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The electrical distribution system is crucial for the utility grid to transmit power from generators 

to consumers. Considering the intricate structure of distribution systems and their significant 

role in power networks, establishing a robust fault classification and location scheme is vital. 

Due to ageing, distribution systems are often prone to faults from factors like poor operational 

conditions and wear and tear. The line faulting rate and the pertinent restoration epochs 

influence the frequency and duration of power disruptions. Thus, precisely locating the fault 

section is essential to minimize power restoration timeframes. This paper presents a hybrid fault 

classification and location technique in a combined continuous overhead and underground 

distribution line. A simulation of the hybrid model was designed in Simulink for an 11 kV 

combined continuous overhead and underground electrical distribution line, considering short 

circuit faults as they are the most predominant and cause massive damage in distributed systems. 

The proposed technique first classifies the fault using Discrete Wavelet Transforms (DWT) and 

Multi-layer Perceptron-Artificial Neural Networks (MLP-ANN). Next, the impedance and 

Adaptive Neuro-Fuzzy System (ANFIS) based technique is employed for fault location. At a 

sample rate of 50 kHz, the DWT was applied to current signals and the coefficients used for 

ANN training, while phase impedance values were used as input to the ANFIS for training. The 

simulation results showed accuracy of 96.6% for fault classification and 99.17% for fault 

location. The developed models can significantly enhance fault location for speedier outage 

resolution by promptly repairing the affected distribution lines. 
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INTRODUCTION 

Transmission and distribution lines are integral links of any 

electrical grid system that enable the permanence and continuity 

of energy from the generating source to the end users [1]. Just like 

any other electrical equipment, distribution lines are susceptible 

to faults. Faults disrupt the smooth flow of electricity, and they 

include, but are not limited to, short circuits, ground faults, open 

circuits, overloads, and transient faults. Short circuits are often 

the most predominant and require significant attention in fault 

management strategies. Short circuits typically occur due to a 

direct connection between two conductors with differing 

potentials, resulting in an excessive current flow. These faults 

pose immediate and severe risks to the electrical system, 

potentially leading to equipment damage, power outages, and 

safety hazards. As a result, short circuit faults demand proactive 

control measures to safeguard the integrity and stability of the 

power distribution network [2].  

 

Traditionally, overhead cables have been utilized to transmit and 

distribute electrical power. As a result of continued exposure to 

the outside atmosphere, overhead lines have various issues with 

safety and dependability. Nonetheless, overhead lines’ most 

distinct benefits include lower costs due to lower insulation levels 

required, simplicity of fault diagnosis due to a clear view of the 

conductors, lower installation costs, and ease of extension [3].  

 

Recently, there has been a rapid surge in the demand for electrical 

energy in urban areas. Worldwide, there is a growing trend of 

replacing overhead distribution lines with extensive underground 

power cables, particularly in environmentally sensitive and 

densely populated regions. Moreover, underground cables reduce 

the risk of failure caused by external factors such as rain, wind, 

and harsh weather conditions. Radio interference is also not 

present in underground wires [4]. However, underground cables 

are also susceptible to faults due to exposure to overload, ageing, 

mechanical, electrical, or chemical stress [5]. Also, faults in 

underground cables are difficult to detect, and restoring the 

system once faults are discovered may take a long time for the 

same electric power capacity as an overhead cable system.  

 

Recently, attention has been directed towards jointed overhead 

and underground electrical power distribution cable technology. 

This shift in focus is driven by evolving perceptions of the 

electrical power system engineers, considering reliability, safety, 

and economic factors [2]. Combined overhead and underground 

cables are also susceptible to faults; thus, asset managers need to 

adopt techniques that can accurately detect and locate faults when 
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they to happen. Prompt fault classification, location, and 

restoration are crucial tasks of the power systems asset managers 

to avert losses that can be accrued due to energy discontinuity. 

 

The need for fault classification and location research studies has 

increased significantly in recent years due to the growing 

complexity of contemporary power transmission and distribution 

systems [6]. Identifying the existence and pinpointing the exact 

location of a fault is a critical element in effective fault 

management as it speeds up the process of restoring energy and 

guaranteeing the system's stability. The precise location of the 

fault will allow prompt repair, lower operating costs, improve 

system accessibility, and reduce crew time and expense required 

to traverse hazardous terrain [7]. Researchers have categorized 

the established transmission or distribution line fault 

classification and location methodologies into two clusters: 

traditional and soft computing-based techniques [3–5].  

Conventional Approaches for fault detection and location 

Conventional fault classification and location approaches 

encompass a set of well-established techniques. These methods 

primarily include impedance-based strategies and travelling wave 

techniques. Impedance-based techniques are straightforward and 

rely on monitoring the line's current, voltage, and resistance 

values before or after a fault occurs [1], [7] – [10]. In contrast, 

travelling wave techniques analyze voltage and current signals 

both pre- and post-fault to extract valuable fault signatures for 

classification and location purposes [11] – [13]. One of the 

notable advantages of impedance-based techniques is their 

simplicity and the use of readily available parameters, making 

them practical for various distribution systems. On the other hand, 

travelling wave techniques excel in multi-branched radial 

distribution topologies, offering valuable insights into fault 

location. However, these approaches are not without their 

challenges [7]. 

 

Determining fault locations in combined overhead-underground 

networks using impedance-based methods can be complex, 

primarily due to non-homogeneous impedance characteristics 

between underground cables and overhead lines. Additionally, 

travelling wave techniques must contend with varying 

propagation velocities of combined lines' travelling waves, which 

can complicate the identification of fault zones [9]. Conventional 

approaches find their applications in fault detection across a broad 

spectrum of power distribution systems, particularly in scenarios 

where simplicity and reliability are paramount [9]. 

Soft-Computing-Based Approaches for fault detection 

and location 

In contrast to conventional methods, soft-computing-based fault 

detection approaches leverage advanced technologies and 

intelligent algorithms. This cluster includes techniques such as 

Artificial Neural Networks (ANN) [14], Support Vector 

Machines (SVM) [15], fuzzy logic [16], [17], and Genetic 

Algorithms (GA) [18], [19]. These techniques rely on machine 

learning and data analysis to interpret fault data effectively. 

 

The advantages of soft computing techniques lie in their 

adaptability to changing conditions and robust fault detection 

capabilities. They excel in handling complex data and possess the 

capacity for self-learning and adaptation. However, these 

techniques do have their own set of challenges. They heavily 

depend on training data, and any changes in the network 

configuration may necessitate new data acquisition and algorithm 

updates. Furthermore, the performance of these methods can be 

influenced by the quality and quantity of available training data 

[20]. Soft-computing-based techniques are particularly well-

suited for scenarios where adaptability to evolving fault patterns 

and a higher degree of automation are required, making them 

valuable tools in modern, complex distribution systems. 

 

Research has been geared towards improving stand-alone and 

hybrid fault classification and localization techniques. Fuzzy 

logic has been exploited in fault locations for combined 

transmission lines [21], [22]. However, there are difficulties in 

optimizing the fuzzy logic network parameters. An adaptive 

neural network-fuzzy technique is utilized in [23] to detect, 

classify, and correctly locate faults in a combined transmission 

system using essential components of post-fault-recorded 

voltages.  

 

In reference [24], the authors used wavelet and fuzzy algorithms 

to locate abnormalities in a single-core underground power cable. 

The wavelet transform extracts features from the fault signal, and 

fuzzy logic was utilized to pinpoint the fault. This model offered 

an acceptable level of accuracy but there is need to examine the 

vast range of fault scenarios to test its robustness. In the hybrid 

method described in reference [25], SVM is used to identify the 

fault region after the DWT has extracted the transient 

characteristics from recorded voltages. However, in this method, 

the losses at the joints between overhead and underground cables 

are assumed to be negligible. A fault location methodology based 

on neuro-fuzzy systems in jointed transmission lines with 

underground power cables is proposed in [26]. Although the 

authors managed to get accurate results, the method only 

addressed a single line-to-ground fault. Thus, to improve the 

efficacy of this method other types of faults must not be 

overlooked.  

 

A detailed comparison of fault location algorithms is conducted 

in reference [3], focusing on long transmission lines combined 

with underground cables. The authors aimed to achieve precise 

fault location by implementing a hybrid system that combines 

impedance-based and wavelet-based techniques. It is worth 

noting that, while achieving impressive accuracy, the study relies 

on data from both sending and receiving ends, which may not 

always be available in practical applications. However, 

combining Modal Transformation, Wavelet Transform, and ANN 

showcased the potential for significantly improved fault location 

accuracy by integrating multiple techniques. In particular, the 

combination of Wavelet Transform and ANN led to a notable 

enhancement, raising the accuracy to 96.75%. These findings 

underline the effectiveness of incorporating diverse 

methodologies to address the inherent challenges in fault location 

for complex transmission configurations. This provides valuable 

insights for enhancing power grid reliability and maintenance 

despite the constraints posed by data availability. 

 

In reference [9], the authors proposed a novel intelligent 

framework using a data logger-equipped design for fault 

classification and location in a smart distribution system. Their 
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approach incorporates over-current relays and Multi-Resolution 

Analysis (MRA) wavelet transform. However, the paper lacks 

clarification regarding selecting the faulted section within the 

system. Additionally, it is essential to note that their study has not 

considered the impact of joints between the cables. In [27], an 

amalgamation of pattern recognition methods and Fast Discrete 

S-Transform (FDST) was utilized in power transmission lines to 

detect the faults with improved accuracy and was also able to 

differentiate the interior faults from the external faults. For fault 

detection, the FDST technique uses current, voltage, and phase 

angles from both ends of the transmission line. However, the 

FDST technique in [27] is intricate and challenging in real-time 

applications. In [25], DWT, extract features from faulty voltage 

and current signals, and employ ANN in fault locations in an 

overhead transmission line. The most noteworthy drawbacks are 

its massive training data and lengthy training procedure, which 

add to the computational load. Additionally, owing to the inter-

harmonics and decaying DC components, DWT is also impacted, 

which causes erroneous results.  

 

A combination of impedance, DWT and SVM is used in[28] for 

fault classification in a 110km, jointed overhead-underground 

transmission line. Voltage and current signals from one side of 

the line were used for classification of only four types of faults. 

Authors in [29] applied DWT to classify faults in a transmission 

line. In their method, current signals from the receiving and 

sending end of the transmission line were used, to classify four 

types of faults. A limitation of this method is that, analyzing the 

signals from both ends of a transmission line brings about signal 

distortion that may affect the expected results. A single-ended 

travelling wave-based fault location method for power 

transmission systems where overhead lines are combined with 

underground cables is proposed in [29]. DWT is used to extract 

transient information of recorded voltages, and SVM is used to 

determine the fault section. The normalized wavelet energies of 

post-fault voltages are used as the input to the classifier. A 

classification accuracy of 82.22% was achieved for ten types of 

faults.  

 

This paper explores different techniques for improving the 

accuracy of fault classification and location in power distribution 

systems. A hybridization of methodologies based on impedance, 

discrete wavelet transforms, artificial neural networks, and 

ANFIS was employed. These techniques were combined to 

develop two models for classifying and locating short circuit 

faults in a continuous jointed overhead and underground 

distribution line. The DWT technique was selected for signal 

processing for fault classification. The DWT (db4) mother 

wavelet was applied to the current signal from the sending end of 

the joined distribution line. The resulting coefficients were 

combined with an MLP neural network for fault classification. 

Although SVM cascaded with DWT has shown some 

improvement in fault classification for long-distance transmission 

lines, it has some limitations in the number of faults classified, 

and, a threshold for fault value is required. Thus, an integration 

of MPL-DWT is adopted in this study, which does not require 

fault value thresholding in classification. An impedance-adaptive 

Neuro-Fuzzy System-based technique was applied for fault 

location. 

 

The proposed technique’s capability of classifying and locating 

11 types of short circuit-related faults is also a significant 

contribution to the field of study. Additionally, the design focuses 

on jointed overhead and underground distribution lines, which, 

has received limited attention in previous researches. This 

emphasis makes the design highly relevant for practical 

applications in the power system distribution sector. Using 

conventional and soft computing techniques ensures the 

robustness and high accuracy of the system, providing an 

inclusive solution that overcomes the limitations of individual 

technique’s designs. This research aims to leverage the strengths 

of both approaches in fault classification and location in a 

continuous combined overhead line and distribution cable. 

METHOD 

This section discusses an alternative approach to fault 

classification and location in a hybrid distribution topology. The 

hybrid distribution topology comprises two key elements: 

coordination of the fault categorization model and the fault 

location model. A DWT-MLP ANN model is proposed for fault 

classification, whereas an impedance-based ANFIS model is 

established for fault location. 

Distribution Line Model  

A distribution line model was established to classify faults and to 

evaluate the performance of algorithms designed for fault 

classification and location. A simplified single-line diagram of a 

20 km, 11 kV jointed overhead and an underground power line is 

illustrated in Figure 1. The combined distribution line comprises 

a 15 km overhead line with a diameter of 150 mm2 and a 5 km 

underground cable diameter of 300 mm2.  

 

 
Figure 1. Simplified single line diagram 

 

For further processing and evaluation, a simplified distribution 

line model was developed. This model was then expanded into a 

distributed parameter model to represent the overhead line and 

the underground cable system, as shown in Figure 2. In this 

model, a three-phase power source with a magnitude of 66 kV is 

connected to a 66/11 kV step-down transformer, which produces 

11 kV for distribution.  

 

Voltage and current measurements of the distribution system 

were taken from the bus bar at the sending end; these signals were 

utilized to verify how the system is affected by faults. The 

distribution line is sectionalized to enable fault introduction at 

different distances. The section blocks A, B, C, D, and E are fault 

blocks used to introduce fault into the model. They have been 

placed in sections to map the whole distribution line length. The 

overhead line (OHL) and underground cable (UGC) distributed 

parameters, shown in Table 1, were used to model the distribution 

line.  
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Table 1. Distribution system parameters 

Components Parameters 

Three Phase Source 

Resistance = 0.45 Ω 

Inductance = 63.73 H 

Phase Voltage = 66 kV 

66/11 kV Transformer 
Nominal Power = 23 MVA 

Frequency = 50 Hz 

Overhead Distribution Line 

Resistance = 0.2228 Ω /km 

Inductance = 84.67 µH/km 

Capacitance = 0.27724 nF/km 

Underground Distribution 

Line 

Resistance = 0.0796 Ω/km 

Inductance = 0.2833 mH/km 

Capacitance = 0.52 µF/km 

11/0.433 kV Transformer 
Nominal Power = 630 kVA 

Frequency = 50Hz 

Load 
Active Power = 262,721.79 W 

Reactive Power = 162.8 MVar 

 

 

 

The established fault classification and location models involve 

the three-phase voltages and currents at the sending end of the 

hybrid distribution line. The model was designed in the 

MATLAB/Simulink platform, and data from simulations was 

processed for further use in either ANN or ANFIS, depending on 

the sub-model being executed.  

Fault Classification 

An assumption that a fault has already occurred is initially made 

to initiate fault classification. Single-phase, double-phase, and 

three-phase faults can occur on distribution lines; thus, these 

faults were created for analysis. Figure 3 depicts the developed 

model used to generate the fault signals for classifying and 

identifying faults. Vabc and Iabc are voltage and current signals 

from the sending end. The signals were passed through low pass 

filters (LPF), with a 50 Hz fundamental frequency for filtering 

out harmonics caused by the system's load and source inductance. 

Current signals were selected for analysis as they were the most 

affected system parameters when a fault occurs compared to the 

voltage signal. 

 

 
Figure 2. Combined overhead-underground distribution line model 

 

 
Figure 3. Combined overhead and underground distribution line model for fault classification 
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To perform the DWT-MLP ANN-based algorithm, the following 

steps were executed for the designed fault classification 

technique: 

i. A distribution system model was created using 

Simulink, and three-phase currents were measured at 

the sending end. 

ii. Utilizing DWT, 3rd level, and db4, phase current 

coefficients were derived from the three-phase current 

signals. 

iii. The detailed coefficients for each phase, as well as 

their maximum value, were determined and assumed 

as follows: 

Sa = Maximum detailed coefficient of phase A 

Sb = Maximum detailed coefficient of phase B 

Sc = Maximum detailed coefficient of phase C 

iv. Preprocessing the data: The phase coefficients and the 

type of fault data were used for the Neural Network 

development. 

v. Divided the data into train and test sets. 

vi. The types of faults: phase-ground, phase-phase, 

phase-phase-ground, three phases, and three phases-

ground were labelled as shown in Table 2. 

vii. MLP network architecture was set by choosing the 

optimum: Hidden layers, activation function, the 

solver, learning rate, and maximum iteration. 

viii. Trained and tested the developed classification model. 

ix. A confusion matrix and percentage error after training 

and testing were obtained. 

 

Table 2. Labels on type of faults 

Type of Fault Label 

Phase A to Ground 1 

Phase B to Ground 2 

Phase C to Ground 3 

Phase A and B 4 

Phase A and C 5 

Phase B and C 6 

Phase AB to Ground 7 

Phase AC to Ground 8 

Phase BC to Ground 9 

Phase A, B, and C 10 

Phase ABC to Ground 11 

 

A MATLAB code was developed to decompose current signals 

and determine the highest coefficient in each phase. At different 

distances, phase current coefficients were collected for training 

and testing; a 3200 data set were used. The data was randomly 

split into two, with 20% of the data being applied to the classifier's 

predictions testing and 80% used for training. A model with 20 

hidden layers was used and to activate the hidden layers an 

identity function activator was adopted. Optimization of the 

weights was achieved through a Limited-memory Broyden–

Fletcher–Goldfarb–Shanno Algorithm (L-BFGS) solver with 300 

maximum iterations since it has the capacity to converge faster 

and performs better as compared to Adams solver. To schedule 

for weight updates, a constant learning rate was utilized as it can 

be applied to complex non-linear problems and can also 

accommodate large input data at relatively faster performance. 

The flowchart for the established algorithm is highlighted in 

Figure 4 whilst Table 3 shows the MLP architecture. 

 

A model with 20 hidden layers was used, and an identity function 

activator was adopted to activate the hidden layers. The weights 

were optimized through a Limited-memory Broyden–Fletcher–

Goldfarb–Shanno Algorithm (L-BFGS) solver with 300 

maximum iterations since it can converge faster and perform 

better than the Adams solver. A constant learning rate was 

utilized to schedule weight updates as it can be applied to 

complex non-linear problems and accommodate extensive input 

data at relatively faster performance. The flowchart for the 

established algorithm is highlighted in Figure 4, while Table 4 

shows the MLP architecture, where N is the number of neurons 

in each hidden layer. 

 

The accuracy of an MLP neural network model is influenced by 

three main factors: the number of hidden layers, the activation 

function used in the hidden layers, and the solver algorithm 

employed to optimize the model parameters [30]. This study 

examined several possible combinations of these factors and their 

corresponding accuracy percentages to identify the best MLP 

classifier model for fault classification. The performance metrics 

for each combination of factors and varying numbers of neurons 

(N) in each hidden layer are presented in Table 4. By analyzing 

the outcomes in Table 4, the optimal configuration of the MLP 

model was determined to be N = 20, Identity activation function, 

and Lbfs solver, which achieved an accuracy of 96.67%. This 

outcome indicates that the proposed hybrid model, which 

employs the optimized MLP classifier, can accurately classify 

faults in distribution networks. 

 

 

 
Figure 4. Fault classification flowchart. 
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Table 3. MLP-ANN training and testing sample data from DWT. 

S. No Sa Sb Sc Fault Type 

1 0.0374 0.0387 0.0356 No-Fault 

2 0.1128 0.0364 0.0388 AG (Phase-Ground) 

3 0.0406 0.1166 0.0360 BG (Phase-Ground) 

4 0.0374 0.0390 0.1087 CG (Phase-Ground) 

5 0.0777 0.0444 0.0375 AB (Phase-Phase) 

6 0.0641 0.0433 0.0871 AC (Phase-Phase) 

7 0.0413 0.0856 0.0649 BC (Phase-Phase) 

8 0.1299 0.1453 0.0407 ABG (Phase-Phase-Ground) 

9 0.1249 0.0512 0.1368 ACG (Phase-Phase-Ground) 

10 0.0322 0.1236 0.1242 BCG (Phase-Phase-Ground) 

11 0.0849 0.0713 0.0846 ABC (Three Phase) 

12 0.1341 0.0946 0.12473 ABCG (Three Phase-Ground) 

 

Table 4. Multi-layer perceptron architecture 

Number of 

Neurons 

Activation 

Function 
Solver 

Accuracy 

(%) 

20 Logistic L-BFGS 96.36 

10, 20, 30 Logistic SGD 9.09 

50, 30, 10 Logistic Adams 9.10 

20 Tanh L-BFGS 96.33 

10, 20, 30 Tanh SGD 39.70 

50, 30, 10 Tanh Adams 96.51 

20 Identity L-BFGS 96.67 

10, 20, 30 Identity SGD 44.09 

50, 30, 10 Identity Adams 96.00 

20 Relu L-BFGS 96.18 

10, 20, 30 Relu SGD 15.00 

50, 30, 10 Relu Adams 95.00 

ANFIS-based Fault Location Model 

This study uses the one-ended impedance fault location approach. 

This technique does not encounter any reflection of signals 

compared to other fault location methods, such as double-ended 

impedance. Phase-to-ground voltage measurements were used to 

calculate the impedance at the sending end. When compared to 

phase-to-phase voltage and current measurements, the phase-to-

ground voltage and current measurements showed a significant 

difference in the current and voltage measurements when a fault 

was introduced. The phase impedance measurements were 

employed as the input to the ANFIS for training and testing the 

model for fault location. A dataset of 1000 simulated fault data 

from impedance calculations was used, with 80% of the dataset 

being used to train the ANFIS, and 20% of the dataset was used 

to test the system's performance. The following steps were carried 

out in the developed fault location technique to execute the 

Impedance-ANFIS-based algorithm: 

i. Phase-to-ground currents and voltages were measured 

at the sending end. 

ii. Impedance was calculated. 

iii. Preprocessing the data: the phase impedance and the 

distance for the ANFIS development. 

iv. Divided the data into train and test sets. 

v. ANFIS network architecture was set by choosing the 

optimum: membership function, the number of epochs, 

type of membership function, and output membership 

function type. 

vi. Trained and tested the developed location model. 

vii. Percentage error after training and testing calculation. 

 

Figure 5 illustrates the associated flowchart for developing the 

fault classification model. Figure 6 shows the model developed 

for fault location, considering the phase-to-ground voltage and 

current for impedance calculations Vabc and Iabc are the voltage 

and current measurements utilized for impedance calculation per 

phase. The output was connected to the ANFIS model developed 

for fault location, and the predicted distance was then displayed. 

 

 
Figure 5. Fault location flowchart. 
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Figure 6. Combined Overhead and Underground distribution line model for fault location 

 

Table 5. Sample training data from impedance calculations. 

Type of fault 
Impedance 

Phase A (𝛀) 

Impedance 

Phase B (𝛀) 

Impedance 

Phase C (𝛀) 

AG (Phase-Ground) 3.355 700.7 699.9 

BG (Phase-Ground) 699.9 3.355 700.7 

CG (Phase-Ground) 700.7 699.9 3.355 

AB (Phase-Phase) 176.4 310.3 700.1 

AC (Phase-Phase) 310.3 700.1 176.4 

BC (Phase-Phase) 700.1 176.4 310.3 

ABG (Phase-Phase-Ground) 4.739 4.11 806.5 

ACG (Phase-Phase-Ground) 4.11 806.5 4.739 

BCG (Phase-Phase-Ground) 806.5 4.739 4.11 

ABC (Three Phase) 1.736 1.736 1.736 

ABCG (Three Phase-Ground) 1.736 1.736 1.736 

 

For illustration, Table 5 displays a sample of the obtained 

impedance values at 5 km (overhead distribution line side). The 

highlighted values in bold are of the faulted phase. The affected 

phase is observed to have low-value impedance ranging between 

1.5 Ω to 310 Ω since when a fault occurs, current peaks and the 

voltage falls, leading to low impedance. Also, the three-phase and 

three-phase ground faults have the same values in impedance 

because they are symmetrical faults, which means current and 

voltage during the fault will be symmetrically distributed, leading 

to the same impedance in each phase.  

 

Figure 7 shows the generated ANFIS model structure for fault 

location, where the input variables are the impedance values of 

each phase, and the output is the predicted fault distance.  ANFIS 

was preferred because it presents a better learning ability and 

adaptability. The membership function influences the efficacy 

and computational cost of the ANFIS-based model; the triangular 

membership function showed better results for this study. The 

training of the system is depicted in Figure 8. The goal was to 

create a model that, given the distribution line fault signals, can 

precisely estimate the fault location. Figure 9 illustrates the 

error for testing the system and showcasing any anomalies to 

evaluate the training's efficacy, while the rules generated after 

training are shown in Figure 10. 

 

 
Figure 7. Generated ANFIS model structure. 
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Figure 8. Training error of the dataset. 

 

 
Figure 9. Testing error of the dataset. 

 

 
Figure 10. ANFIS Rule viewer. 

RESULTS AND DISCUSSION 

This section assesses the performance of the suggested 

methodologies under various fault scenarios and presents the 

findings.  

Fault Identification and Classification 

The results categorize the fault type based on the signals acquired 

from the jointed overhead-underground distribution line's sending 

end. After fault introduction, each phase current is affected 

differently depending on the type of fault.  Figure 11 shows the 

confusion matrix that indicates the number of actual classes and 

projected class predictions made by the fault classification 

algorithm. The matrix evaluates the algorithm's performance, 

showing the accuracy of the algorithm in predicting the correct 

class for each sample in the test set. The matrix rows signify the 

samples' actual fault classes, and the columns characterize the 

predicted fault classes. The entries in the matrix indicate the 

percentage of samples that were predicted to belong to each 

combination of actual and predicted classes. A confusion matrix 

as a percentage is used to ease visualization and compare the 

performance of the classification algorithm across different 

classes. Table 6 shows how the MLP classifier classified each 

fault type with a mean accuracy of 96.7%. The results 

demonstrated that the established fault classification system has 

an improved accuracy level compared to observations in [31]. 

 

 
Figure 11. Fault classification algorithm confusion matrix. 

 

Table 6. MLP Classifier Percentage Accuracy. 

Type of Fault 
Class 

Label 

Accuracy 

(%) 

AG (Phase-Ground) 1 95.0 

BG (Phase-Ground) 2 100.0 

CG (Phase-Ground) 3 95.0 

AB (Phase-Phase) 4 96.7 

AC (Phase-Phase) 5 90.0 

BC (Phase-Phase) 6 100.0 

ABG (Phase-Phase-Ground) 7 96.7 

ACG (Phase-Phase-Ground) 8 93.3 

BCG (Phase-Phase-Ground) 9 100.0 

ABC (Three Phase) 10 98.3 

ABCG (Three Phase-Ground) 11 98.3 

Mean Accuracy 96.7 
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Table 7. Comparison of some fault classification techniques.  

S. No Method Parameters Type of System Faults Accuracy 

1 Impedance, DWT, and 

SVM[28]  

Voltage and current single-

ended 

110 km, jointed overhead-underground 

transmission line 

4 99.01% 

2 DWT[31]  current signal from the sending 

and receiving end of the line 

40 km, 115 kV overhead-underground 

transmission line 

4 82.22% 

3 DWT-SVM [29] Voltage signal, single-ended 194 km, 120 kV overhead-underground 

transmission line 

10 99.10% 

4 Traveling wave (DWT) 

[32] 

Voltage signal, single-ended 322 km, 230 kV overhead-underground 

transmission line 

3 98.30% 

5 DWT-MLP Neural 

Network (proposed) 

Current 20 km, 11 kV overhead-underground 

distribution line 

11 96.70% 

 

The fault classification system developed in this study achieved a 

higher accuracy than [31], attributed to the hybridization of 

discrete wavelet transforms and MLP artificial neural network 

techniques. Although results from references [28], [30], and [32] 

have high percentage classification accuracy compared to the 

proposed model, they classified fewer faults, and their application 

was towards jointed overhead-underground transmission lines.  

The proposed system classified 11 types of short circuit faults, 

and its accuracy is comparable to the previous studies, which is 

also a notable improvement over previous studies in [28] – [30], 

[32], as seen in Table 7. These improvements make the fault 

classification system a valuable addition to fault classification in 

jointed overhead-underground power distribution systems, 

potentially enhancing their accuracy and efficiency. 

Fault Location 

The fault location algorithm in this study used impedance data 

calculated for each phase. This data was used in training and 

testing the ANFIS system for fault location. A graphical user 

interface (GUI) was established to facilitate the implementation 

of AFIS for fault location. A simulated data set of 1,000 samples 

was created to develop and fine-tune the fault location algorithm. 

In Tables 8 and 9, an illustration of how the system performs 

based on the effect of the type of fault for the same distance is 

assessed. The percentage error in fault location prediction is 

determined by pointing at different types of faults at randomly 

selected distances of 8 km in the overhead line and 16.5 km 

underground cable (from the sending end). Table 8 shows that the 

BCG (phase-phase-ground) fault had a maximum error of 

magnitude 2.75%. Results for fault location prediction in 

underground cable for all types of faults at 16.5 km are presented 

in Table 9. The maximum error recorded for this selected distance 

is 0.7078% for the three-phase faults. 

 

Table 10 displays the results of the simulations performed at 

arbitrary fault locations chosen on the line to establish the 

accuracy of the developed ANFIS model. The percentage error of 

each predicted outcome was established and shown using 

Equation 1, in which negative values observed result from the 

predicted distance exceeding the actual distance. 

Table 8. Location prediction based on Fault type in the overhead 

line section. 

Type of 

Fault 

Actual 

distance 

(km) 

Predicted 

distance 

(km) 

Difference 

(km) 

Error 

(%) 

AG 8 8.01 0.01 0.125 

BG 8 8.17 0.17 2.125 

CG 8 8.22 0.22 2.750 

AB 8 8.13 0.13 1.625 

AC 8 8.17 0.17 2.125 

BC 8 8.18 0.18 2.250 

ABG 8 8.13 0.13 1.625 

ACG 8 8.13 0.13 1.625 

BCG 8 8.22 0.22 2.750 

ABC 8 8.07 0.07 0.875 

ABCG 8 8.07 0.07 0.875 

AVERAGE 0.136 1.704 

 

Table 9. Location prediction based on Fault type in underground 

cable section. 

Type of 

Fault 

Actual 

Distance 

(Km) 

Predicted 

Distance 

(Km) 

Difference 

(Km) 

Error 

(%) 

AG 16.5 16.44 -0.06 -0.3636 

BG 16.5 16.44 -0.06 -0.3636 

CG 16.5 16.49 -0.01 -0.0606 

AB 16.5 16.49 -0.01 -0.0606 

AC 16.5 16.49 -0.01 -0.0606 

BC 16.5 16.49 -0.01 -0.0606 

ABG 16.5 16.49 -0.01 -0.0606 

ACG 16.5 16.51 0.01 0.0606 

BCG 16.5 16.52 0.02 0.1212 

ABC 16.5 16.63 0.13 0.7878 

ABCG 16.5 16.63 0.13 0.7878 

AVERAGE 0.01181 0.0661 
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Table 10. Fault Location and Error Estimation 

Section Actual Distance (Km) Predicted Distance (Km) Difference (Km) Error (%) 

Overhead 1.20 1.29 0.09 7.500 

 2.50 2.44 -0.06 -2.400 

 3.20 3.18 -0.02 -0.625 

 4.57 4.60 0.03 0.656 

 5.30 5.20 -0.10 -1.880 

 6.27 6.40 0.13 2.070 

 7.02 7.00 -0.02 -0.285 

 8.22 8.10 -0.12 -1.450 

 9.09 9.10 0.01 0.001 

 10.38 10.13 -0.25 -2.410 

 11.05 11.00 -0.05 -0.452 

 12.06 11.50 -0.56 -4.640 

 13.00 13.30 0.30 2.300 

 14.33 14.67 0.34 2.370 

Average 0.054 

Underground 15.47 15.21 -0.26 -1.680 

 16.01 16.00 -0.01 -0.062 

 17.58 17.50 -0.08 -0.455 

 18.50 18.68 0.18 0.973 

 19.50 19.80 0.30 1.538 

Average 0.063 

Overall Average percentage error 0.056 

 

Table 11. Comparison of some on-fault location techniques 

No Technique Parameters Type of System Accuracy 

1 Modal transformation 

method [3]. 

Voltage and current from both the 

sending and receiving end. 

Single line, 400kV, 110km overhead-

underground transmission line 

95.00% 

2 Wavelet transform and 

ANN [3]. 

Voltage and current from both the 

sending and receiving end. 

Single line, 400kV, 110km overhead-

underground transmission line 

96.75% 

3 Travelling wave with 

data loggers [9] 

Voltage 13-node network, 20kV overhead-

underground distribution line 

98.50% 

4 Impedance, DWT, and 

SVM [28]  

Voltage and current single-ended 110km, overhead-underground 

transmission line 

99.88% 

5 Impedance-ANFIS 

(Proposed) 

Voltage and Current signal 20km, 11kV overhead-underground 

distribution line 

99.17% 

 

The error histogram in Figure 12 graphically represents the 

distribution of errors in the fault location model predictions. It 

visualizes the model's accuracy by showing the frequency of 

errors at different levels of magnitude. The errors are first 

computed by taking the variance between the model's predicted 

values and the target variable's actual values for each observation 

in the dataset. These errors are then binned into a set of bins, and 

the total errors in each bin are counted. The total counts are 

plotted on the y-axis, and the bins are plotted on the x-axis. A 

mean error of 0.0083 was obtained using Equation 2 from the 

error histogram. 

 

( )Predicted distance Actual distance
(%)

Actual distance
Error

−
=  (1) 

1

1
Predicted distance Actual distance

n

i

Mean Error
n =

= −  (2) 

 

where n is the number of observations in the dataset. 

 
Figure 12. Predicted distance error histogram. 
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A mean error of 0.0083 represents a percentage accuracy of the 

fault location system of 99.17%, showing that all eleven (11) 

short circuit faults were accurately located along the distribution 

line. The algorithm developed in this study performed better than 

those presented in [3] and [9]. However, authors in [28] obtained 

a higher percentage accuracy but their study was limited to only 

four (4) types of faults classified and located. The proposed 

technique in this paper represents an improvement over the 

method established in [3] by incorporating ANFIS, which 

significantly enhanced fault location accuracy, as evidenced by 

the comparison with previous work presented in Table 11. It is 

important to note that the comparison was only performed on 

techniques used in fault location for combined overhead-

underground transmission lines and jointed overhead-

underground distribution lines. The proposed method 

significantly benefits distribution systems as it can classify and 

locate the 11 short circuit-related faults, enabling faster 

restoration times and reducing downtime. 

CONCLUSIONS 

This paper presents a hybrid technique for fault classification and 

location in a jointed overhead-underground distribution line. The 

designed model consists of two phases: fault type classification 

and fault location. The faults in the power distribution line were 

classified using a combination of DWT and MLP neuro-network 

models. While, the impedance-ANFIS-based approach was 

applied for fault location. The developed hybrid model managed 

to classify and locate 11 short circuit faults with higher accuracy. 

Fault classification was performed using phase coefficients from 

current signal analysis using DWT db4 at level three to train the 

MLP neuro network model. After training and testing, the 

classification model attained an average percentage error of 3.3%. 

Fault location was carried out using phase-to-ground impedance 

measurements at the sending end to train and test the ANFIS 

model, and the system percentage error was 0.83%. According to 

the simulation results, the developed model effectively classifies 

the fault type and can pinpoint the fault location with minimum 

error. Comparing key performance indicators of traditional and 

soft computing methods, the results of this study suggest that 

hybridizing with intelligent technology can significantly reduce 

system error margins. 

 

Utility companies can deploy this hybrid technique to enhance 

outage management systems, deliver faster response times, and 

reduce downtime during a power outage. Maintenance planning 

becomes more efficient with accurate data, allowing utility 

companies to schedule repairs and proactively minimize 

customer disruption. Ultimately, this research enhances 

engineering capabilities to classify and locate faults while 

providing solutions that directly benefit power distribution 

operations and their customers. 
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