i,k − ui,k)| ≤ ||u∗

i,k − ui,k||
d∫

0

εi|u
′′

i,k|ds+
1∫

d

εi|u
′′

i,k|ds

|(εiu
′′

i,k, u
∗
i,k − ui,k)| ≤ ||u∗

i,k − ui,k||(
d∫

0

+

1∫
d

)(εi|v
′′

i,k|+ εi|wL′′

i,k |+ εi|wR′′

i,k |)ds

≤ C||u∗
i,k − ui,k||(

d∫
0

+

1∫
d

)(1 +
n∑

q=i

Bq(s)) + C
n∑

q=i

BL
q (s)

εq
+ C

n∑
q=i

BR
q (s)

εq
ds

≤ C||u∗
i,k − ui,k||,

and so
εi((u

∗
i,k − ui,k)

′
, (u∗

i,k − ui,k)
′
) ≤ C||u∗

i,k − ui,k||. (29)

Combining (27)-(29) leads to

||u∗
i,k − ui,k||εi ≤ C||u∗

i,k − ui,k||(1 + α||u∗
i,k − ui,k||),

and the proof is completed using the estimate of ||u∗
i,k − ui,k|| from Lemma 5.1.

Lemma 5.3. Let u∗
i,k be the Vi,k -interpolant of the solution ui,k of (1) on the fitted

mesh ΩN . Then

max
i=1,...,n

sup
0<εi≤1

||u∗
i,k − ui,k||εi,ΩN ≤ C(N−1lnN)2.

Proof. Since u∗
i,k(xk)− ui,k(xk) = 0, it follows from the definitions of the norms

that

||u∗
i,k − ui,k||2εi,Ω⃗N || = εi((u

∗
i,k − ui,k)

′
, (u∗

i,k − ui,k)
′
) ≤ ||u∗

i,k − ui,k||2εi .

Using the estimate in Lemma 5.2 completes the proof.
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6 Interpolation error estimate
Lemma 6.1. Let ui,k be the solution of (1) and Ui,k the solution of (14). Suppose
that Vi,k. Then

max
i=1,...,n

|βi(Ui,k − ui,k, vi)| ≤ C(N−1lnN)2||vi,k||l2(ΩN
)
,

where the constant C is independent of εi.

Proof. Since vi is in Vi,k, it can be written in the form

vi =
N−1∑

k=1,k ̸=N
2

vi,kϕi,k,

and so

βi(Ui,k − ui,k, vi) =
N−1∑

k=1,k ̸=N
2

vi,kβi(Ui,k − ui,k, ϕi,k) (30)

Then, for each k, 1 ≤ k ≤ N−1\{N
2
}, using (1), (14) and the fact that (1, ϕi,k)ΩN =

(1, ϕi,k) =
hk+hk+1

2
,

βi(Ui,k − ui,k, ϕi,k) =
n∑

j=1

(aijUi,k, ϕi,k)−
n∑

j=1

(aijui,k, ϕi,k)

=
n∑

j=1

(aijuj,k(xk), ϕi,k)−
n∑

j=1

(aijuj,k, ϕi,k)

=
n∑

j=1

(aij(uj,k(xk)− uj,k), ϕi,k)

Since

|uj,k(xk)− uj,k| = |
xk∫
x

u′
j,k(s)ds| ≤ Ik,

where

Ik =

xk+1∫
xk−1

|u′
j,k(s)|ds,

it follows from (13) that

|βi(Ui,k − ui,k, ϕi,k)| ≤ C
(hk + hk+1)

2
(Ik +N−1). (31)
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Assume for the moment that

Ik ≤ C(N−1lnN)2. (32)

Then (30)-(32) and the Cauchy-Schwarz inequality give

|βi(Ui,k − ui,k, vi)| ≤ C(N−1lnN)2
N−1∑

k=1,k ̸=N
2

(hk + hk+1)

2

1/2

|vi,k|
(hk + hk+1)

2

1/2

≤ C(N−1lnN)2||vi,k||l2(ΩN
)
,

as required.
It remains therefore to verify (32). From the estimate are contain Lemma 3 in
[Paramasivam et al., 2014], for the first derivative of the solution, it is clear that

Ik ≤ C

xk+1∫
xk−1

ε−1
i (||u⃗||Γ + ||f⃗ ||Ω)dx

It follows that
Ik ≤ C(hk + hk+1)

2/εi, (33)

and that

Ik ≤ C
(hk + hk+1)

2

εi
+ e−

√
α(1−xk+1)/

√
εn (34)

For i = 1, . . . , n, k = 1, . . . , N
2
− 1, then the discussion now centres on whether

2
√
εn lnN/

√
α ≥ d/4 or 2

√
εnlnN/

√
α ≤ d/4 should be used. In the first case

1/εn ≤ C (lnN)2 and the result follows at once from (13) and (34). In the second
case σn = 2

√
εnlnN/

√
α. Suppose that k satisfies N/8 ≤ k ≤ 3N/8. Then

hk = 2(d− 2σn)/N and therefore

hk

εn
= 2N−1d− 2σn

εn
,

σn ≤ 1− xk, and so

e−
√
α(1−xk)/

√
εn ≤ e−

√
ασn/

√
εn = e−2 lnN = N−2. (35)

Using (35) and (13) in (34) gives the required result.
On the other hand, if k satisfies 1 ≤ k ≤ N/8 and 3N/8 ≤ k ≤ N/2 and
r = n − 1, . . . , 1, then the discussion now centres on whether 2

√
εr lnN/

√
α ≥

rσr+1/r + 1 or 2
√
εrlnN/

√
α ≤ rσr+1/r + 1should be used.

In the first case 1/εr ≤ C (lnN)2 and the result follows at once from (13) and
(34).
In the second case σr = 2

√
εrlnN/

√
α and s = 1, . . . , n− 2.
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1. Suppose that k satisfies N/8(s + 1) ≤ k ≤ N/8(s) and d − (N/8(s)) ≤
k ≤ d− (N/8(s+1)). Then hk = 8n(σr+1 −σr)/N or 8n(σr −σr+1)/N
and σr ≤ 1− xk therefore

hk

εr
= 8nN−1σr+1 − σr

εr
or 8nN−1σr − σr+1

εr
, (36)

Using (36) and (13) in (34) gives the required result.

2. If k satisfies 1 ≤ k ≤ N/8(s+ 1) and d− (N/8(s+ 1)) ≤ k ≤ N/2 Then
hk = 8n(σr+1 − σr)/N or 8n(σr+1 − σr)/N and therefore

hk

εr
= 8nN−1 (σr+1 − σr)

εr
or 8nN−1 (σr − σr+1)

εr
, (37)

Using (37) and (13) in (34) gives the required result.

3. Finally, suppose that k = {N/8(s), d−(N/8(s)), N/8n, d−(N/8n)}. Then

Ik ≤ (

k∫
k−1

+

k+1∫
k

)|u′

i,k|dx < Ik−1 + Ik+1

≤ C(N−1lnN)2

For i = 1, . . . , n, k = N
2
+ 1, . . . , N − 1, then the discussion now centres on

whether 2
√
εn lnN/

√
α ≥ (1 − d)/4 or 2

√
εnlnN/

√
α ≤ (1 − d)/4 should be

used. In the first case 1/εn ≤ C (lnN)2 and the result follows at once from
(13) and (34). In the second case τn = 2

√
εnlnN/

√
α. Suppose that k satisfies

5N/8 ≤ k ≤ 7N/8. Then hk = 2(1− 2τn)/N and therefore

hk

εn
= 2N−11− 2τn

εn
,

τn ≤ 1− xk, and so

e−
√
α(1−xk)/

√
εn ≤ e−

√
ατn/

√
εn = e−2 lnN = N−2. (38)

Using (38) and (13) in (34) gives the required result.
On the other hand, if k satisfies N/2 < k ≤ 5N/8 and 7N/8 ≤ k < N and
r = n − 1, . . . , 1, then the discussion now centres on whether 2

√
εr lnN/

√
α ≥

rτr+1/r + 1 or 2
√
εrlnN/

√
α ≤ rτr+1/r + 1should be used.

In the first case 1/εr ≤ C (lnN)2 and the result follows at once from (13) and
(34).
In the second case τr = 2

√
εrlnN/

√
α and s = 1, . . . , n− 2.
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1. Suppose that k satisfies 5N/8(s+ 1) ≤ k ≤ 5N/8(s) and 1− (N/8(s)) ≤
k ≤ 1− (N/8(s+ 1)). Then hk = 8n(τr+1 − τr)/N or 8n(τr − τr+1)/N
and τr ≤ 1− xk therefore

hk

εr
= 8nN−1 τr+1 − τr

εr
or 8nN−1 τr − τr+1

εr
, (39)

Using (39) and (13) in (34) gives the required result.

2. If k satisfies N/2 < k ≤ N/8(s+1) and 1− (N/8(s+1)) ≤ k < N Then
hk = 8n(τr+1 − τr)/N or 8n(τr+1 − τr)/N and therefore

hk

εr
= 8nN−1 (τr+1 − τr)

εr
or 8nN−1 (τr − τr+1)

εr
, (40)

Using (40) and (13) in (34) gives the required result.

3. Finally, suppose that k = {d + N/8(s), 1 − (N/8(s)), d + N/8n, 1 −
(N/8n)}. Then

Ik ≤ (

k∫
k−1

+

k+1∫
k

)|u′

i,k|dx < Ik−1 + Ik+1

≤ C(N−1lnN)2

For k = N
2

, the source terms is assumed by

(

xk∫
xk−1

fi(
N

2
− 1) +

xk+1∫
xk

fi(
N

2
+ 1))/2

hk = (hk−1+hk+1)/2, hk−1 = (xk−2−xk−1) and hk+1 = (xk+1−xk+2),
hk−1 = 8n(σn−1 − σn)/N, hk+1 = 8n(τ1 − τ2)/N

hk

εi
=

hk+1 + hk−1

2εi
=

4nN−1((σn−1 − σn) + (τ1 − τ2))

εi
(41)

Using (41) and (13) in (34) gives the required result.
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7 Discretization error
Lemma 7.1. Let u∗

i,k be the Vi,k-interpolant of the solution ui,k of (1) and Ui,k the
solution of (14). Then

max
i=1,...,n

||Ui,k − u∗
i,k|εi,ΩN ≤ C(N−1lnN)2,

where the constant C is independent of the parameters εi.

Proof. From the coercivity of βi(., .) in Lemma 2.1 and since Ui,k − u∗
i.k ∈ Vi,k,

||Ui,k − u∗
i,k||2εi,ΩN ≤ Cβi(Ui,k − u∗

i,k, Ui,k − u∗
i,k)

≤ C[βi(Ui,k − ui,k, Ui,k − u∗
i,k) + βi(ui,k − u∗

i,k, Ui,k − u∗
i,k)].

Using Lemma 6.1, with vi = Ui,k − u∗
i,k, then gives

||Ui,j − u∗
i,k||2εi,ΩN ≤ C(N−1lnN)2||Ui,k − u∗

i,k||εi,ΩN ,

Cancelling the common factor gives

||Ui,k − u∗
i,k||εi,ΩN ≤ C(N−1lnN)2,

as required.

Theorem 7.1. Let ui,k be the solution of (1) and Ui,k the solution of (14). Then

max
i=1,...,n

||Ui,k − ui,k||εi,ΩN ≤ C(N−1lnN)2,

where the constant C is independent of the parameters εi.

Proof. Since

||Ui,k − ui,k||εi,ΩN ≤ ||Ui,k − u∗
i.k||εi,ΩN + ||u∗

i,k − ui,k||εi,ΩN ,

the result follows by combining Lemma 5.1 and Lemma 7.1.

Theorem 7.2. Let ui,k be the solution of (1) and Ui,k the solution of (14). Then
the following parameter uniform error estimate holds

max
i=1,...,n

sup
0<εi≤1

||Ui,k − ui,k||εi,ΩN ≤ C(N−1lnN)2,

where the constant C is independent of the parameters εi.
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Proof. Since σr ≤ 2
√
εrlnN/

√
α, r = n, . . . , 1 , consider k satisfies, 1 ≤ k ≤

N/8s and (3N/8s) ≤ k ≤ N
2
, s = 1, . . . , n − 1 on a neighbourhood of the

boundary layers.
Using the Cauchy Schwarz inequality and Theorem 7.1,

|(Ui,k − ui,k)(xk)| = |
∫
Ωk

(Ui,k − ui,k)(s)ds|

≤ (
1

εr

∫
Ωk

12ds)1/2(εr

∫
Ωk

|(Ui,k − ui,k)
′
(s)|2ds)1/2

≤ σr

εr
||Ui,k − ui,k||εr,ΩN

≤ C(N−1lnN)2. (42)

On the other hand, Suppose that k satisfies N/8 ≤ k ≤ 3N/8, outside the bound-
ary layers, hk ≥ 1/N and so

|(Ui,k − ui,k)(xk)|2 ≤ Nhk|(Ui,k − ui,k)(xk)|2

≤ N

3N
8∑

k=N/8

hk|(Ui,k − ui,k)(xk)|2

≤ N ||Ui,k − ui,k||2l2(ΩN ).

Using Theorem 7.1 then leads to

|(Ui,k − ui,k)(xk)| ≤ ||Ui,k − ui,k||l2(ΩN ))

≤ C(N−1lnN)2. (43)

Combining (42) and (43) as required results
Since τr ≤ 2

√
εrlnN/

√
α, r = n, . . . , 1 , consider k satisfies, N

2
< k ≤ 5N/8s

and 1 − (7N/8s) ≤ k ≤ N − 1, s = 1, . . . , n − 1 on a neighbourhood of the
boundary layers.
Using the Cauchy Schwarz inequality and Theorem 7.1,

|(Ui,k − ui,k)(xk)| = |
∫
Ωk

(Ui,k − ui,k)(s)ds|

≤ (
1

εr

∫
Ωk

12ds)1/2(εr

∫
Ωk

|(Ui,k − ui,k)
′
(s)|2ds)1/2
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≤ σr

εr
||Ui,k − ui,k||εr,ΩN

≤ C(N−1(lnN)2. (44)
On the other hand, Suppose that k satisfies 5N/8 ≤ k ≤ 7N/8, outside the
boundary layers, hk ≥ 1/N and so

|(Ui,k − ui,k)(xk)|2 ≤ Nhk|(Ui,k − ui,k)(xk)|2

≤ N

3N
4∑

k=N/4

hk|(Ui,k − ui,k)(xk)|2 ≤ N ||Ui,k − ui,k||2l2(ΩN ).

Using Theorem 7.1 then leads to

|(Ui,k − ui,k)(xk)| ≤ ||Ui,k − ui,k||l2(ΩN ))

≤ C(N−1lnN)2. (45)
For k = N

2
, hN

2
= (hN

2
−1 + hN

2
+1)/2, hN

2
−1 = (xN

2
−2 − xN

2
−1) and hN

2
+1 =

(xN
2
+1 − xN

2
+2),

|(Ui,N
2
− ui,N

2
)(xN

2
)|2 ≤ NhN

2
|(Ui,N

2
− ui,N

2
)(xN

2
)|2

≤ N
hN

2
−1 + hN

2
+1

2
|(Ui,N

2
− ui,N

2
)(xN

2
)|2 ≤ N ||Ui,N

2
− ui,N

2
||2l2(ΩN ).

Using Theorem 7.1 then leads to

|(Ui,N
2
− ui,N

2
)(xN

2
)| ≤ ||Ui,N

2
− ui,N

2
||l2(ΩN ))

≤ C(N−1lnN)2. (46)
Combining (44) and (46) completes the proof.

8 Numerical Illustrations
Example 8.1. Consider the BVP

−Eu⃗′′(x) + A(x)u⃗(x) = f⃗(x), for x ∈ (0, 1), u⃗(0) = 0⃗, u⃗(1) = 0⃗

where E = diag(ε1, ε2), A =

(
5 −1
−1 5(x+ 1)

)
, f⃗1 = (1 + x2, 2)T f⃗2 =

(4, x2)T . For various values of ε1, ε2 N = 8k, k = 2r, r = 3, · · · , 8, d = 0.3,
and α = 1.9,

Using the general methods from [Miller et al., 1996] , the ε uniform order
of convergence and the ε uniform error constant are computed by applying fitted
mesh method to the Example 8.1 shown in the Figure 1. In the following Table 8
outlines the conclusions.
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η Number of mesh points N
64 128 256 512 1024

20 0.7544E-03 0.1717E-03 0.6677E-04 0.2797E-04 0.1303E-04
2−2 0.1786E-02 0.2975E-03 0.1115E-03 0.4510E-04 0.2050E-04
2−4 0.3974E-02 0.7429E-03 0.1842E-03 0.7169E-04 0.3064-04
2−6 0.8120E-02 0.1769E-02 0.3029E-03 0.1139E-03 0.4607E-04
2−8 0.1492E-01 0.3948E-02 0.7378E-03 0.1837E-03 0.7132E-04
2−10 0.2426E-01 0.8082E-02 0.1761E-02 0.3010E-02 0.1129E-03
2−12 0.2426E-01 0.8082E-02 0.1761E-02 0.3010E-02 0.1129E-03
2−14 0.2426E-01 0.8082E-02 0.1761E-02 0.3010E-02 0.1129E-03
DN 0.2426E-01 0.8082E-02 0.1761E-02 0.3010E-02 0.1129E-03
pN 0.1319E+01 0.1389E+01 0.1453E+01 0.1473E+01
CN

p 0.9233E+00 0.9053E+00 0.7898E+00 0.5031E+00 0.5032E+00
Computed order of ε⃗ -uniform convergence, p∗ = 1.319

Computed ε⃗ -uniform error constant, CN
p∗ = 0.9233

Table 1: Values of DN
ε , D

N , pN , p∗ and CN
p∗ for ε1 =

η

64
, ε2 =

η

16
.

9 Conclusions
The research work presented in this article is based on the fundamental con-

cept developed by [Miller et al., 1996]. They considered convection diffusion
problems in one dimension. In this paper, second order parameter uniform con-
vergence has been established for system of n second order differential equations
of reaction diffusion type with discontinuous source terms. The proposed method
can be extended to higher dimensional problems.
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Figure 1: Graphical representation of solution for ε = 2−4 and N = 512 of
Example 8.1.
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