
Research on large-scale clean
energy optimal scheduling
method based on multi-source
data-driven

Chuanyu Xiong1, Lingfeng Xu2, Li Ma1, Pan Hu3, Ziyong Ye4 and
Jialun Sun4*
1State Grid Hubei Electric Power Company Limited Economic Research Institute, Wuhan, Hubei, China,
2State Grid Hubei Electric Power Co., Ltd., Wuhan, Hubei, China, 3State Grid Hubei Electric Power
Research Institute, Wuhan, Hubei, China, 4College of Electrical and New Energy Engineering, China Three
Gorges University, Yichang, Hubei, China

With the large-scale growth and grid connection of intermittent renewable energy
such as wind and solar, the problem of increasing renewable energy curtailment
rate and system backup flexibility has become increasingly prominent. In order to
solve the problem of high proportion of renewable energy scientific consumption
and flexible and stable operation of energy system. We propose a flexible and
economical dispatch method based on data-driven multi-regional power system.
For the problem of economic dispatch of multi-area power system, a
mathematical calculation model is established to satisfy the constraints of unit
output, system power balance, unit ramp rate, and valve point effect, and to
consider the requirement of minimizing the cost of multi-area power load
comprehensively. Based on data-driven, this paper adopts an improved fruit fly
optimization algorithm to quickly find the global optimal solution. The calculations
are performed by IEEE6 simulation test system, and the results verify the feasibility
of the proposed algorithm. The improved fruit fly optimization algorithm is
compared and analyzed with other algorithms considering the quality of the
obtained solutions. The results show the effectiveness and superiority of the
proposed algorithm in solving multi-area economic dispatching problems in real
power systems.
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1 Introduction

In response to global climate change, the structural characteristics of the energy system
are gradual shift to efficiency, cleanliness and sustainability (Li et al., 2021).A high
proportion of wind and solar energy promote the low-carbon development of multi-
energy system economy. But there are many problems. On the one hand, it is
transmitted by the original system factors such as force limitation, electric energy
storage characteristics, and low effectiveness of demand-side response interactive
management have highlighted the problem of increasing the curtailment rate of
renewable energy in the system. On the other hand, renewable energy sources such as
wind and solar contribute to themselves. There is extreme volatility and intermittency that
cannot be achieved smoothly and stably Large-scale grid integration. The force is increasing,
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the regulation capacity is insufficient, and the renewable energy is
further affected consumption has an impact. Therefore, how to
coordinate the scale development of renewable energy. The issue of
flexible scheduling of multi-energy systems is crucial (Wang et al.,
2021; Zongxiang et al., 2022).

In power system operation, economic dispatch is an important
optimization problem. The goal of power systems economic dispatch is
tominimize the total cost of generation while meeting the constraints of
a single region. In contrast, the economic dispatch of a multi-regional
power system typically involves dividing the generator set into several
interconnected generating zones. The dispatch model calculates the
system’s power generation capacity and the amount of electricity
exchanged between regions, while meeting constraints such as power
demand and motor characteristics, thereby minimizing the overall
power generation capacity cost. The economic dispatch of the power
system is an important link affecting the economic operation of the
power system. This solution model reduces the power generation and
operating costs of the system by rationalizing the output of each unit in
the power system and optimizing the system operation and disassembly
schedule (Ma et al., 2018; Ma et al., 2019; Zhang et al., 2022).

Currently, there aremore algorithms on economic dispatch of power
systems. Wang et al. (2022) proposed an improved state transition
algorithm (MTSTA) based on mirror transformation and dynamic
axesion transformation, and a new repair method of constraint
handling combined with penalty function was used to deal with
constraint conditions. Barukčić et al. (2022) adopted NSGA-II
algorithm and considered the wind power fluctuations on the
dynamic economic dispatch of spinning reserve constraints. As a
commonly used optimization algorithm for solving complex
problems, the swarm intelligence algorithm has greater advantages in
the optimization of economic dispatch of power systems. The swarm
intelligence algorithm solves the optimal solution for the economic
dispatch of the power system by simulating individual generating
units as bionic individuals and combining the power consumption
path and demand. Xiao-hong and He (2017) proposed gravitational
search-particle swarm optimization algorithm, and the individual with
the largest particle fitness was obtained. According to the optimal
individual position (Chen et al., 2022), the optimal economic
dispatching scheme of power systems was obtained. Aiming at the
problems of premature convergence in the traditional particle swarm
optimization algorithm, a multi-agent particle swarm optimization
algorithm based on chaos is used to solve it. Thus, the paper
established a dynamic optimization dispatching model for power
system with system frequency regulation constraints (Zhang and Ma,
2023). Author J. Yang, J. Liu, Y. Xiang, S. Zhang and J. Liu proposes a
real-time dynamic scheduling strategy considering economic operation
and complementary regulatory capabilities. They considered the
uncertainty of photovoltaic and load demand, and studied the
integrated power system of zero-carbon hydropower station (PV)
pumped storage (PHS). The power fluctuation of the upper grid co-
coupling point (PCC) after PHS participation is alleviated (Yang et al.,
2023). In Literature (PradeepKumar and Pillai, 2020), V. PradeepKumar
and A. S. Pillai use dynamic schedulers to compare static scheduling.
Discover that dynamic scheduling adds flexibility and time-constrained
guarantees. The author’s study provides a comparison of the performance
of fixed-priority and dynamic priority scheduling algorithms for
automotive subsystems.

The economic dispatch problem is characterized by high-
dimensional, non-convex, discrete, multi-constrained, and
numerous local minima, which leads to a great difficulty in
finding the optimal solution. The traditional bionic swarm
intelligence algorithm is not prominent enough in local and
global search capability, and the optimal extreme value solution
is not accurate enough. In this paper, three test systems with
different characteristics, IEEE6, IEEE40, and IEEE10, are selected
and optimally scheduled using an improved fruit fly optimization
algorithm. Among them, the IEEE6 machine test system and the
IEEE40 machine test system are static scheduling models, and the
IEEE10 machine test system is a dynamic scheduling model.
Different test systems have different objective functions and
constraints, and the treatment of the con-straints in the specific
optimization process will also be different.

2 Introduction to traditional economic
scheduling

2.1 Objective function

The model has the optimization objective of minimizing the
operating cost of the system, and its functional expression is Chen
et al. (2022)

minFcost � ∑
T

t�1
∑
M

i�1
Fi Pti( ) (1)

Where, Fcost is the total system generation cost; T is the total number
of dispatch periods. In dealing with static optimization problems,
taking T to 1 is sufficient. M is the number of units in the system; Pti

is the active output value of unit i in period j; Fi(Pti) denotes the
generation cost of unit i in time j.

In general, the generation cost of a thermal power unit can be
expressed by its consumption characteristic function with the
mathematical expression

Fi Pti( ) � aiP
2
ti + biPti + ci (2)

In this equation, ai, bi, ci is the consumption characteristic
coefficient of unit i.

When optimizing the two test systems, IEEE10 and IEEE40,
threshold effects need to be considered. The valve point effect refers
to the wire drawing effect that occurs when the turbine of a thermal
power unit is suddenly opened by the intake valve (Xiao-hong and
He, 2017). When considering the valve point effect, the traditional
consumption characteristic function cannot accurately represent the
input-output relationship of the unit. The solution is to superimpose
a sinusoidal function on top of the traditional consumption
characteristic function to correctly represent the power
generation cost of thermal power units. If the valve point effect is
taken into account, the objective function can be expressed as

minFcost � ∑
T

t�1
∑
M

i�1
Fi Pti( ) + ei sin fi Pimin − Pi( )[ ]∣∣∣∣ ∣∣∣∣{ } (3)

Where, ei, fi is the valve point effect factor of unit i; Pimin is the
lower limit of active output of unit i.
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The total operating cost curve of thermal power units
considering the valve point effect is shown in Figure 1. It can be
seen from the figure that due to the valve point effect, the originally
smooth curve is non-convex. This leads to many local minima in the
process of optimizing this test system, which increases the difficulty
of optimization and puts high demands on the performance of the
optimization algorithm.

2.2 Mathematical model of the traditional
economic dispatching problem

2.2.1 System power balance constraint
The system power balance constraint is composed of the active

output of the unit, the system network power loss and the total
system load.

∑
M

i

Pti − Ptloss − Ptload � 0 (4)

Where Ptloss is the system network power loss at time t and Ptload is
the total system load at time t. The system network power loss is
obtained by the B-factor method as shown below.

Ptloss � ∑
M

t�1
∑
M

j�1
PtiBijPtj +∑

M

i�1
BoiPti + Boo (5)

The system network power loss is Bij, Boi, Boo.
In practical simulations, since a strict system power balance

is difficult to achieve, the general treatment is to set a very small
value (Chen et al., 2022) ε(0≤ ε). The power balance constraint
is considered to be satisfied when the absolute value of the
difference between the total output of the unit minus the
network power loss and the load is less than ε. Meanwhile,
the smaller the value of ε, the more difficult it is to satisfy the
power balance constraint, and the more difficult it is to
optimize.

2.2.2 Unit output constraint

Pimin ≤Pi ≤Pimax (6)
Pimin, Pimax are the lower limit of active output and the upper limit
of active output of unit i, respectively.

2.2.3 Unit ramp rate constraints
Unit ramp rate constraints is an important constraint to be

considered in dynamic dispatching. In dynamic dispatch, it is
necessary to consider the upper and lower limits of unit output
as well as the unit ramp rate constraints. The unit ramp rate
constraints can be represented as (Zhang and Ma, 2023).

−DRi ≤Pti − P t−1( )i ≤URi (7)
Where: DRi, URi are the power output growth rate extreme and
power output decease rate extreme of unit i respectively; P(t−1)i is the
active output of unit i at time t-1.

2.2.4 Unit prohibited operating zones constraints
When a thermal power unit is in operation, there will be some

subintervals within its operation interval. When thermal power
units are operated within these subintervals, it will lead to
excessive amplitude of unit bearing vibration. Therefore, it is
necessary to set up prohibited operating zones within the
operation interval to avoid these subintervals during the
operation of the unit to prevent excessive vibration of the unit
bearings. The operation interval with the prohibited operating zones
set can be expressed as (Yang et al., 2023)

Pimin ≤Pi ≤Pd1
Si

P
h j−1( )
Si ≤Pi ≤Pdj

Si

P
hNg

Si ≤Pi ≤Pimax

⎧⎪⎪⎨
⎪⎪⎩ (8)

Where, Phj
Si is the lower limit of the jth prohibited operating zones

of unit i; Pdj
Si is the upper limit of the jth prohibited operating zones of

unit i; Ng is the total number of prohibited operating zones of unit i.
Due to the high parameter dimension and complex model state,

this paper relies on experience to select parameters.

3 Constraint heuristic processing
strategy

Most of the swarm intelligence optimization algorithms use the
penalty function method when dealing with the constraints in
constrained optimization problems (Hosseinnezhad et al., 2014; Huo
et al., 2015). The penalty function method requires an appropriate
penalty factor to ensure the accuracy of the optimization and the
efficiency of the whole optimization process when dealing with
constraints. If the penalty factor is not set properly, it is very likely
to make the optimization result less than expected and make the
algorithm fall into local optimum in the process of finding the best.
Therefore, this paper deals with the constraints through a heuristic
processing strategy, thus avoiding unsatisfactory optimization results
due to improper selection of penalty factors (Roy et al., 2014; Mishra et
al., 2022). At the same time, different test systems consider different
constraints and adjust the heuristic processing strategy as follows.

FIGURE 1
The total cost function of thermal power units taking into
account the valve point effect.
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3.1 Strategies for handling static dispatching
constraints

In this paper, we consider the system power balance constraint,
unit output constraint, unit prohibited operating zones constraints
and network power loss in optimizing the IEEE6 test system. In the
optimization of the IEEE40 machine test system, the power balance
constraint and the upper and lower limits of unit output are
considered, and the network power loss and the operating
exclusion zone constraint are ignored. The heuristic processing
flow for the constraints of the two test systems is shown in Figure
2. The specific steps are as follows (Sa-Ngiamvibool et al., 2011):

• Step 1: Determine whether any unit i satisfies the upper and
lower limits of unit output and the prohibited operating zones
constraints (When dealing with the constraints of the
IEEE40 test system, only whether the upper and lower

output constraints are met is considered, and no prohibited
operating zones constraints are considered.). The set of all
prohibited operating zones of unit i is denoted by Pprohibit

i . If
unit i cannot satisfy both the upper and lower unit output
constraints and the prohibited operating zones constraints, the
output value of unit i needs to be reset until both sets of
constraints are satisfied.

• Step 2: Determine whether the system satisfies the power
balance constraint. The inequality between unit output and
network power loss and load of the test system is denoted by
ΔPG ( In dealing with the power balance constraint of the
IEEE40 test system, let Ploss � 0). To determine the degree of
imbalance a minimal value ε(0≤ ε) needs to be set. When the
absolute value of the imbalance is not greater than ε, the test
system is considered to satisfy the power balance constraint. If
the test system satisfies the power balance constraint, the
algorithm outputs the calculated results. If the test system

FIGURE 2
Heuristic processing flow chart for static dispatch constraints.
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does not meet the power balance constraint, the imbalance is
distributed equally to each unit to adjust the unit output and
network power loss, and then returns to Step 1.

3.2 Strategies for handling dynamic
dispatching constraints

The system power balance constraint, unit output constraint,
and unit climbing constraint are considered in optimizing the
IEEE10 machine test system, and the network power loss is
ignored. The heuristic processing flow of the constraints is shown
in Figure 3. The specific steps are as follows:

• Step 1: Determine whether any unit meets the upper and lower
capacity constraints at the first dispatch. If the constraint is not
satisfied, the output value of the unit needs to be readjusted to
meet the upper and lower limits of the unit output.

• Step 2: Determine whether the test system satisfies the power
balance constraint at the first dispatch (set Ploss � 0) (Pradeep
Kumar and Pillai, 2020). The algorithm uses PtG to denote the
system power imbalance at moment t. When the absolute
value of the imbalance is not greater than ε, the test system is
considered to satisfy the power balance constraint. If the test
system does not satisfy the power balance constraint at the
dispatching moment t, the imbalance is distributed equally to
each unit to adjust the unit output and subsequently returns to

FIGURE 3
Heuristic processing flow chart for dynamic dispatch constraints.
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Step 1. If the test system satisfies the power balance constraint
at the scheduling moment t, it goes to the next dispatching
period.

• Step 3: Integrate the ramp rate constraints and the upper and
lower unit output constraints into a set of constraints. The
algorithm uses PtiMIN to denote the lower limit of unit output
of unit i at dispatch time t and uses PtiMAX to denote the
maximum unit output of unit i at dispatch time t after
integration. Then go to the next step

• Step 4: Determine whether it is possible for unit i to satisfy the
power balance constraint between PtiMIN and PtiMAX at the
dispatch moment t. If this is not possible, the unit output values
for the previous time period need to be adjusted to changePtiMIN

and PtiMAX until it is possible for the test system to satisfy the
power balance constraint for this time period within the
constraints of PtiMIN and PtiMAX. If satisfied, go to the next step.

• Step 5: Determine whether any unit i satisfies the constraints
in the range PtiMIN and PtiMAX at the dispatching time t. If the

constraint is not satisfied, the unit i needs to be readjusted
output value at the dispatching moment t to satisfy the
constraints in the range PtiMIN and PtiMAX. If the
constraints are met, go to the next step.

• Step 6: Determine whether the test system satisfies the power
balance constraint at the dispatching moment t. If the test
system does not satisfy the power balance constraint at
dispatch moment t, the imbalance is distributed equally to
each unit to adjust the unit output, and then returns to Step 5.
If the test system satisfies the power balance constraint at
dispatch moment t, it proceeds to the next step.

• Step 7: Determine if the last dispatching moment has been
reached. The algorithm uses T to represent the total number of
scheduling periods for the test system. If the last dispatching
moment has not been reached, return to Step 3 for the
heuristic processing process of the constraints for the next
dispatching moment. If the last dispatching moment has been
reached, the unit output values for all dispatching moments
are output.

4 Economic dispatch of power system
based on improved fruit fly
optimization algorithm

The algorithm flow is shown in Figure 4. The specific steps are
shown in Figure 4.

• Step 1: Initialize the relevant parameters: set the total cost of
system power generation Fcost as the fitness function. All units
in the test system (the number of units is n) constitute one
individual fruit fly, i.e., Xi � Pi, . . . , Pn{ }. The algorithm sets
the minimum search radius Rmin to 1 and the maximum
search radius Rmax to the difference between the upper and
lower limits of the output of the corresponding unit. The
population size “Sizepop” is 50, and the maximum number of
iterations “Maxgen” is set to 100 when optimizing the
IEEE6 test system. When optimizing the IEEE40 test
system, “Maxgen” is set to 300. When optimizing the
IEEE10 test system, the total number of scheduling periods
T is set to 24 and “Maxgen” is set to 300.

• Step 2: The individual fruit fly is given a search radius R as well
as a random direction and distance to search using olfaction.

• Step 3: Execute a heuristic constraint processing strategy for
each individual fruit fly so that each individual fruit fly satisfies
the constraint.

• Step 4: Use the location Xi � Pi, . . . , Pn{ } of the individual
fruit fly as the taste concentration determination value Si. The
algorithm brings the taste concentration determination value
into the fitness function to find the taste concentration Smelli
of individual fruit flies, which is the total system power
generation cost.

• Step 5: Find the individual fruit fly with the best flavor
concentration in the fruit fly population.

• Step 6: The taste concentration and location information of
the optimal fruit fly individual are recorded and retained, and
all fruit flies in the population use vision to fly to the location
of the optimal fruit fly individual.

FIGURE 4
Flow chart of economic dispatch based on improved fruit fly
optimization algorithm.
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• Step 7: determines whether this iteration is the first one. If not,
determine whether the best flavor concentration produced by
this iteration is less than the best flavor concentration
produced by the previous iteration (i.e., better economy). If
the best flavor concentration produced by this iteration is
greater than the best flavor concentration produced by the
previous iteration, Step 2 is executed.

• Step 8: Iterate to find the best. If the current number of
iterations is less than the maximum number of iterations
“Maxgen”, Step 2 will be executed, if the current number of
iterations is equal to the maximum number of iterations, the
result will be output and the optimization process will be
finished.

5 Example analysis

The example is based on the IEEE6 test system, and the
system data are shown in Table 1. The total load of the system is
1260 MW, and each unit contains upper and lower output limits
as well as two sets of prohibited operating zones constraints,
taking into account the network power losses. The algorithm
mentioned in this article does not guarantee convergence at any
parameter setting. In this paper, the algorithm is executed in

strict accordance with the scheduling optimization process, and
the setting of each parameter is considered in detail to ensure that
the model converges within a reasonable range to ensure that
other performance of the model is not affected.

The unit contains upper and lower output limits and
prohibited operating zones constraints, resulting in a
discontinuous and non-convex solution space for this test
system. ε(0≤ ε) reflects the required accuracy of the
optimization result, the closer ε is to zero, the higher the
accuracy of the optimization result. Table 2 shows the
comparison of the optimal solutions of different algorithms.
Equation 8 shows the output values of each unit after FOA
(Fruit Fly Optimization Algorithm) optimization for different
accuracy requirements (i.e., different values of A) in Table 3.
Figure 5 shows the convergence characteristics of the
improved FOA.

From Table 2, it can be observed that the optimal solutions of
MIQCQP, CSA, λ-Consensus, BBO, and HCRO-DE are
15443.07USD, 15443.08USD, 15452.09USD, 15443.0963USD, and
15443.0750USD, respectively, with the same accuracy requirements,
which are greater than the improved FOA’s optimal solution of
15442.661USD. These algorithms, MABC, DE, KHA-IV, GAAPI,
SA-PSO, do not require as much accuracy as the improved FOA
algorithm in the optimization process, but the optimal solution

TABLE 1 Parameters related to the algorithm test system.

Unit number Minimum power output/MW Maximum power output/MW a b c Prohibited operating zones/MW

1 100 500 0.0070 7.0 240 [210 240], [350 380]

2 50 200 0.0095 10.0 200 [90 110], [140 160]

3 80 300 0.0090 8.5 220 [150 170], [210 240]

4 50 150 0.0090 11.0 200 [80 90], [110 120]

5 50 200 0.0080 10.5 220 [90 110], [140 150]

6 50 120 0.0075 12.0 190 [75 85], [100 105]

TABLE 2 Comparison of the optimal solutions of different algorithms.

Algorithms Optimal solution/USD Total output/MW Network power loss/MW ε/MW

Improved FOA 15442.661 1275.415 12.4149 0.0000

MABC Yu et al. (2022) 15449.8995 1275.958 12.9582 −0.0002

DE Lu et al. (2022) 15449.5826 1275.93 12.95 −0.02

KHA-IV Secui, (2015) 15443.0752 1275.445 12.4449 0.0001

GAAPI Elsayed and El-Saadany. (2015) 15449.7 1275.97 12.98 −0.01

MIQCQP Mandal et al. (2014) 15443.07 1275.44 12.44 0.00

CSA Ciornei and Kyriakides. (2013) 15443.08 1275.447 12.447 0.000

λ-Consensus Mandal et al. (2014) 15452.09 1276.27 13.27 0.00

BBO Basu and Chowdhury. (2013) 15443.0963 1275.446 12.446 0.000

SA-PSO Basu and Chowdhury. (2013) 15447 1275.7 12.733 −0.033

HCRO-DE Binetti et al. (2014) 15443.0750 1275.4449 12.4449 0.0000
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obtained with the improved FOA is still the smallest. Also, as can be
seen from Tables 3, 4, if the requirement for solution accuracy is not
high when scheduling the optimization with the improved FOA, the
resulting optimization results will be smaller. This shows that the
improved FOA outperforms the other algorithms in terms of the
solution quality of the optimal solution and the demanding degree of
accuracy required.

As can be seen from Figure 5, the improved FOA shows good
convergence in the search for the best FOA. In terms of optimization
time, while optimizing the IEEE6 test system, the time required to
improve FOA is 2.21 s, while the time required for SA-PSO and
HCRO-DE is 7.58 s and 4.17 s, respectively. In terms of the number
of iterations, the improved FOA only needs 73 iterations to reach the
optimal value, while the CSA requires more than 100 iterations to
reach the optimal value.

Taking into account the quality of the resulting solution, the
improved fruit fly optimization algorithm is compared and analyzed
with other algorithms. The results show that the algorithm has good
effectiveness and superiority in solving the problem of multi-regional
economic dispatch of actual power system.rior in solving the multi-
regional economic dispatching problem of the actual power system.
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TABLE 3 Optimization results with different solving accuracy.

ε Total Output/MW Network power loss/MW Optimal solution/USD

0.0000 1275.415 12.4149 15442.661

0.01 1275.397 12.4065 15442.533

0.05 1275.352 12.4011 15442.021

FIGURE 5
Convergence characteristic diagram of improved FOA.

TABLE 4 P1-P6 Optimization results with different solving accuracy.

ε P1 P2 P3 P4 P5 P6

0.0000 447.1360 173.2631 263.9407 139.0616 165.4598 86.5537

0.01 447.2036 173.2650 264.2865 139.3577 164.9979 86.2859

0.05 446.0368 174.4044 263.4320 139.3787 165.1412 86.9587
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