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This study addresses the challenges posed by conventional energy meters, which rely on manual 

readings, leading to human errors and inefficiencies. In response to this, a battery-powered 

smart meter was developed utilizing an STM32 microcontroller, ADE7758 and STPM32 

metering integrated circuits (ICs), SIM and ESP32 communication modules, along with a 

MYSQL database. Real-time energy data from both single and three-phase appliances were 

collected, and their energy consumption, errors, Mean Absolute Error (MAE), and Root Mean 

Squared Error (RMSE) were quantified. The model demonstrated an acceptable accuracy level, 

with an estimated MAE of approximately 2.912 units and an estimated RMSE of around 4.048 

units, particularly in predicting motor power consumption. Additionally, ARIMA forecasting 

was applied to a three-phase asynchronous motor, revealing an average active motor power of 

250.95 watts, indicating precise results over time. 
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INTRODUCTION 

While energy is necessary for every business, controlling and 

managing its use can be difficult [1]. increased energy prices, 

volatile markets, increased demand, and stringent government 

regulations have all made this problem more urgent. In response 

to these issues, businesses have created intelligent Energy 

Management Systems (EMS) that can assist in lowering costs, 

boosting productivity, and satisfying energy requirements [2]. 

The Internet of Things (IoT) is crucial in this regard in today's 

interconnected society. IoT refers to the process of tying up items 

or things that include sensors, software, and other technological 

components to share data over the Internet with other systems and 

devices. By 2025, it is anticipated that there will be three times as 

many devices connected with IoT, making it one of the most 

important inventions of the twenty-first century. IoT enables 

communication between objects, people, and processes by using 

embedded devices to link common appliances, cars, and even 

baby monitors to the Internet [2]. 

 

In the realm of energy management, the advent of smart metering 

technology has brought about significant advancements. 

However, despite these strides, there exist critical knowledge 

gaps that impede the realization of the full potential of smart 

meters. This study is driven by a commitment to address these 

specific gaps in the existing literature. Firstly, the current body of 

research predominantly focuses on basic consumption analyses, 

lacking a nuanced understanding of intricate patterns and 

variations in energy usage. This study aims to contribute to the 

field by delving deeper into subtle consumption behaviors, 

providing a more comprehensive foundation for effective energy 

management. Secondly, proactive load forecasting, a crucial 

aspect of grid optimization and disruption prevention, remains an 

underexplored area in smart metering. This research seeks to fill 

this gap by integrating advanced forecasting models, particularly 

the ARIMA model, into smart metering systems. Moreover, the 

integration of sophisticated time-series analysis techniques, such 

as ARIMA, for precise load forecasting and anomaly detection is 

a novel approach in smart metering. By addressing this gap, the 

study aims to enhance the accuracy and reliability of smart meter 

predictions. The literature also lacks comprehensive 

investigations into the detailed behaviors influencing energy 

consumption. This work endeavors to bridge this gap by 

conducting meticulous analyses of consumption patterns, 

shedding light on factors that may have been overlooked in prior 

research. Efficient processing of vast energy datasets is essential 

for meaningful insights. The current state of research lacks a 

thorough exploration of optimized data processing techniques in 

the context of smart metering. This study aims to contribute novel 

methods for processing energy data, ensuring more effective 

decision-making. By focusing on these specific knowledge gaps, 

our research aspires to propel the field of smart metering forward, 

providing valuable insights to optimize energy management 

systems and foster sustainable energy consumption practices. 
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Power consumption per consumer unit has traditionally been 

calculated by hand. Going to the location where the meters are 

located and personally recording data regarding power use from 

each consumer unit or meter is the technique that this involves. 

This method, which has been in place for some time, requires 

meter readers to visit meters regularly and collect usage data [3]. 

Automation of measurement acquisition has become possible due 

to recent advances in communication and processing 

technologies [4]. Real-time electricity consumption 

measurements are frequently recorded by smart meters, which 

then relay this data to households and energy providers [5]. Grid 

frequency management, energy metering, scheduled load 

shedding, control center computers, and terminal devices have all 

made use of smart metering. The raw voltage (V) and current (I) 

waveforms are measured at sample speeds compatible with this 

function to calculate the root mean square (RMS) values. The 

following metrics are frequently returned by smart meters after 

local analysis of the raw data: active power (P), reactive power 

(Q), apparent power (S), consumed electrical energy (E), and the 

phase angle (cos ̸) between voltage and current. In multi-phase 

electrical installations, parameters can only be accessed as an 

aggregate or are returned individually for each phase [6]. 

 

Time-series and regression analysis, fuzzy logic, genetic 

algorithms, support vector machines, artificial neural networks, 

and genetic algorithms are a few of the techniques that have been 

proposed for the analysis and load forecasting of data from smart 

meters. To get above the limitations of a single technique, hybrid 

approaches also use two or more techniques [7]. By including 

econometric factors and expanding the model to a wider horizon, 

short-term load forecasting (STLF) can be converted into 

medium-term load forecasting (MTLF) and long-term load 

forecasting (LTLF). The following few days to months' worth of 

loads are typically predicted using MTLF. Planning for 

generation expansion gains from using long-term long-term 

funding (LTLF), which is applied for several months to years. 

STLF can be transformed into MTLF and LTLF by adding 

econometric variables and expanding the model to a longer 

horizon. To predict loads for the upcoming days to months, 

medium-term load forecasting, or MTLF, is widely employed [7]. 

 

Kumari et al. present a smart and optimal power allocation 

strategy to the utility by utilizing a global system for automated, 

remote energy meter reading that is built on mobile 

communication modules. The targeted gadget is put on the 

customer's property, together with the energy meter. A GSM 

module establishes smart communication between the consumer 

and the service provider by calculating energy expended at 

different rates and periods. To identify the optimal service 

provider allocation to satisfy the goal function, an artificial neural 

network with backpropagation is employed. Smart energy 

metering is a ground-breaking idea that helps reduce energy costs 

while also facilitating proper repayments, optimal power 

consumption based on tariffs for different times of the day, and 

more flexible and reliable theft control [8]. A microcontroller unit 

is responsible for managing data, communication, and control 

(MCU). Analog-to-digital converters (ADC) transform analog 

sensor data into digital representation, while radio frequency 

integrated circuits enable wireless communication [9]. Displays, 

sensors, and cable connections are managed by the display driver, 

sensor interface, and communication interface. To check for 

tampering, sensors from micro-electromechanical systems 

(MEMS) may also be employed. The integrated circuits that 

smart meters can have vary depending on the manufacturer, 

features, and local regulations [10]. 

 

The subject of data analytics and smart meters had a substantial 

knowledge gap before the introduction of ARIMA for 

forecasting. The majority of previous research focused on basic 

consumption analysis, with little attention paid to in-depth 

assessments of subtle patterns or load predictions. Our work 

created a novel approach that combines the ARIMA idea with 

meticulous data processing to close this gap. By taking this 

action, we aimed to enhance the efficiency and dependability of 

smart metering systems, facilitating proactive load forecasting 

and more precise identification of anomalous consumption 

patterns [11]. 

 

To achieve this, a KiCad smart meter PCB was created, including 

crucial parts for data gathering and energy monitoring. Data on 

the energy consumption of three-phase motors and home 

appliances, such as computers, stereo systems, electric irons, and 

room heaters, were concurrently gathered and saved as single-

phase and three-phase energy consumption data [12]. There will 

be an energy assessment board calibration. The STM32 

microcontroller will be utilized for the processing of the gathered 

data. The ESP32 and SIM7600 modules will enable data relaying, 

and sending processed data to a centralized server. Structured 

data will be stored in a centralized database using PhpMyAdmin. 

The ARIMA model will be used to analyze the energy data to find 

patterns, trends, and projections of future energy use. Industries 

can control energy consumption, improve operations, and support 

sustainability efforts by adopting this technology. 

 

This study introduces a distinctive contribution to the field of 

smart metering and energy management through the development 

of a low-cost, versatile smart metering device. The novelty of the 

study lies in its integrated design, combining components such as 

the STM32 microcontroller, ADE7758 and STPM32 metering 

ICs, SIM and ESP32 communication modules, and a MYSQL 

database. This device not only demonstrates versatility by 

collecting real-time energy data from both single and three-phase 

appliances but also ensures high precision in calibration, 

achieving a remarkable 0 percent variance. The innovation 

extends to connectivity options, allowing data transmission 

through both SIM and Wi-Fi, providing adaptability to diverse 

environments. The study addresses a significant knowledge gap 

by explicitly recognizing the scarcity of in-depth analyses in 

current smart metering approaches and proposes a solution with 

advanced analytical techniques, including the application of 

ARIMA forecasting. Emphasizing sustainability, the smart meter 

offers industries a tool to manage energy usage effectively, 

optimize operations, and contribute to broader sustainability 

goals. In summary, this study's novelty lies in its holistic 

approach, combining hardware innovation, precise measurement, 

advanced analytics, and a focus on accessibility and sustainability 

in the realm of smart energy management. 

METHOD 

Data on energy use for both single and three-phase appliances can 

be collected by the smart meter. A three-phase electricity supply 
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was supplied to the smart meter by the ADE7758-based energy 

metering evaluation board. The STPM32-based evaluation board 

connects the smart meter to the single-phase energy source. The 

STM32 microcontroller is used for energy data processing. 

Whereas single-phase evaluation boards are connected via 

UART, three-phase evaluation boards are connected to the 

microcontroller via the SPI protocol. The SIM7600 is used to 

send energy data to the database. Figure 1 shows the meter's 

flowchart. 

 

 
Figure 1. Simple flowchart of the smart metering system 

developed for the study 

 

Development of boards 

Overview schematic of smart metering systems 

Single and three-phase appliance metering is supported by this 

smart meter. Different parts make up the Smart meter PCB 

depicted in Figures 2a and 2b. These parts include an STM32 

microcontroller, voltage regulators, battery holders (18650), 

communication modules (ESP32 and SIM7600), LEDs, resistors, 

capacitors, connection pins, and communication protocols (SPI 

and UART). KiCad, an open-source PCB design program, and 

electrical schematic tools were used in the PCB design process. 

The STM32CubeIDE is used to generate the PCB firmware for 

smart meters. Energy data is processed by the STM32 

microcontroller in the smart meter. For compact devices that run 

on batteries, the STM32 microcontroller has enough processing 

capability. When compared to other microcontrollers in the 

industry, such as Arduino and AVR, this microcontroller's strong 

capability demonstrates its appropriateness for use in Internet of 

Things applications. 

 

STM32 microcontrollers have a large number of serial and 

parallel communication peripherals that enable them to 

communicate with different electronic components [13]. 

STM32CubeIDE, an integrated development environment for 

STM32 that includes peripheral configuration, code generation, 

code compilation, and debugging tools for all STM32 

microcontrollers and microprocessors, is used to program STM32 

microcontrollers. It incorporates an STM32CubeMX project's 

capabilities. The microcontrollers are configured and the 

necessary code is generated by the STM32CubeMX tool. A 

Universal Asynchronous Receiver Transmitter (UART) is used to 

connect the STPM32 metering integrated circuit (IC) for single-

phase energy metering to a smart meter PCB, enabling the 

transmission and reception of energy data. A Serial Peripheral 

Interface (SPI) connects the smart meter PCB to the three-phase 

metering IC, ADE7758. The ADE7758-based evaluation board 

and the smart meter PCB may exchange serial data thanks to this 

interface. Data can be sent simultaneously in both directions 

because of its duplex mode of operation [14]. 

 

 
Figure 2. Assembled smart meter PCB: (a) Picture of smart 

meter PCB designed in Eagle, and (b) Picture of smart meter 

PCB after assembly of components 

Development of single-phase and three-phase evaluation 

boards 

To gather single-phase energy data from single-phase devices, 

this project makes use of the STPM32-based evaluation board, 

which is depicted in Figure 3b. Instantaneous voltage and current 

waveforms are provided by the STPM32, which also computes 

the root mean square (RMS) values of active, reactive, apparent 

power, and energy. The STPM3x is an advanced mixed-signal IC 

family tailored for precise power and energy measurement in 

power line systems, utilizing sensors like Rogowski coils, current 

transformers, or shunt current sensors. It offers a comprehensive 

set of features, including the calculation of RMS values for 

voltage and currents, active, reactive, and apparent power, and 

energy. The analog section encompasses programmable gain 

amplifiers, sigma-delta ADCs, voltage references, and other 

components, while the digital section features digital filtering, a 

hardwired DSP, and communication interfaces (UART or SPI). 

Noteworthy is its exceptional accuracy, boasting less than 0.1% 

error over a wide dynamic range for both active and reactive 

power. It meets or exceeds standards such as EN 50470-x, IEC 

62053-2x, and ANSI12.2x for AC-watt meters. The STPM3x 

allows fast digital system calibration across its current dynamic 

range, and its operational capabilities encompass various aspects, 

including instantaneous and averaged power, voltage/current 

RMS, sag and swell detection, and overcurrent monitoring. With 

a range of programmable features, precision ADCs, and reliable 

performance characteristics, the STPM3x plays a pivotal role in 

ensuring high-accuracy power measurements for the smart 

metering system. STM32 microcontroller in smart meter PCB is 

integrated with STPM32 through the UART interface. Stroia et 

al. demonstrated the use of STPM32 in smart metering [15]. 

 

This project uses an ADE7758-based three-phase evaluation 

board, shown in Figure 3b, to collect three-phase energy data 

from three-phase appliances. The ADE7758 Evaluation Board 

stands as a versatile assessment platform for the ADE7758 

metering IC, offering user-friendly configuration via a PC's 

parallel port and a fully isolated data interface. Tailored for 

energy meter applications, the board emulates real-world 

scenarios by connecting to test benches or high-voltage circuits. 

Supporting various current transducers, it integrates on-board 

resistor divider networks for precise line voltage attenuation. 

With two external 5 V power supplies, including one for isolation, 

and compatibility with 3-phase configurations, the board ensures 

accurate measurements. It boasts high accuracy, meets multiple 

industry standards, and provides comprehensive energy data, 
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including active, reactive, and apparent energy, along with 

voltage and current rms. The board's two pulse outputs and digital 

calibration enhance functionality, and on-chip programmable 

thresholds enable effective detection of critical power conditions. 

ADE7758 was utilized in smart energy monitoring by Guimarães 

et al [16]. To create a three-phase energy meter, the STM32 

microcontroller in the smart meter PCB is integrated with the 

ADE7758-based evaluation board via the SPI protocol. 

 
Figure 3. Assembled metering evaluation boards: (a) STPM32 

evaluation board after assembly, and (b) ADE7758 evaluation 

board after assembly 

Development of a smart meter communication module 

SIM 7600 and ESP32 modules make up the energy meter 

communication system. While SIM 7600 employs 4G SIM 

connectivity to communicate energy usage statistics to the 

database, the ESP32 module features integrated Wi-Fi. The 

potential use of the smart meter in various locations led to the 

selection of two communication modules. 4G SIM is 

advantageous for customers who are unable to connect to Wi-Fi. 

The database used to manage the energy data was created using 

PhpMyAdmin. Real-time energy data may be easily stored and 

retrieved with its ease of construction. 

Experiments 

Data collection and smart meter calibration were conducted using 

laboratory equipment supplied by Elettronica Veneta S.p.A. The 

power needed by the various appliances was controlled by the 

AV-1/EV power supply (Elettronica Veneta S.P.A., Italy). 

Single-phase and three-phase smart metering evaluation board 

integrated circuits (ICs) were calibrated using the meters, power 

supply, and three-phase asynchronous motor from Elettronica 

Veneta. Three-phase energy data on consumption was gathered 

using a three-phase asynchronous motor (Mod. M-4/EV) 

connected to a generator with independent excitation (Mod. M1-

2/EV). This induction motor has a duty-type S1 rating, meaning 

it can run continuously at a set load for long enough to bring the 

machine up to thermal equilibrium. 500W, 415V, and 1.3A star 

connections are its ratings [17]. 

 

Line voltage and line current are used in this instance to gather 

statistics on energy use. The information is then utilized to 

calculate apparent power, active power, and reactive power—all 

of which are necessary to understand how much energy the motor 

uses. Power consumption is calculated using several variables, 

some of which were taken from the motor's nameplate, such as 

the power factor of the motor. Utilizing a 1500W Mika room 

heater, a 240W HP Compaq 6200 Pro SFF Desktop PC, a 750W 

LG electric iron box, a 150W Sayona audio system, and other 

devices, hours of energy use were recorded. 

The comprehensive data collection approach involved precise 

measurements of line voltage and line current, ensuring a 

thorough examination of the three-phase motor's energy 

consumption characteristics. The analysis encompassed crucial 

parameters such as apparent power, representing the total power 

flow; active power, denoting the real power consumed; and 

reactive power, indicating the non-working power that oscillates 

between source and load. These insights were fundamental for 

understanding the motor's overall power dynamics and 

performance. Additionally, meticulous attention was given to 

factors influencing power consumption, including the power 

factor obtained from the motor's nameplate. This multifaceted 

data collection strategy provided a holistic view of the three-

phase motor's energy usage patterns, offering valuable 

information for the subsequent calibration and testing processes 

of the smart metering system. Concurrently, various household 

appliances were systematically monitored, ranging from the high-

power Mika room heater to the energy-efficient HP Compaq 6200 

Pro SFF Desktop PC, facilitating a diverse and representative 

dataset for the study. 

RESULTS AND DISCUSSION 

Voltage and current calibration in evaluation boards 

The register values of the metering integrated circuit and the 

actual voltage readings from a reference power supply meter were 

used to calibrate the voltage in the ADE7758. As seen in Figure 

4a, the data were entered into a table and utilized to create a graph 

that depicts the equation describing the relationship between the 

variables. A linear equation, y = 2806.3x + 262.15, governs the 

variables. To receive precise voltage readings from the smart 

meter, the firmware is updated using the given equation. The 

register values from the ADE7758 metering IC are shown on the 

y-axis, and the actual voltage levels are represented on the x-axis. 

Similar to voltage, the current was calibrated in ADE7758 [18]. 

The current reading from the reference meter and the associated 

register values on the serial monitor were noted. A linear 

relationship between the register values produced by the smart 

meter and the actual current measurements is depicted in Figure 

4b's graph. The linear equation y=48736x + 1842 represents the 

linear relationship between the two variables. 

 

The register values of the metering integrated circuit and actual 

voltage readings from a reference power supply meter were used 

to calibrate the voltage in the STPM32. As seen in Figure 4c, the 

variables follow a linear equation: y = 16.093x + 34.735. The 

register values from the smart meter are displayed on the y-axis, 

while the actual voltage values are displayed on the x-axis [19]. 

The register values of the smart meter were compared to the 

readings from a reference meter. As seen in Figure 4d, a graph 

illustrating the variables' linear relationship was created using the 

results. Equipped with the equation y = 139320x + 1729.2, a 

linear graph is produced. 
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Figure 4. Calibration of voltage and current in metering 

evaluation boards (ADE7758, and STPM32): (a) Calibration of 

voltage in ADE7758, (b) Calibration of current in ADE7758, (c) 

Calibration of voltage in STPM32, and (d) Calibration of current 

in STPM32 

Time series analysis for the appliances 

A time series analysis of the active power of the appliance reveals 

that there is a common pattern, seasonal variation, or 

autocorrelation among the data points collected over some time. 

The information is displayed in Figure 5 as a graph showing the 

active power of appliances concerning the index number. The 

largest power user is the 1500W Mika room heater. The 150W 

Sayona audio system is an energy-consumptive little device. The 

energy consumption data for the 750W LG electric iron box is 

dispersed throughout the graph, with the majority of it being 

below zero because of the thermostat's constant on-and-off 

cycles. 

 
Figure 5. Time series plot: Active power consumption of power 

by the single-phase and three-phase appliances used in the 

experiment 

 

The validation process involved a meticulous assessment and 

calibration of the smart meter's components, particularly the 

STPM32 and ADE7758 metering integrated circuits (ICs). 

Calibration of the ADE7758 required a comparison of register 

values with actual voltage and current readings obtained from a 

reference power supply meter. This calibration process ensured 

the establishment of precise linear relationships and conversion 

formulae for voltage and current measurements. Similar linear 

equations were derived for the STPM32 metering IC. The 

accuracy of these equations was confirmed through a thorough 

validation of the smart meter's relationship with the reference 

voltage and current. The results, demonstrating a 100.00 percent 

variance between the reference and smart meter readings, 

affirmed the high accuracy of the measurements taken by the 

smart meter. This robust validation process provided a foundation 

for the subsequent analyses and forecasting models, ensuring the 

reliability and dependability of the smart meter's performance. 

 

Table 1. Numeric accuracy results of the calibration and 

validation showing voltage and current readings in smart meter 

and reference meter 

Index Vref. Vsmart Iref. Ismart 

1 239.81 239.38 6.528 6.872 

2 241.98 239.01 7.040 6.879 

3 239.58 239.18 6.603 6.912 

4 241.50 239.11 6.899 6.884 

5 239.67 238.12 6.890 6.948 

6 239.48 239.10 6.620 6.936 

7 241.77 239.13 7.024 6.920 

8 240.13 239.07 6.785 6.961 

9 241.75 239.80 6.543 6.950 

10 241.81 238.51 6.802 6.951 

 

The graphs in Figures 6a and 6b verify the relationship between 

the meters and demonstrate the accuracy level of the smart meter. 

The smart meter's precision in taking readings is demonstrated by 

the 100.00 percent percentage difference between its voltage and 

current and the reference voltage and current. 

 

 
Figure 6 Validation of the relationship between the reference 

meter and smart meter: (a) Validation of Voltage(V) readings in 

the smart meter compared to the reference meter, and (b) 

Validation of Current(I) readings in smart meter compared to 

reference meter 

Results of ARIMA 

Error analysis 

Table 2 shows the data used for error analysis. This study 

Calculates the Mean Absolute Error (MAE) and Root Mean 

Squared Error (RMSE) using equation (1) and (2) respectively. 
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Table 2. Data used for error analysis 

Index P(Active) Forecast 

1 260.6794864 249.798 

2 259.8415145 249.955 

3 259.1725696 250.091 

4 256.1425517 250.208 

5 253.0235726 250.309 

6 252.6417918 250.397 

7 252.8759345 250.472 

8 253.6351166 250.537 

9 252.3212424 250.594 

10 251.5732152 250.642 

11 252.0120230 250.685 

12 252.5953378 250.721 

13 250.4713191 250.752 

14 250.4035616 250.779 

15 250.0262881 250.803 

16 249.1630945 250.823 

17 247.6628078 250.840 

18 247.5625538 250.855 

19 249.9006961 250.869 

20 250.5234186 250.880 

21 250.2303177 250.889 

22 249.7948914 250.898 

23 248.5159342 250.905 
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where yi is the forecast value and xi is the true value or P(active) 

as obtained in Table 2, while n is the total number of data points, 

which is 23. The average absolute difference between the 

predicted and actual values is measured by the MAE. Equation 1 

illustrates that the average fundamental error in this instance is 

roughly 2.912 units. The average squared difference between the 

predicted and actual values is measured by the root mean square 

error, or RMSE [20].  

 

According to equation 2, the RMSE in this instance is around 

4.048 units. To summarize, the projections produced by the 

ARIMA model deviate from the actual values by an average of 

2.912 units. According to the RMSE, the model's typical 

prediction error is approximately 4.048 units. These error metrics 

shed light on how well the ARIMA model predicts the motor's 

active power and how accurate it is. Better model performance is 

often indicated by lower MAE and RMSE values; however, the 

context and needs of the particular application should also be 

taken into account when interpreting the findings. Based on the 

data gathered for the period, the model offers comparatively 

accurate predictions [20]. 

Parameter estimates 

The final parameter estimates of an ARIMA model are shown in 

Table 3 together with the statistical measures that go along with 

them. The estimated coefficient for the AutoRegressive (AR) 

term of lag 1 is denoted by the AR(1) coefficient, which in this 

instance has a value of 0.8637. The standard error (SE Coef) of 

this estimate, which accounts for random fluctuations in the data, 

is 0.0700 [21]. The statistical significance of the AR(1) 

coefficient is indicated by the t-value of 12.33 and the associated 

p-value of 0.000, indicating a significant influence on the model's 

predictions. In a similar vein, the Moving Average (MA) term of 

lag 1's estimated coefficient, or MA(1) coefficient, has a value of 

-0.315. This estimate has a standard error of 0.120. There is a p-

value of 0.011 and a t-value of -2.63. The statistical significance 

of the MA(1) coefficient is further demonstrated by these results 

[21]. The intercept of the ARIMA model is the constant term, 

with a coefficient estimate of 34.200 and a standard error of 

0.268. The constant term is statistically significant and has a 

considerable impact on the model, as indicated by the constant's 

t-value of 127.49 and p-value of 0.000. 

 

An additional part of the ARIMA model is the estimated mean of 

the time series, which is shown as 250.95. An important metric 

for determining the time series' overall level is the mean value. 

Small p-values (less than 0.05) indicate statistical significance in 

parameter estimations, and they provide a substantial contribution 

to the predictions of the ARIMA model. These parameter 

estimates—the constant, mean, MA(1) coefficient, and AR(1) 

coefficient—will be used by the ARIMA model to help it make 

precise predictions and reveal underlying patterns in the time 

series data. To create a more accurate forecasting model, 

statistically significant parameters are essential for capturing the 

dependencies and features of the time series [20]. 

 

Table 3. Final estimates of parameters 

Type Coef SE Coef T-value P-value 

AR(1) 0.8637 0.0700 12.33 0.000 

MA(1) -0.315 0.120 -2.63 0.011 

Constant 34.200 0.268 127.49 0.000 

Mean 250.95 1.97 - - 

Active motor power consumption and prediction 

The motor has a mean active power of 250.95 Watts. When the 

motor is operating at full load, its hourly power consumption is 

0.25 kWh. For the motor, the daily consumption is about 6 kWh. 

A time series plot of the three-phase motor's active power 

consumption is displayed in Figure 7a. The predicted upper and 

lower bounds for power consumption based on the trend of the 

recorded values are displayed in Figure 7b. The motor's mean 

active power is shown by the midline. The motor's active power 

is shown versus time on the graph with a 95 percent confidence 

level [22]. The range of values that the actual active power mean 

is most likely to fall within is shown by the lower and upper limit 

values. The motor's maximum and lowest active power 

consumption limitations are depicted by the blue and red plot 

lines, respectively, while the middle line indicates the average 

active power consumption [5]. 
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Figure 7. Time series plot: (a) Active power of three-phase 

asynchronous motor before forecasting with ARIMA, and (b) 

Active power of three-phase asynchronous motor after 

forecasting with ARIMA 

 

In comparative evaluation, ARIMA generally surpasses simpler 

techniques like SMA and SES when confronted with intricate 

time series patterns, trends, and seasonality; however, its efficacy 

hinges on the inherent characteristics of the data. When pitted 

against neural network-based methods such as LSTM, ARIMA 

may be outperformed in instances of highly nonlinear and 

intricate patterns, with LSTMs excelling, particularly in scenarios 

featuring long-term dependencies. Nevertheless, the success of 

neural networks, especially LSTMs, necessitates meticulous 

tuning and a larger volume of data. Recommendations include 

opting for ARIMA in cases where time series data manifests 

linearity and clear patterns, while for intricate patterns, 

nonlinearity, and extended dependencies, NN-based methods like 

LSTM might yield superior results. Simple methods like SMA 

and SES are proposed as foundational benchmarks, especially for 

datasets exhibiting straightforward patterns. Ultimately, the 

optimal approach is contingent on the specific attributes of the 

data and the forecasting objectives, emphasizing the need to 

experiment with various methods and assess their performance 

using relevant metrics on a validation dataset [20]. 

CONCLUSIONS 

Our study successfully demonstrated the development of a smart 

meter, showcasing the careful assessment and calibration of 

STPM32 and ADE7758 metering ICs. Calibration involved 

precise comparisons of register values with actual voltage and 

current readings from a reference meter, establishing accurate 

linear relationships. Time series analysis of appliance power 

consumption revealed distinct energy usage patterns, with the 

Sayona audio system being the most efficient and the Mika room 

heater consuming the most power. The research validated the 

accuracy of the smart meter by quantifying error metrics, 

including Mean Absolute Error (MAE) and Root Mean Squared 

Error (RMSE), for the ARIMA model predicting motor power 

consumption. Notably, the ARIMA model, with crucial 

coefficients like AR(1), MA(1), and the constant term, exhibited 

significant predictive capabilities, capturing dependencies in the 

time series data. The active power consumption of the motor was 

precisely determined, averaging 250.95 Watts, with daily and 

hourly consumption indicating efficient energy utilization. The 

time series plot further illustrated anticipated upper and lower 

boundaries around the mean power consumption, emphasizing 

the model's reliability. The motor's impressive daily energy 

consumption of approximately 6 kWh reinforces the 

effectiveness of the smart meter in monitoring and optimizing 

energy usage. 
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NOMENCLATURE 

ARIMA Autoregressive integrated moving average 

MAE Mean Absolute Error 

RMSE Root Mean Squared Error 

IoT Internet of Things 

EMS Energy Management Systems 

ANNS Artificial Neural Networks 

SVMs Support Vector Machines 

FL Fuzzy Logic 

GAs Genetic Algorithms 

STLF Short-term load forecasting 

MTLF Medium-term load forecasting 

LTLF Long-term load forecasting 

GSM Global System for Mobile Communications 

MCU Micro-controller Unit 

ADC Analog-to-digital converters 

MEMS Micro-electromechanical Systems 

PCB Printed Circuit Board 

SIM Subscriber Identity Module 

Wi-Fi Wireless Fidelity 

LEDs Light-emitting Diodes 

IC Integrated Circuit 

SPI Serial Peripheral Interface 

UART Universal Asynchronous Receiver/Transmitter 

AR Autoregressive 

MA Moving Average 

 

 

 


