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Abstract: Data-as-a-Service (DaaS) is a branch of cloud computing that supports “querying the

Web”. Due to its ultrahigh scale, it is essential to establish rules when defining resources’ costs

and guidelines for infrastructure investments. Those decisions should prioritize minimizing the

incidence of agreement breaches that compromise the performance of cloud services and optimize

resources’ usage and services’ cost. This article aims to address the cost problem of DaaS by

developing a model that optimizes the costs of querying distributed data sources over virtual

machines spread across multisite data centers. We have designed and analyzed a cost model for

DaaS, besides implementing a scheduling system to perform a cost-based VM assignment. To

validate our model, we have studied and characterized a real-world DaaS system’s network and

processing workloads. On average, our cost-based scheduling performs at least twice as well as

the traditional round-robin approach. Our model also supports load balancing and infrastructure

scalability when combined with an adaptive cost scheme that prioritizes VM allocation within the

underutilized data centers and avoids sending VMs to data centers in the eminence of becoming

over-utilized.
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1 Introduction

During the last decade, we witnessed a continuous and increasing growth of live data
sources, such as smartphone applications and sensors. Processing such data allows
companies to understand their customers and behavioral patterns and trigger actions in
relevant situations. Examples of those applications range from recommender systems
and clickstream analysis to fraud detection systems.

In addition to active and live data sources, information can be obtained by contin-
uously crawling the Web. New content is published and made available every second
through various channels, such as blogs and Web portals.

Big companies such as Google and Yahoo! have access to passive data sources as
their business models rely on a continuous crawling and processing of the Web. Small
to medium-sized enterprises (SMEs), whose primary business is often outside of IT,
cannot access such data. Acquiring passive information requires appropriate technology
for crawling, storing, and processing the data and sufficient computational and storage
resources to perform those tasks.

Although cloud computing enables practically anyone to acquire resources on the
fly on a pay-as-you-go basis without high up-front investments, crawling the (“whole”)
Web and performing data processing is still challenging for many SMEs. First, the
companies do not have the necessary knowledge and technology for crawling, storing,
and processing the data. Second, keeping a copy of the “whole” Web requires massive
resources that a single SME cannot afford.

In the following, we consider an alternative paradigm called Data-as-a-Service
(DaaS), in which multiple SMEs share the costs needed for the infrastructure to crawl
and store a copy of the whole Web (or at least a significant part of it) and execute their
business-specific queries on the given data set.

In addition to the DaaS paradigm, we consider an inhomogeneous micro-cloud model
rather than a single dedicated data center for crawling, storing, and processing data.
Micro-clouds consist of a few nodes, typically comprising only as little as 20 nodes with
different storage and processing capabilities, usually interconnecting through asymmetric
links. The advantage of micro-clouds is that they can work as part of the heating system
in residential houses in the northern hemisphere, which allows green cloud computing as
promoted by companies such as Cloud & Heat [CloudAndHeat 2020].

Although the micro-cloud model provides many energy and environment-friendly
advantages, scheduling tasks such as crawling and data processing impose new chal-
lenges. First, as mentioned above, micro-clouds are usually interconnected through
low-bandwidth links, which do not allow data shuffling on the TeraByte range. Second,
micro-clouds expose different processing capacities and incur additional costs, e.g.,
depending on the heating needs in a residential house. Hence, this requires scheduling
strategies different from scheduling algorithms used for homogeneous data centers.

This paper extends the scheduling algorithm and cost model proposed by Oliveira et
al. [Oliveira et al. 2015]. This work performs a real-world experiment analysis of the DaaS
and micro-cloud paradigm, where tasks (abstracted as virtual machines - VMs), such
as crawling and processing, are scheduled across a set of micro-clouds. Our algorithm
reduces the cost to less than 50% of the traditional round-robin task assignment approach.

The remainder of this paper is organized as follows. Related work is presented in
Section 2. The proposed Data-as-a-Service cost model is described in Section 3. The
scheduling strategies are defined in Section 4. The cost-based scheduling is validated in
Section 5. Section 6 discusses final remarks and future work.
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2 Related Work

We found many works that propose cost models for cloud computing services and VM
scheduling. However, they do not approach cost models for DaaS and do not present
VM processing experiments to model workload in real data centers. Besides, there is a
lack of work in pricing schemes for Data-as-a-Service specifically.

There are research lines that propose optimal cost analysis for power consumption.
Li et al. [Li et al. 2018] studied computing and cooling energy to minimize the total
energy. Kantarci et al. [Kantarci et al., 2012] proposed an inter-and-intra data center VM
placement for large-scale cloud systems to minimize power consumption. The model
approach also applied Mixed Integer Linear Programming (MILP). Dong et al. [Dong et
al. 2015] proposed a VM migration technique to minimize the maximum link utilization
to improve the network performance. This scheme makes a tradeoff between energy
efficiency and network performance.

Xu et al. [Xu et al. 2018] analyzed a multi-objective minimization problem of VM
scheduling by optimizing the incentives for both client and provider parties. They strived
to maximize the successful execution rate of VM requests, minimize the cloud user cost,
and minimize the deviation of profit, which is the incentive for the cloud provider.

Niyato et al. [Niyato et al. 2016] categorized and presented data pricing models for
the Internet of Things (IoT). Such work is valuable for comprehending state of the art on
pricing models.

Dehsangi et al. [Dehsangi et al. 2015] developed cCluster that implemented a VM
classification on the fly that acts in the VM scheduling to reduce I/O response time and
improve network throughput.

Zaman and Grosu developed a combinatorial auction-based resource allocation mech-
anism for dynamic VM provisioning and allocation in clouds that intends to minimize
the total cost of VMs under the constraint that a particular job J needs to be finished by
the deadline D [Zaman and Grosu 2013].

Patel and Sarje proposed a VM provisioning method to minimize SLA violations
and improve the profits of cloud service providers. They developed a threshold-based
load balancing among federated clouds. They assumed VM cost models for on-demand
and reserved instances. The results showed that the model might decrease the Service
Level Agreement (SLA) violation factor while hindering resource allocation and load
balancing among data centers [Patel and Sarje 2012].

Li et al. developed an adaptive algorithm to find the best allocation plan to maxi-
mize resource availability in Infrastructure-as-a-Service (IaaS) clouds while avoiding
overutilization. They argue that those practices are mainly responsible for increasing the
profit [Li et al. 2012]. Xiong et al. [Xiong et al. 2011] also handled the system overload
problem. They developed the ActiveSLA, a profit-oriented admission control framework
for Database-as-a-Service systems to minimize SLA breaches and maximize profit. In
another work, Xiong et al. [Xiong et al. 2011b] solved the prior goals with a different
approach: a cost-aware resource management system.

3 Data-as-a-Service Cost Model

A cloud may be represented as a set ofmicro-clouds, each one holding physical hosts for
the execution of VMs or data storage. As a preliminary description, the termmicro-cloud
represents a small set of processing elements in the same local area network (LAN)
without necessarily meaning the infrastructure of a complex data center. However,
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without loss of generality, we will use the term data center throughout this paper, either
with the same concept of micro-cloud or as a regular data center. We may represent
different cloud configurations in one or several administrative domains, including private,
public, or federated clouds. In DaaS, one query runs on top of one or more VMs, requiring
access to one data source from the storage area located in the data centers.

We modeled one query (A.K.A. job) as one or more tasks. Each task needs one VM
to execute and one data source for processing. All data sources reside in the storage area,
replicated over the data centers. Data sources are persisted in a key/value (K/V) store.

The VM instance reads and processes the data, then sends the (partial or final) query
results to the destination through the communication network. The VMs perform the
queries’ computation following theMapReduce programming style [Dean and Ghemawat
2008]. In this context,Map is performing some computation on a data set, and Reduce
is reducing the mapped data to obtain the final result. The MapReduce model is widely
applied to process large amounts of data in a distributed fashion. Big Data processing
is a good representative for using the MapReduce model [Hurwitz et al. 2013]. Figure
1 illustrates the scheduling process and presents the challenge of which data center to
allocate the VM.
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Figure 1: Scheduling decision process: Where to allocate the VM?

3.1 Cost Model

The DaaS cost model relies on two assumptions:

i VM and data are located in the same data center: If the VM runs in the same
data center that stores the required data source, i.e., in the same LAN, then there is
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no network communication cost to read the data;

ii VM and data are located in different data centers: If the VM does not run in the
same data center storing the required data, it incurs network communication costs to
read the input data.

The cost model components are defined as follows:

– Let D be the set of data centers:

• D = {d1, d2, . . . , d|D|};

– Let U be the set of query VMs:

• U = {u1, u2, . . . , u|U |};

– Let S be the set of data sources:

• S = {s1, s2, . . . , s|S|};

– Let −→v be the VM processing costs’ vector for each data center in D:

• −→v = 〈v1, v2, . . . v|D|〉;

• where vi is the execution cost (i.e., CPU cost, considering the different speeds of
heterogeneous resources) for a VM during 1 hour on data center di, 1 ≤ i ≤ |D|;

– Let
−→
t be the communication costs’ vector for each data center in D:

• −→
t =

〈
t1, t2, . . . t|D|

〉
;

• where ti is the cost to transfer one gigabyte out of data center di, 1 ≤ i ≤ |D|.

Let us define the independent variables that model the query task that the VM uz

will execute, 1 ≤ z ≤ |U |:

– Rz: the number of gigabytes received by the query VM uz;

– Tz: the number of gigabytes sent out of the query VM uz;

– rz: the reduction factor of VM uz; i.e., the ratio between Tz andRz , where rz = Tz

Rz
;

– kz: the time rate needed for processing one gigabyte received (input) within the
query VM uz , i.e., VM uz needs kz ·Rz hours to finish;

– qz: output rate (bytes per hour), where qz = rz
kz
.

We assume that the cost to execute one query is the total cost composed by the VM

execution cost (Ceiz = kz ·Rz · vi) plus the data communication costs (Cdiz = Tz · ti),
taking into account the location of the VM and the data source.

Let the function C(uz, sz, di, dj), or simply Ci,j
z , be the VM uz cost (dependent

variable) of executing the VM uz at data center di and retrieving data from data center
dj ; where 1 ≤ i, j ≤| D | and 1 ≤ z ≤ |S|, and this cost is defined as follows (Eq. 1):
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C (uz, sz, di, dj) = Ci,j
z

= Ceiz + Cdjz
= (kz ·Rz · vi) + (Tz · tj)
= kz ·Rz · vi +Rz · rz · tj
= kz ·Rz · vi +Rz · (qz · kz) · tj

Ci,j
z = kz ·Rz · (vi + qz · tj) (1)

The cost to run VM uz in data center di, if it contains one copy of the required data
source (i.e., di = dj) and, thus, there is no data communication cost (Cdiz = 0), is
simplified according to Equation 2.

C (uz, sz, di, di) = Ci,i
z = Ceiz = kz ·Rz · vi (2)

Although prominent, the VM instance can only download a data source from the
storage data centers. We have defined a function called contains that must be employed
when checking whether accessing a given data source is possible. If the data center
dj contains the data source sz , the function will return 1; otherwise, it returns 0. The
function is defined in Equation 3.

contains(dj , sz) =

{
1 if sz is stored in dj
0 if sz is not stored in dj

(3)

We have summarized the cost function for the VMcosts in Equation 4 and exemplified
the overall scheduling cost process in Figure 2. The scheduling cost is infinite if the data
center dj has no replica of the data source uz .

C (uz, sz, di, dj) =

{
kz ·Rz · vi if di = dj

∧
contains(dj , sz) = 1

kz ·Rz · (vi + qz · tj) if di 6= dj
∧

contains(dj , sz) = 1
∞ otherwise

(4)

4 Formalization of the Cost-based Scheduling Problem

The cost-based scheduling problem is aminimization problem,wherewe look tominimize
the cost of scheduling the query VMs. We place the query VMs into a queue and assign
them to execute and retrieve the data source from the data center pair, which minimizes
the cost.

The cost to execute the query VM on the data center holding the data source is not
necessarily below the cost when retrieving the data from the network. If the communica-
tion and VM costs are below the cost of scheduling the VM to data centers holding the
data, the scheduling service will retrieve the data through the network. It is worth noting
that the cheapest data center for running the VM will host the instance.

The problem of cost-based scheduling is to minimize the cost of allocating one VM
individually (greedy scheduling), following the order that the VMs are in the scheduling
queue. We generically represent the minimum cost to process the VM uz by:
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Figure 2: System model: Pricing scheme.

minCz = minCi,j
z = minC (uz, sz, di, dj) ;∀di, dj ∈ D

According to Equation 4, the cost of the VM uz being hosted on data center di, and
by retrieving data from data center dj is:

Ci,j
z = tj + vi + qz · tj (5)

Mixed Integer Linear Programming (MILP) is an approach for solving scheduling
problems. MILP is an application of mathematical programming (mathematical opti-
mization). It optimizes a linear objective function, subject to linear equality and linear
inequality constraints. A linear programming algorithm finds a point in the feasible region
where the function has the smallest (or largest) value, if such a point exists, depending
on the objective, whether it is minimizing or maximizing the objective function [Floudas
and Lin 2005].

As discussed in previous sections, the scheduling problem we intend to solve has
more assumptions than simply determining the minimum values for the coefficients that
minimize the objective function. The locality of the data source replicas also impacts
the final cost. Thus, this scheduling problem has more constraints than simple linear
inequalities.

In the following sections, we will vectorize our variables and formalize the model
using Linear Algebra.

4.1 Definition of Constraints

Let us define the source matrixM of the query VM uz to do this. It has | U | lines and
| D | columns. The lines represent the query VMs, and the columns are the data centers
that store the data sources required by the corresponding query. If the data center stores
one copy of the required data, the value is set to 1; otherwise, it is set to 0.
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M|U |·|D| =

 1 0 . . . 1
1 1 . . . 0
. . . . . . . . . . . .
0 0 . . . 1


Given that, the vector that corresponds to all costs to execute the query VM uz is

defined as follows:
Cz =

−→
tz · 1 + kz · (−→v + qz ·

−→
t )

Where:

– −→v = 〈v1, v2, . . . v|D|〉 is the vector of VM execution costs for each data center in
D;

–
−→
t = 〈t1, t2, . . . t|D|〉 is the vector of communication costs for each data center in
D;

– Mz is the z− esim row of the source matrix (i.e., row describing which data centers
contain a replica of the data source sz);

–
−→
tz = Mz. ∗

−→
t (element-wise multiplication, for getting only the t costs from the

data centers holding data replicas);

– Thus, tjz is the communication cost for retrieving the data source sz from data center
dj ; it is set to∞ when the data is not stored on dj .

We first define a matrix of known coefficients called θ to solve the problem. This
model has three lines (i.e., the number of products on the cost function) and D columns
corresponding to the data centers. The θ matrix, and its transpose matrix θT are defined
in Equations 6 and 7, respectively.

θ =

[
1 1 . . . 1
1 1 . . . 1
qz qz . . . qz

]
3·|D|

(6)

θT =

 1 1 qz
1 1 qz
. . . . . . . . .
1 1 qz


|D|·3

(7)

Before we delve into the definition of the cost matrix, Cz , of the query VM uz , we
will define another matrix, X . It contains the cost vectors of the data centers that are
required to compute the overall cost. The X matrix is defined in Equation 8.

X =

−→
tz−→v
−→
t

 =

 t0z t1z . . . t
|D|−1
z

v0 v1 . . . v|D|−1

t0 t1 . . . t|D|−1


3·|D|

(8)

4.2 Minimization Problem

The cost matrix, Cz , of the query VM uz , is finally defined in Equation 9. We attest that
the product of the matrices θT and X results in the cost matrix.
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Cz = θT ·X

Cz =

 1 1 qz
1 1 qz
. . . . . . . . .
1 1 qz

 ·

 t0z t1z . . . t
|D|−1
z

v0 v1 . . . v|D|−1

t0 t1 . . . t|D|−1



=


t0z + v0 + qz · t0 t0z + v1 + qz · t1 . . . t0z + v|D|−1 + qz · t|D|−1

t1z + v0 + qz · t0 t1z + v1 + qz · t1 . . . t1z + v|D|−1 + qz · t|D|−1

. . . . . . . . . . . .

t
|D|−1
z + v0 + qz · t0 t

|D|−1
z + v1 + qz · t1 . . . t

|D|−1
z + v|D|−1 + qz · t|D|−1


(9)

On the other hand, the scheduling decision involves finding the minimum cost among
the possible choices. Before applying the scheduling function, we set the costs of all
non-possible options to infinite. We perform the scheduling decision over the cost matrix
Cz using the argmin function available in all Linear Programming frameworks. We
define how to represent the scheduling decision function in Equation 10.

{i, j} =
argmin

1 ≤ i, j ≤ |D|Cz (10)

Where:

– argmin returns the coordinates’ indices of the minimum value for the cost. We used
the NumPy framework that implements this function [NumPy 2020]);

– i = bargmin(Cz)÷ | D |c (row);

– j = bargmin(Cz)% | D |c (column).

4.3 Cost-based Scheduling Algorithm

The scheduling decision is the ordered pair of data centers {di, dj} that minimize the cost
function over all data centers in D, as stated in Equation 11. The scheduling mechanism
would propose an empty set result if no data sources were available. Therefore, the VM
could not run until the execution conditions were satisfied.

schedule (uz, sz, D) =

{
{di, dj} = argmindi,dj∈D C(uz, sz, di, dj) if C(uz, sz, di, dj) 6= ∞

∅ otherwise
(11)

5 Validation

We shall specify the VM queries, and processing and communication costs to validate
this proposed DaaS cost model. We analyzed how to characterize these parameters using
actual queries and costs.

The data underpinning the analysis reported in this paper are deposited at a public
repository [Oliveira 2023].
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5.1 Workload Definition

We conducted actual DaaS experiments to characterize workload parameters for VM
queries. We monitored and collected CPU usage metrics and network traffic traces from
the VM queries’ data received and sent out. We have also searched for processing and
communication costs for cloud infrastructure services. We will explain those assignments
in the following sections.

5.1.1 Query VM Characterization

We experimented with estimating the processing and network metrics. The experiment
consisted of an application to crawl the Web using the MapReduce programming model
for data processing. We used the Hadoop framework [Hadoop 2010] to implement the
crawling software.

The mappers and reducers are in three micro clouds located in 3 German cities:
Dresden, Münster, and Hamburg, as shown in Figure 3. The execution time lasted for
24.79 hours. The query VMs remained active throughout the experiment. During the
execution of the experiment, we gathered memory, CPU, and network usage metrics.

Figure 3: Distributed crawling [Quoc et al. 2015].

5.1.2 Network Traffic Characterization

Network traffic was collected using the tcpdump tool. Each VM’s received and sent
traffic was processed, and we graphically plotted the time series of the throughput of each
VM. In Figure 4, the incoming and outgoing traffic throughput was grouped by the hour
to provide more understandable information about the execution of virtual machines.

VM No 1 (u1) has an outgoing traffic volume higher than the initial input. They
become equivalents after the 10th hour. This is also the moment when both directions
of traffic have their peak hours, with about 20 GB for the input volume and 30 GB for
the output volume. VM No 2 (u2) has an input volume higher than that of output during
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practically all its execution. With a maximum input volume of almost 20 GB in 10th hour
and 8.65 GB in hour 17th. The VM No 3 (u3) has comparable volumes for incoming and
outgoing traffic. The maximum input volume was 17.41 GB at 8 th hour and 17.82 GB
in 10th.
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Figure 4: Input and output network volume per hour for each VM.

The variables R and T of the VMs are related to the network traffic behavior. In this
sense, we have derived them from this DaaS application experiment. Figure 5 presents
hourly estimates for the variables R and T for VMs u1, u2 and u3. We used those values
to validate the cost-based scheduling model afterward.
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Figure 5: Estimated R and T values for the 3 VMs.
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Figure 6: Estimated q and k values for the 3 VMs.

5.1.3 Data Processing Characterization

The variables q and k are derived from the collected processing metrics. We compute
them after the measurements’ analysis. Figure 6 shows each experiment hour’s analytical
distribution of the variables q and k for VMs u1, u2, and u3 by each experiment hour.

5.1.4 Processing and Communication Cost Characterization

We set up the initial processing and communication costs according to the infrastructure
costs applied by the Cloud & Heat [CloudAndHeat 2020] drop provider.
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The chosen VM instances have a medium size (M). They contain four virtual CPUs,
a virtual hard drive of 120 GB, 4 GB of RAM, and 4 TB of traffic, being charged e 0.08
per hour for each VM instance ande 0.02 per hour for each GB that exceeds this network
quota. However, to simplify the analysis, such traffic in excess will not be charged for
this assessment.

Three data centers will compose the cost model evaluation. The v and t costs to run
a query VM in these data centers for 1h are presented in Table 1.

DC ID Processing Cost Vector −→v (e) Network Cost Vector
−→
t (e)

d1 v1 = 0.09 t1 = 0.02
d2 v2 = 0.1 t2 = 0.03
d3 v3 = 0.07 t3 = 0.05

Table 1: Processing and Communication Costs for each Data Denter in |D|.

5.1.5 Workload Summary

Table 2 shows the variables calculated by the total time of the experiment for the sum of
the sent (T ) and received (R) amount of traffic, and the mean values of q and k for the
VMs u1, u2 and u3.

VM ID Sum of R (GB) Sum of T (GB) Time (h) Mean k (h/GB) Mean q (GB/h)

u1 314.09 414.44 24.79 0.078917381 16.71971049
u2 250.15 145.29 24.79 0.099095321 5.861165521
u3 285.49 282.21 24.79 0.086834007 11.38412853

Table 2: Sum of network received (R) and sent (T ) volumes; and average processing
values of q and k for each VM during the period of the experiment.

5.2 Scheduling Strategies

We have compared the proposed cost-based scheduling for DaaS with the traditional
round-robin strategy. We will define them in the following sections.

5.2.1 Round Robin Strategy

This strategy selects one pair of data centers that satisfies the conditions to execute the
query VM in a round-robin fashion. The pool of resources is randomly organized.
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5.2.2 Cost-based Strategy

The cost-based strategy decides on the pair of data centers that minimizes the cost to
schedule the VM from the available data centers at the scheduling moment. It is relevant
to emphasize that a pair of data centers may not represent the minimal cost among the
initial set of data centers because, at some stage of the scheduling, the cheapest processing
data center could be at total capacity (e.g., there is a lack of computing resources), or
the data center that hosts a copy of the data source with minimal network cost is not
available to data retrieval. In this case, the cost-based scheduling will propose the second
cheapest cost and decide on another pair that satisfies the query VM assumptions.

5.3 Cost-based Scheduling Performance Evaluation

We have used R Programming Language and additional packages to implement the
VM cost-based scheduling, to process the data, analyze the results, and generate the
graphics [RProject 2021] [Wickham 2016] [Warnes et al. 2022]. We have also studied
two Python frameworks for Linear Programming to implement the VM cost-based
scheduling: Numpy [NumPy 2020] and SciPy [SciPy 2020].

We initially performed different experimental treatments to identify the effect of
the factors in the final cost; however, we realized that the most significant impact (over
5% of significance) affecting results is the number of VMs that can be executed per
data center. Then, we shaped our analysis and further investigated two experimental
treatments.

In the first experiment treatment, one data center may process at most 20% of the
scheduled queries; in the second, one data center can host up to 100% of the queries.

Suppose the data center that has the optimal cost is not available to allocate the query
VM. The query VM will be allocated to the data center with minimal cost among the
available set. The evaluated number of VMs per data center (DC) is shown in Table 3.

Nr. Parameter Factor Level

1 Number of VMs processed per DC 8

2 Number of VMs processed per DC 40

Table 3: Analyzed experiment treatments.

We have attributed to every data center two costs (v and t) assigned according to the
workload definition. To every query VM, we have also assigned two rates (q and k) from
within an analytical distribution. Every data source was replicated using a replication
factor.

The number of data centers, queries, and sources was constant throughout the experi-
ment. Those configuration variables are summarized in Table 4.

5.3.1 Analysed Metric

We have analyzed a metric called normalized cost. It is a ratio between the cost obtained
with the scheduling approach and the optimal cost.
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Nr. Parameter Configuration

1 v (cpu cost) See Section 5.1.4

2 t (bandwidth cost) See Section 5.1.4

3 q See Section 5.1.3

4 k See Section 5.1.3

5 |D| = |U | = |S| 3

6 Replication factor (data randomly placed into

DCs)

2

7 Number of Query VMs 40

Table 4: Experiment plan.

The optimal cost to schedule the query VM uz is the cost obtained when the pair of
data centers that minimizes the cost to schedule the VM is chosen by the scheduler from
the available set of data centers |D|.

LetC∗z
D be the optimal cost for running the query VM uz on data source sz , given the

set of data centersD. The scheduling decision takes an ordered pair{di, dj}, respectively,
comprising the data center hosting the VM and the one for retrieving the data source. It
minimizes the VM scheduling costs among all data centers belonging to the set D.

Note that the data centers with available resources to schedule a VM will vary
according to the number of VMs running on them, their VM capacity, and if the chosen
data center that hosts a copy of the data source is available to respond to the demand.

It is relevant to emphasize that if the pair of data centers that minimizes the cost
is unavailable for hosting a new VM at the moment of the scheduling (e.g., there is a
lack of computing resources), we will not name the optimal choice in this data analysis.
Employing comparison, we will also present the optimal results as if we could choose
the data centers without any contention of resources.

We analyzed the optimal resulting costs to verify the effectiveness of the cost-based
strategy in choosing another pair of data centers when the cheapest pair is not available
to attend the current query VM. It may also indicate the need to scale the infrastructure.

We formally define the normalized cost and the optimal cost as follows.

– Normalized Cost: NC(z)

The normalized cost of the query VM uz is defined as:

NC (z, e, r) =
Ci,j

z

C∗z
D

(12)

Where:

• di and dj are the scheduler’s decisions;

• C∗z
D = min Ci,j

z ;∀di, dj ∈ D.

– Optimal Normalized Cost: NC∗(z)
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The optimal normalized cost objective is 1, as stated in Equation 13. Even though it
is only possible for cases when there is no contention of resources, i.e., if the cheapest
DC is available when demanded. We analyzed this metric to check how often those
events occur and whether significant losses justify oversizing the infrastructure.

NC∗(z) = NC (z, e, r) → 1;∀z, e, r (13)

5.3.2 Discussion of the Results

The results showed no statistical difference between the cost-based and the optimal
scheduling strategy. As a result, the cost-based scheduling resulted in the optimal choices
for the VM scheduling in all scenarios under consideration. This improvement tends to
increase when the processing time rate decreases (k), which is acceptable and encouraging
once the capabilities of the resources also increase. In contrast, new large-scale processing
models are necessary.

For the first eight VMs scheduled on experiment Treatment No1, the normalized
cost is one because each DC supports hosting the processing of up to 20% of the query
VMs (e.g., eight queries simultaneously scheduled from a demand of 40). Those results
are presented in Figure 7. Note that it considers only processing conditions. It does not
consider the data source transfer from the network.

Even when resource contention is present, the cost-based scheduling strategy per-
formed, on average, three times better than round-robin. Besides, we confirmed statisti-
cally that the cost-based scheduling performed similarly to the optimal decisions even in
cases of resource contention.
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Figure 7: Obtained costs for the scheduling strategies when 20 % of the VMs may be

hosted per data center.



Oliveira A.C.A., SpohnM.A., Fetzer C., Quoc D.L., Martin A.: Cost-based Virtual Machine ... 1477

In Figure 8, we present the results from experiment Treatment No2, where every
data center can host the processing of up to 100 % of the query VMs. We do not have to
allocate VMs to non-optimal-cost data centers in this case. Consequently, the normalized
optimal cost is 1 for all scheduled VMs. The cost-based strategy was nearly 2.5 to 4
times cheaper than the round-robin approach, including the confidence intervals for the
variability of the results.
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Figure 8: Obtained costs for the scheduling when up to 100% of the VMs may be hosted

per data center.

The large variability of the round-robin strategy is that it eventually decides on the
optimal cost; however, it presents the same probability of choosing the most expensive
data center to allocate the query. The cumulative distribution function of the mean costs
charged per scheduler strategy used to specify multivariate random variables’ distribution
shows that the cost-based strategies have correlated and close growth curves. In contrast,
the round-robin costs grow more smoothly, presenting higher mean values. The CDFs
for both experiment treatments are plotted in Figures 9 and 10.

We also concluded that there is no significant cost difference between the cost-based
scheduling and the analyzed optimal scheduling.

Complementary, we studied the outliers present in the results. The outliers contributed
to the variation in the cost values. Since there is a random assignment for four variables,
their combination may lead to a broader time range and processing of consuming queries.
We may identify those using boxplots (the line inside the box indicates the median value).
The mean and median in our experiment have practically the same value. The median for
the normalized cost for the cost-based strategy is around 1, and the round-robin median
is approximately 3. The results are shown in Figure 11.
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Figure 9: CDF for the scheduling strategies when up to 20 % of the VMs.
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Figure 10: CDF for the scheduling strategies when up to 100 % of the VMs.
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Figure 11: Boxplot of the query VM normalized costs.

6 Conclusion

Wehave designed and analyzed a cost model for DaaS, besides implementing a scheduling
system to perform a cost-based VM assignment. The final costs obtained for the queries
using the cost-based scheduling performed at least twice as well, on average, than the
traditional round-robin approach.

The proposed cost-based scheduling model may also support load balancing and
infrastructure scalability when combined with an adaptive cost scheme that prioritizes
VM allocation within the underutilized data centers and avoids sending VMs to data
centers in the eminence of becoming over-utilized. Such an approach is possible with
simple changes in the cost model to adjust the data center costs based on the current
allocation state.

In future work, we intend to benchmark the cost-based scheduling model with adap-
tive schemes, submit the system to SLA constraints, and attribute penalties for non-
compliant agreements.
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