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 This Airships are lighter than air vehicles and due to their growing number of 

applications, they are becoming attractive for the research community. Most of the 

applications require an airship autonomous flight controller which needs an 

accurate model and state information. Usually, airship states are affected by noise 

and states information can be lost in the case of sensor's faults, while airship model 

is affected by model inaccuracies and model uncertainties. This paper presents the 

application of nonlinear and Bayesian estimators for estimating the states and 

model uncertainties of neutrally buoyant airship. It is considered that minimum 

sensor measurements are available, and data is corrupted with process and 

measurement noise. A novel lumped model uncertainty estimation approach is 

formulated where airship model is augmented with six extra state variables 

capturing the model uncertainty of the airship. The designed estimator estimates 

the airship model uncertainty along with its states.   Nonlinear estimators, 

Extended Kalman Filter and Unscented Kalman Filter are designed for estimating 

airship attitude, linear velocities, angular velocities and model uncertainties. While 

Particle filter is designed for the estimation of airship attitude, linear velocities and 

angular velocities. Simulations have been performed using nonlinear 6-DOF 

simulation model of experimental airship for assessing the estimator performances. 

1 − 𝜎 uncertainty bound and error analysis have been performed for the validation. 

A comparative study of the estimator's performances is also carried out. 

1. Introduction 

In the last couple of decades due to the advancement in 

technology, once again airships are becoming a potential 

candidate for many applications like communication, 

surveillance, agriculture, search and rescue, geological 

exploration, advertisement, conducting archeological 

surveys, environmental monitoring, heavy cargo lifting 

and hovering payload deliveries etc. [1]. In order to 

successfully use the airship for these applications, it is 

required to develop its reliable autonomous control. 

For airship autonomous control, many control 

methods have been proposed in the literature for 

example error-based controllers [2], model based 

optimal controllers [3], model based nonlinear 

controllers [4-6] and intelligent controllers [7]. These 

controllers rely on sensor measurements as a feedback 
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and some of them require an accurate model 

information. Therefore, controller performance depends 

on model accuracy, sensor measurements and sensor 

functionality. Inertial Navigation System (INS) is used 

as a sensor suite for air vehicle navigation. INS use 

Inertial Measurement Unit (IMU) and GPS for 

identifying position and current attitude of the air 

vehicle. INS provide excellent accuracy to position and 

attitude measurements with coverage, but the data 

obtained is usually affected by noise. Additionally, if the 

sensor gets stuck due to some fault then the 

measurements do not remain reliable. To sort out these 

problems, nonlinear estimators can be a possible remedy 

as they are able to smooth the measurements obtained 

by sensors and can estimate states under sensor faults 

[8].   

In nonlinear estimators, variants of Kalman Filters in 

the form of Extended Kalman Filter (EKF) and 

Unscented Kalman Filter (UKF) have enjoyed 

widespread popularity in several applications. Both EKF 

and UKF use standard Kalman form for post-updates but 

differ in the propagation of covariance and 

premeasurement updates. Apart from these, Particle 

Filter (PF) has also been a state estimator of choice in 

UAV applications [9]. Particle filter is based on Monte 

Carlo simulation and it is also known as optimal 

recursive Bayesian filtering method. It uses conditional 

probability distribution to generate samples of 

independent random variables. PF is well suited for 

high-dimensional problems. Additionally, it can handle 

non-Gaussian and nonlinear model [10].   

In [11], airship attitude, center of mass with respect 

to center of buoyancy and mass difference between 

system and displaced air is estimated using discrete time 

invariant Kalman filter. In [12], a UKF has been applied 

for spacecraft attitude estimation. In both the above 

works, gyro sensors are utilized for obtaining attitude 

measurements and then EKF and UKF are incorporated 

for smoothing the measured signals. Variants of Kalman 

filters have been extensively used for attitude estimation 

of airships, spacecrafts and other Unmanned Aerial 

Vehicles (UAVs). For comprehensive review the reader 

is referred to [13,14]. In [15], IMU and GPS 

measurements are utilized for estimating airship 

attitude, velocity and position using EKF. In [16], same 

estimations are made using EKF while utilizing gyro 

coupled with GPS for position and attitude 

measurements. In their work they concluded that two 

EKFs running in sequence outperform a single filter. In 

this configuration first filter estimates attitude and 

second filter uses this measurement and estimates 

velocity and position.  Implementation of EKF requires 

calculation of Jacobian matrix at each sampling instant 

which increases its computational cost. In [17], a 

scheduled EKF has been introduced for airship states 

and wind velocity estimation under time varying wind 

condition. In this approach, the Jacobian matrix is 

precalculated for different airship flight modes. The 

proposed scheduled law provides the needed Jacobian to 

the EKF. In [18,40], EKF and UKF are proposed for 

airship states and aerodynamic coefficient and 

aerodynamic forces and torques estimation. In [19], 

UKF is utilized for attitude estimation of airship. In [17-

19], sensor measurements in the form of attitude, 

position and angular velocity have been used as an input 

by the filter. In our previous work [20-22], it has been 

demonstrated that Kalman filter can be used for the 

aerodynamic model estimation of airship also in [22] its 

utility for model uncertainty estimation is shown.    

For airship localization and velocity estimation, PF is 

reported in [23-25]. In [23-24], probabilistic localization 

of a miniature indoor airship is done using PF that 

utilizes lightweight air flow, ultrasound and IMU 

sensors to approximate the current location of blimp. In 

[25], an unscented PF is designed for navigation and 

estimation of airship position in stratosphere in the 

presence of wind filed disturbance. In the proposed 

approach, wind speed model is incorporated for PF 

design. The wind model defines the relationship 

between airship velocity and wind velocity.  

Apart from state estimation, model inaccuracies and 

model uncertainties also degrade the controller 

performance. Usually robust controllers are designed to 

tackle the issue, but high gains may be required for 

achieving robustness [26]. In [27], it has been 

demonstrated that if the parameters of segway are 

calculated online and that information is provided to the 

controller then the sliding mode controller robustness 

increases. So, it is practical to estimate model 

inaccuracies and model uncertainties online and provide 

that information to the controller. In the literature, 

different approaches have been proposed for 

approximating model uncertainties and model 

inaccuracies. In [28-29], nonlinear disturbance observer 

is proposed for approximating model uncertainties and 

external disturbances. In [30-31], adaptive laws based 

on current and previous state values are proposed. As the 

proposed adaptive laws are non-decreasing in nature so 

if the initial bias is too high then they may diverge. In 

[32-36], Neural Networks (NN) and Radial Basis 

Function Neural Networks (RBFNNs) and in [37-39], 

Fuzzy Logic (FL) based techniques are utilized for 
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dealing with model uncertainties in airship dynamics. 

The aforementioned methods assume that all current 

state values of airship are accurately known. Their 

performance, therefore, degrades under sensor faults and 

noisy sensor measurements.   

Motivated from the above literature, in this work 

solutions for both problems are proposed. First, an 

airship states are estimated while considering sensor 

faults and noisy sensor measurements. It is assumed that 

airship attitude and angular velocity measuring sensors 

are faulty and only current inertial position of the airship 

in the form of 𝑥, 𝑦 and 𝑧 coordinate is available. In such 

scenario EKF, UKF and PF are designed for airship 

attitude, angular velocity and linear velocity estimation 

based on airship model. Additionally, in order to avoid 

numerical calculation of Jacobian matrix for EKF, 

analytical expressions for Jacobian matrix are 

precalculated so that computational complexity of EKF 

can be reduced. Second, EKF and UKF are designed for 

estimating model uncertainties. Existing approaches that 

deal with model uncertainties assume that the states are 

accurately known. In the approach proposed in this 

work, this assumption is dropped. That is, it is assumed 

that noise and faults are present in the sensors. To deal 

with sensor faults, a cascaded Kalman filter approach is 

proposed in which a first Kalman filter uses current 

position of airship and calculates its attitude. Whereas a 

second Kalman filter utilizes position and attitude 

information and estimates airship angular velocities, 

linear velocities and model uncertainties. 

The proposed work makes the following contribution 

to the existing literature: 

1. EKF, UKF and PF are designed for airship state 

estimation under minimum sensor measurements and 

sensor faults.  

2. A sequential Kalman filtering approach for estimating 

airship states and its model inaccuracies and 

uncertainties.  

 

Fig. 1. Airship reference frames   

 

The whole paper is organized in seven sections: In 

second section, airship complete nonlinear model is 

explained. Axes conventions, modelling assumptions, 

kinematic model equations, dynamic model equations 

and airship model nonlinear state-space representation is 

given in different sub-sections. In subsection 2.5 airship 

nominal model is extended by incorporating six 

additional state variables that captures the modelling 

inaccuracies, parameter uncertainties and variation of 

aerodynamic model. In third section, state and 

measurement functions are introduced for airship state 

estimation. They are used in estimators design. In forth 

section, state and measurement functions are introduced 

for estimating airship model uncertainties. Fifth section 

discusses the Kalman filter algorithms used in the 

proposed work. In sixth section, simulation results are 

given. Two different simulation scenarios are 

considered. In first case estimator performance for state 

estimations are discussed. In second case, changes in 

aerodynamic forces and torques are introduced and EKF 

and UKF estimations are compared. For comparative 

study, error analysis is conducted and estimation errors 

for different estimators are summarized in table. In 

seventh section, some concluding remarks are given. the 

door for microgrids. The microgrid concept is 

established as an alternative solution for electrification 

for remote areas and as a platform for renewable energy. 

2. Airship Modelling 

2.1 Axes Convention, States And Modelling Assumptions 

Two reference frames are used for the explanation of 

airship motion. A reference frame that is attached to the 

airship body having center at the airship Center of 

Volume (CV) is called the Body Fixed Reference Frame 

(BFRF) represented by 𝑜𝑥𝑦𝑧. And second is the Inertial 

reference Frame (IRF) denoted by 𝑂𝑋𝑌𝑍. IRF is located 

at some point on the earth as shown in the Fig. 1. 

Propulsion forces (due to the propellers attached on 

airship gondola) and aerodynamic forces (due to the 

rudders and elevators) acts on airship in BFRF. 

However, airship current position and attitudes are 

assessed with respect to the IRF. So, the simulation 

environment first calculates the velocities in BFRF and 

then use transformation matrix to transform them into 

the IRF the MATLAB based simulation methodology is 

explained in [40].  

Let, airship position and attitude in IRF are 

represented by 𝜁 = [𝑥, 𝑦, 𝑧]𝑇 and 𝜍 = [𝜙, 𝜃, 𝜓]𝑇 

respectively and airship linear velocities in BFRF are 

represented by 𝜈 = [𝑢, 𝑣, 𝑤]𝑇 and angular velocities 

with 𝜔 = [𝑝, 𝑞, 𝑟]𝑇. Then complete state vector can be 

o 

𝜙, 𝑝 

𝜓, 𝑟 𝜃, 𝑞 
𝑦 

𝑥 

𝑧 

𝑢 

𝑣 
𝑤 

𝑟𝑜𝑙𝑙 

𝑝𝑖𝑡𝑐ℎ 
𝑦𝑎𝑤 

𝑋 

𝑍 

𝑌 

𝑂 

𝐶𝑉 
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given by 𝜒 = [𝜉𝑇 , 𝜐𝑇]𝑇 with 𝜉 = [𝜁𝑇 , 𝜍𝑇]𝑇 , 𝜐 =

[𝜈𝑇 , 𝜔𝑇]𝑇. 

Remark 1.  Two main propellers are attached to the 

gondola that moves with the same speed and also vector 

thrusting is not considered for them. In order to increase 

yaw movement one propeller is mounted at the tail of 

airship on the bottom rudder.   

Following assumptions are made for deriving 6-DOF 

airship equations 

Assumption 1. The effects of Earth curvature are not 

considered and the pressure inside the envelope is high 

enough to maintain the airship as a rigid body.  

Assumption 2. The CG lies on the symmetry plane 

below the CV. The hull is considered as a solid, and 

aero-elastic phenomena are ignored. The mass of the 

airship and its volume are considered as constant. 

Assumption 3. The Center of Buoyancy (CB) is 

assumed to coincide with the CV. 

2.2 Equations For Airship Kinematic Model 

Considering the above defined IRF position and attitude 

variables and BFRF linear and angular velocities’ 

variables, the vector form of equation for airship 

kinematic model can be written as: 

�̇� = 𝑅(𝜍)𝜐                  (1) 

Where 

𝑅(𝜍) = [
𝑅1(𝜍) 𝑂3×3

𝑂3×3 𝑅2(𝜍)
]           (2) 

With 𝑅1(𝜍) and 𝑅2(𝜍) are the rotation matrixes based 

on Euler angles. 𝑅1(𝜍), transforms the body axes linear 

velocities to the inertial frame position derivatives. 

𝑅2(𝜍), transforms the body axes angular velocities into 

inertial frame attitude derivatives. The expressions for 

rotation matrixes are given in (3) and (4), where 

simplified notation is adopted in which sin(.) and cos(.) 

are replaced by s(.) and c(.).    

𝑅1(𝜍) =

[

c(𝜃) c(𝜓) c(𝜓) s(𝜃) s(𝜙) − c(𝜙) s(𝜓) c(𝜓) c(𝜙) s(𝜃) + s(𝜓) s(𝜙)

s(𝜓) c(𝜃) c(𝜓) c(𝜙) + s(𝜓) s(𝜃) s(𝜙) c(𝜙) s(𝜓) s(𝜃) − s(𝜙) c(𝜓)

− s(𝜃) c(𝜃) s(𝜓) c(𝜃) c(𝜓)
]                   

         (3) 

𝑅2(𝜍) = [

1 tan(𝜃) sin(𝜙) tan(𝜃) cos(𝜙)

0 cos(𝜙) − sin(𝜙)

0 sin(𝜙) sec(𝜃) sec(𝜃) cos(𝜙)
]           (4) 

 

 

 

2.3 Equations for airship dynamic model 

An extensive literature can be found on airship 

modelling. The comprehensive review on airship 

modelling is available in [39]. Airship model can be 

adopted from the model of buoyancy driven underwater 

vehicles. [40] summarizes the basic equation of motion 

for airship. Here the airship model is adopted from [41]. 

The vector form of equation can write as 

�̇�𝑏 = 𝑀−1(𝐹𝑑 + 𝐹𝐴𝑑 + 𝐹𝐴𝑠 + 𝐹𝑃)              (5) 

Where, �̇�𝑏 𝜖 ℜ
6×1 is the vector of linear and angular 

accelerations calculated in BFRF. 𝑀𝜖 ℜ6×6  is the mass 

matrix it consists of airship mass and inertia terms. As 

the displaced air mass due to the airship volume is 

significant as compared to the airship mass so its effect 

is not ignored in the formulation of airship equations and 

added mass and inertia terms are incorporated in airship 

mass matrix. 𝐹𝑑𝜖 ℜ6×1 is a dynamic forces and torques 

vector. It consists of forces acting on airship due to the 

Coriolis and centrifugal effects. 𝐹𝐴𝑑𝜖 ℜ6×1 is a vector of 

forces acting on airship due to aerodynamics. In this 

work airship geometrical parameters are used for the 

calculation of aerodynamic forces.  𝐹𝐴𝑠𝜖 ℜ
6×1  is a 

vector of forces acting on airship due to the airship 

weight and buoyancy effects. 𝐹𝑃𝜖 ℜ6×1 comprises of 

forces and torques due to propellers. 

2.4 Nonlinear State-Space Representation 

Airship model can be represented in nonlinear state 

space form consisting of twelve state elements as given 

in (7). This formulation is suitable for estimator design.   

Let,  

𝑓 = 𝐹𝑑 + 𝐹𝐴𝑑 + 𝐹𝐴𝑠 + 𝐹𝑃  , 𝑓 = [𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5, 𝑓6 ]
𝑇   

and 

𝑀−1 =

[
 
 
 
 
 
𝑎1 0 𝑎2 0 𝑎3 0
0 𝑏1 0 𝑏2 0 𝑏3

𝑎4 0 𝑎5 0 𝑎6 0
0 𝑏4 0 𝑏5 0 𝑏6

𝑎7 0 𝑎8 0 𝑎9 0
0 𝑏7 0 𝑏8 0 𝑏9]

 
 
 
 
 

                           (6) 

Using these notations, the nonlinear state space form 

of airship model will be. 
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�̇�
�̇�

�̇�
�̇�
�̇�
�̇�
�̇�
�̇�
�̇�
�̇� ]
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
c(𝜓) c(𝜃) 𝑢 + (c(𝜓) s(𝜙) s(𝜃) − c(𝜙) s(𝜓))𝑣 + (c(𝜓) c(𝜙) s(𝜃) + s(𝜓) s(𝜙))𝑤

s(𝜓) c(𝜃)𝑢 + (s(𝜓) s(𝜙) s(𝜃) + c(𝜓) c(𝜙))𝑣 + (s(𝜓) s(𝜃) c(𝜙) − c(𝜓) s(𝜙))𝑤

− s(𝜃) 𝑢 + (c(𝜃) s(𝜓))𝑣 + (c(𝜃) c(𝜓))𝑤

𝑝 + tan(𝜃) sin(𝜙) 𝑞 + cos(𝜙) tan(𝜃) 𝑟

cos(𝜙) 𝑞 − sin(𝜙) 𝑟

sec(𝜃) sin(𝜙) 𝑞 + sec(𝜃) cos(𝜙) 𝑟
𝑎1𝑓1 + 𝑎2𝑓3 + 𝑎3𝑓5
𝑏1𝑓2 + 𝑏2𝑓4 + 𝑏3𝑓6
𝑎4𝑓1 + 𝑎5𝑓3 + 𝑎6𝑓5
𝑏4𝑓2 + 𝑏5𝑓4 + 𝑏6𝑓6
𝑎7𝑓1 + 𝑎8𝑓3 + 𝑎9𝑓5
𝑏7𝑓2 + 𝑏8𝑓4 + 𝑏9𝑓6 ]

 
 
 
 
 
 
 
 
 
 
 
 

                                          (7) 

 

Elements of body axes force vector are mentioned 

bellow: 

𝑓1 = −𝑚𝑧𝑤𝑞 + 𝑚𝑦𝑟𝑣 + 𝑚[𝑎𝑥(𝑞
2 + 𝑟2) − 𝑎𝑧𝑟𝑝] +

1

2
𝜌𝑉0

2𝑆[𝐶𝑋1 cos2(𝛼) cos2(𝛽) + 𝐶𝑋2 sin(
𝛼

2
) sin(2𝛼)           

+sin (
𝛽

2
) sin(2𝛽) + 𝐶𝑋3] − (𝑊 − 𝐵) sin(𝜃) + (𝑇𝑑𝑠 +

𝑇𝑑𝑝) cos(𝜇)                                                                    (8) 

𝑓2 = −𝑚𝑥𝑢𝑟 + 𝑚𝑧𝑝𝑤 + 𝑚[−𝑎𝑥𝑝𝑞 − 𝑎𝑧𝑟𝑞] +
1

2
𝜌𝑉0

2𝑆[𝐶𝑌1 sin(2𝛽) cos (
𝛽

2⁄ ) + 𝐶𝑌2 sin(2𝛽)  +

𝐶𝑌3 sin(|𝛽|) sin(𝛽) + 𝐶𝑌4(𝛿𝑅𝑇 + 𝛿𝑅𝐵)] + (𝑊 −

𝐵) cos(𝜃) sin(𝜙)                                                          (9)     

𝑓3 = −𝑚𝑦𝑣𝑝 + 𝑚𝑥𝑞𝑢 + 𝑚[−𝑎𝑥𝑟𝑝 + 𝑎𝑧(𝑞
2 + 𝑝2)] +

1

2
𝜌𝑉0

2𝑆[𝐶𝑧1 sin(2𝛼) cos(𝛼 2⁄ ) + 𝐶𝑧2 sin(2𝛼) +

𝐶𝑧3 sin(|𝛼|) sin(𝛼) + 𝐶𝑧4(𝛿𝐸𝐿 + 𝛿𝐸𝑅)] + (𝑊 −
𝐵) cos(𝜃) cos(𝜙) − (𝑇𝑑𝑠 + 𝑇𝑑𝑝) sin(𝜇)                  (10) 

𝑓4 = −(𝐽𝑧 − 𝐽𝑦)𝑟𝑞 + 𝐽𝑥𝑧𝑝𝑞 + 𝑚𝑎𝑧(𝑢𝑟 − 𝑝𝑤) 

+
1

2
𝜌𝑉0

2𝐿𝑆[𝐶𝐿1(𝛿𝐸𝐿 − 𝛿𝐸𝑅 + 𝛿𝑅𝐵

− 𝛿𝑅𝑇) 

   + 𝐶𝐿2 sin(𝛽) sin(|𝛽|) +
1

2
𝜌𝑆(𝐶𝐿3𝑟|𝑟| + 𝐶𝐿4𝑝|𝑝|)] +

𝑎𝑧𝑊𝑐𝑜𝑠(𝜃)sin (𝜙) + (𝑇𝑑𝑝 − 𝑇𝑑𝑠)sin(𝜇). 𝑑𝑦 

+(𝑇𝑑𝑠 + 𝑇𝑑𝑝)(𝑑𝑧 cos(𝜇) − 𝑑𝑥 sin(𝜇))                        (11) 

𝑓5 = −(𝐽𝑥 − 𝐽𝑧)𝑝𝑟 + 𝐽𝑥𝑧(𝑟
2 − 𝑝2)

+ 𝑚[𝑎𝑥(𝑣𝑝 − 𝑞𝑢) − 𝑎𝑧(𝑤𝑞 − 𝑟𝑣)]

+
1

2
𝜌𝑉0

2𝐿𝑆[𝐶𝑀1 sin(2𝛼) cos(𝛼 2⁄ )

+ 𝐶𝑀2 sin(2𝛼) + 𝐶𝑀3 sin(|𝛼|) sin(𝛼)

+ 𝐶𝑀4(𝛿𝐸𝐿 + 𝛿𝐸𝑅) +
1

2
𝜌𝑆(𝐶𝑀5𝑞|𝑞|)]

− (𝑎𝑧𝑊 − 𝑏𝑧𝐵)sin (𝜃) 

−(𝑎𝑥𝑊 − 𝑏𝑥𝐵)cos (𝜃)cos (𝜙)              (12) 

  𝑓6 = −(𝐽𝑦 − 𝐽𝑥)𝑞𝑝 − 𝐽𝑥𝑧𝑞𝑟 + 𝑚[−𝑎𝑥(𝑢𝑟 − 𝑝𝑤)] +
1

2
𝜌𝑉0

2𝐿𝑆[𝐶𝑁1 cos (
𝛽

2
) sin(2𝛽) +𝐶𝑁2 sin(2𝛽) 

 +𝐶𝑁3 sin(|𝛽|) sin(𝛽) + 𝐶𝑁4(𝛿𝑅𝑇 + 𝛿𝑅𝐵) +
1

2
𝜌𝑆(𝐶𝑁5𝑟|𝑟|) + 𝑎𝑥𝑊𝑐𝑜𝑠(𝜃) sin(𝜙) 

+(𝑇𝑑𝑝 − 𝑇𝑑𝑠)cos (𝜇)𝑑𝑦                (13) 

2.5 Modelling Uncertainties In Airship Model 

In the case of model uncertainty estimation, for filter 

formulation, the model state function and model 

measurement function are modified. In model state 

function six auxiliary states are introduced for modelling 

uncertainties. Measuring uncertainty and inaccuracies, 

lumped approach is adopted. In this approach the 

auxiliary state variables captures any sort of change in 

model equations. The change may be due to any 

parameter variation in the model or inaccurate 

modelling equations. Airship parameters such as inertia 

matrix is difficult to measure, and parameter changes 

may come due to unforeseen shape changes and uneven 

gas distribution. And modelling inaccuracies in airship 

model also comes due to unknown aerodynamic model 

or limitation of wind tunnel experimentation. For testing 

the proposed lumped approach in current work, a change 

in aerodynamic model is introduced and the results 

shows that this change is captured by the auxiliary state 

variables. In model measurement function, apart from 

airship position, its attitudes are also utilized. 

Considering these modifications, the changed equation 

will be. 

�̇�𝑏 = 𝑀−1(𝐹𝑑 + 𝐹𝐴𝑑 + 𝐹𝐴𝑠 + 𝐹𝑃) + 𝑀𝑢                     (14) 

Where 𝑀𝑢 is six elements column vector that 

captures model inaccuracies and model uncertainties. 

Now the complete model of airship accommodating new 

six states will be 
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�̇�

�̇�𝑢1

�̇�𝑢2

�̇�𝑢3

�̇�𝑢4

�̇�𝑢5

�̇�𝑢6]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c(𝜓) c(𝜃) 𝑢 + (c(𝜓) s(𝜙) s(𝜃) − c(𝜙) s(𝜓))𝑣 + (c(𝜓) c(𝜙) s(𝜃) + s(𝜓) s(𝜙))𝑤

s(𝜓) c(𝜃) 𝑢 + (s(𝜓) s(𝜃) s(𝜙) + c(𝜓) c(𝜙))𝑣 + (s(𝜓) s(𝜃) c(𝜙) − c(𝜓) s(𝜙))𝑤

− s(𝜃) 𝑢 + (c(𝜃) s(𝜓))𝑣 + (c(𝜃) c(𝜓))𝑤

𝑝 + sin(𝜙) tan(𝜃) 𝑞 + cos(𝜙) tan(𝜃) 𝑟

cos(𝜙) 𝑞 − sin(𝜙) 𝑟

sin(𝜙) sec(𝜃) 𝑞 + cos(𝜙) sec(𝜃) 𝑟
𝑎1𝑓1 + 𝑎2𝑓3 + 𝑎3𝑓5 + 𝑀𝑢1

𝑏1𝑓2 + 𝑏2𝑓4 + 𝑏3𝑓6 + 𝑀𝑢2

𝑎4𝑓1 + 𝑎5𝑓3 + 𝑎6𝑓5 + 𝑀𝑢3

𝑏4𝑓2 + 𝑏5𝑓4 + 𝑏6𝑓6 + 𝑀𝑢4

𝑎7𝑓1 + 𝑎8𝑓3 + 𝑎9𝑓5 + 𝑀𝑢5

𝑏7𝑓2 + 𝑏8𝑓4 + 𝑏9𝑓6 + 𝑀𝑢6

0
0
0
0
0
0 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                      (15) 

 

3. Airship State Estimation 

For airship state estimation, the state vector comprises 

of 12 state elements that have modelling equation given 

in (7). However, the system is extended by incorporating 

process noise and measurement noise. The application 

of Kalman filter algorithm requires that system should 

be expressed in state-space formulation so, here for 

airship state estimation following state vector is defined. 

 𝑋 = [𝑥    𝑦    𝑧    𝜙    𝜃    𝜓    𝑢    𝑣    𝑤    𝑝    𝑞    𝑟]𝑇 (16) 

As for the state estimation, airship current position is 

used as a measurement, so estimator position estimates 

are used as a measurement vector given by: 

𝑌 = 𝐶𝑋 = [
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0

]𝑋      (17) 

Eq. 7 represents airship complete nonlinear model it can 

be compactly represented by the following equation:  

�̇� = 𝑓(𝑋, 𝑢)                 (18) 

For the implementation of discrete time Kalman filter 

algorithm, first order Euler integration of (18) is 

performed and the model is also extended with process 

and measurement noise. The new system representation 

is given as:  

𝑋𝑘+1 = 𝐼𝑋𝑘 + 𝑇𝑠𝑓(𝑋𝑘 , 𝑢𝑘) + 𝑤           (19) 

𝑌𝑘  = 𝐶𝑋𝑘 + 𝑣                                       (20) 

In the above equations 𝑋𝑘   represents the system state 

vector at time instant 𝑘, 𝑇𝑠  represents the sampling time, 

𝑢𝑘  represents the system input vector. It consists of 

thruster input, rudder and elevator deflections and 𝑤, 𝑣 

are process and measurement noises respectively they 

are gaussian white noise processes having zero mean. 

4. Airship Model Inaccuracy And Model Uncertainty 

Estimation 

In case of model uncertainty estimation, for filter 

formulation the model state function and model 

measurement function are modified. Model uncertainty 

is incorporated by introducing six additional states. The 

modified state vector is given by. 

𝑋 =

[𝑥    𝑦    𝑧    𝜙    𝜃    𝜓    𝑢    𝑣    𝑤    𝑝    𝑞    𝑟    𝑀𝑢1    𝑀𝑢2    𝑀𝑢3    𝑀𝑢4    𝑀𝑢5    𝑀𝑢6]
𝑇   

     (21) 

For model uncertainty estimation it is assumed that 

the state estimation algorithm as explained in section 3 

provides an estimate of position and attitude. This 

assumption leads to the following modified 

measurement vector. 

𝑌 = 𝐶𝑋 =

[
 
 
 
 
 
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0]

 
 
 
 
 

𝑋        (22) 

5. Nonlinear Estimators Design 

5.1 EKF for Airship State and Model Uncertainty 

Estimation 

EKF is a nonlinear version of Kalman filter it consists of 

two steps: Prediction and correction. In prediction step 

system states and error covariance matrix for next 

sampling instant are predicted using system model and 

its Jacobian linearization respectively. In this step 
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process noise covariance matrix is utilized for the 

calculation of error covariance. Process noise 

covariance matrix is used as a tuning parameter. It is a 

diagonal matrix. Large weights are assigned to those 

elements whose modelling equations are unknown. In 

airship state estimation case 𝑄 is tuned after many 

iterations. In correction step, predicted state estimates 

are corrected using available sensor measurements and 

Kalman gain. Both main steps of EKF algorithm are 

further elaborated as follows: 

5.1.1 Prediction 

Step 1 First the nonlinear system model is used for the 

prediction of next state value.  

�̃�𝑘+1 = 𝑓(�̂�𝑘 , 𝑢𝑘)                    (23) 

Step 2 State Jacobian function and process noise 

covariance is used for the prediction of state error 

covariance. 

�̃�𝑘+1 = Φ𝑘�̂�𝑘Φ𝑘
𝑇 + 𝑄,        Φ𝑘 =

𝜕𝑓(�̂�𝑘,𝑢𝑘)

𝜕𝑋𝑘
|�̂�𝑘

           (24) 

5.1.2 Correction 

Step 3 EKF gain is calculated using predicted error 

covariance. 

�̃�𝑘+1 = �̃�𝑘+1𝐶
𝑇(𝐶�̃�𝑘+1𝐶

𝑇 + 𝑅)−1                   (25) 

Step 4 Sensor measurements and Kalman gain are used 

for the correction of states. 

�̂�𝑘+1 = �̃�𝑘+1 + �̃�𝑘+1(𝑌 − 𝐶�̃�𝑘+1)                    (26) 

Step 5 Error covariance matrix is corrected. 

�̂�𝑘+1 = (𝐼 − �̃�𝑘+1𝐶)�̃�𝑘+1                             (27) 

5.2 UKF For Airship State And Model Uncertainty 

Estimation 

The main operation performed in Kalman filter 

algorithms is to propagate the gaussian random variable 

through the system dynamics. EKF algorithm 

approximate the state distribution by gaussian random 

variable. Which is then analytically propagated through 

nonlinear system’s first order linearization. In UKF 

algorithm this problem is addressed by deterministic 

sampling approach. In which minimal set of sample 

points are carefully selected to propagate the state 

distribution by gaussian random variables. These sample 

point possess the characteristics of capturing the true 

mean and covariance of gaussian random variables. 

When they are passed through the actual nonlinear 

system then they capture the mean and covariance up to 

the third order Taylor series expansion for system 

nonlinearity. In UKF algorithm, in first step, set of state 

values are generated that are called sigma points. They 

capture the mean and covariance of state. The sigma 

points are used as an input to the state transition and 

measurement functions. The state transition and 

measurement functions return the transformed state 

points. And then state estimates are obtained from the 

mean and covariance of the transformed points. The next 

two sub sections summarize the correction and 

prediction steps of UKF algorithm.     

5.2.1 Correction 

Selection of sigma points 

𝑥(0)[𝑘] = 𝑥[𝑘 − 1]                               (28)                                                                                                     

𝑥(𝑖)[𝑘] = 𝑥[𝑘 − 1] + Δ𝑥(𝑖) 𝑖 = 1,… ,2𝑀              (29)                                 

Δ𝑥(𝑖) = (√𝑐𝑃[𝑘 − 1])
𝑖
 𝑖 = 1,… ,𝑀            (30) 

Δ𝑥(𝑀+𝑖) = −(√𝑐𝑃[𝑘 − 1])𝑖 𝑖 = 1,… ,𝑀              (31) 

Where, 𝑐 = 𝛼2(𝑀 + 𝜅) is a scaling factor based on 

number of states 𝑀, and the parameters 𝛼 and 𝜅. 

Using nonlinear measurement function for the 

calculation of predicted measurements 

�̂�(𝑖)[𝑘] = ℎ(𝑥(𝑖)[𝑘 − 1], 𝑢[𝑘])        𝑖 = 0,1, . . . ,2𝑀  (32) 

Combining the predicted measurements to obtain the 

predicted measurement at time k. 

�̂�[𝑘] = ∑ 𝑤𝑀
𝑖 �̂�𝑖[𝑘 − 1]2𝑀

𝑖=0                   (33) 

𝑊𝑀
0 = 1 −

𝑀

𝛼2(𝑀+𝜅)
                             (34) 

𝑊𝑀
𝑖 =

1

2𝛼2(𝑀+𝜅)
                 𝑖 = 1,2, . . . ,2𝑀           (35) 

Estimating the covariance of predicted 

measurements, where 𝑅[𝐾] accounts for additive 

measurement noise. 

𝑃𝑦 = ∑ 𝑤𝑐
𝑖(�̂�𝑖[𝑘 − 1] − �̂�[𝑘])

𝑇
(�̂�𝑖[𝑘 − 1] −2𝑀

𝑖=0

�̂�[𝑘])
𝑇

+ 𝑅[𝑘]                                                           (36) 

𝑊𝑐
0 = (2 − 𝛼2 + 𝛽) −

𝑀

𝛼2(𝑀+𝜅)
                               (37) 

𝑊𝑐
𝑖 =

1

2𝛼2(𝑀+𝜅)
                 𝑖 = 1,2, . . . ,2𝑀                  (38) 

Estimate the cross-covariance between 𝑥[𝑘] and �̂�[𝑘]. 

𝑃𝑥𝑦 =
1

2𝛼2(𝑀+𝜅)
∑ 𝑤𝑐

𝑖(𝑥𝑖[𝑘 − 1] − 𝑥[𝑘 −2𝑀
𝑖=0

1])(�̂�𝑖[𝑘 − 1] − �̂�[𝑘])
𝑇
                  (39) 

The summation starts from i =  1 because 𝑥0[𝑘 − 1] −

𝑥[𝑘 − 1] = 0. 

Obtaining the estimated state and state estimation 

error covariance at time step k. 

𝐾 = 𝑃𝑥𝑦𝑃𝑦
−1                                     (40) 
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𝑥[𝑘] = 𝑥[𝑘 − 1] + 𝐾(𝑦[𝑘] − �̂�[𝑘])                    (41) 

𝑃[𝑘] = 𝑃[𝑘 − 1] − 𝐾𝑃𝑦𝐾𝑘
𝑇                                 (42) 

Here K is the Kalman gain. 

5.2.2 Prediction 

Choose the sigma points 𝑥𝑖[𝑘] at time step k. 

𝑥(0)[𝑘] = 𝑥[𝑘]                               (43) 

𝑥(𝑖)[𝑘] = 𝑥[𝑘] + Δ𝑥(𝑖) 𝑖 = 1,… ,2𝑀                         (44)                              

Δ𝑥(𝑖) = (√𝑐𝑃[𝑘])
𝑖
 𝑖 = 1,… ,𝑀                            (45)                       

Δ𝑥(𝑀+𝑖) = −(√𝑐𝑃[𝑘])𝑖 𝑖 = 1,… ,𝑀                     (46) 

Using nonlinear system modelling equation for the 

calculation of predicted states for each sigma points 

𝑥(𝑖)[𝑘 + 1] = 𝑓(𝑥(𝑖)[𝑘], 𝑢[𝑘])                                    (47) 

Combining the predicted states to obtain the predicted 

states at time k + 1. 

𝑥[𝑘 + 1] = ∑ 𝑤𝑀
𝑖 �̂�(𝑖)[𝑘]2𝑀

𝑖=0                                        (48) 

𝑊𝑀
0 = 1 −

𝑀

𝛼2(𝑀+𝜅)
                                                    (49) 

𝑊𝑀
𝑖 =

1

2𝛼2(𝑀+𝜅)
                 𝑖 = 1,2, . . . ,2𝑀                  (50) 

Computing the covariance of the predicted state. 

Adding 𝑄[𝑘] to account for the additive process noise. 

𝑃[𝑘 + 1] = ∑ 𝑤𝑐
𝑖(𝑥(𝑖)[𝑘] − 𝑥[𝑘])

𝑇
(�̂�(𝑖)[𝑘] −2𝑀

𝑖=0

𝑥[𝑘])
𝑇

+ 𝑄[𝑘]                                                             (51) 

𝑊𝑐
0 = (2 − 𝛼2 + 𝛽) −

𝑀

𝛼2(𝑀+𝜅)
                                  (52) 

𝑊𝑐
𝑖 =

1

2𝛼2(𝑀+𝜅)
                 𝑖 = 1,2, … ,2𝑀                    (53) 

5.3 PF For Airship State Estimation 

Unscented and extended Kalman filters aim to track the 

mean and covariance of the posterior distribution of the 

state estimates by different approximation methods. 

While the particle filter tracks the evolution of many 

state hypotheses (particles) over time, at the expense of 

higher computational cost. The computational cost and 

estimation accuracy increase with the number of 

particles. It is a recursive, Bayesian state estimator that 

uses discrete particles to approximate the posterior 

distribution of an estimated state. The particle filter 

algorithm computes the state estimates recursively and 

involves initialization, prediction, and correction steps. 

The detail algorithmic steps of the particle filter can be 

found in [42-45]. 

 

6. Results and Discussion 

6.1 Simulation Scenario 

For validating the estimator performances, simulations 

have been performed. For this study nonlinear 6-DOF 

simulation model for ’UETT Airship’ has been 

developed. UETT airship project was started in the 

University of Engineering and Technology Taxila 

(UETT), Pakistan in 2013. In our previous work the 

parameters of the airship are provided in Table 1. Open 

loop simulations are performed in which thruster input, 

elevator and rudder deflections are given to the airship 

in specific time intervals. It is assumed that airship 

weight and buoyancy are equal, so neutral buoyancy 

condition is considered. Operating at 100 m of altitude, 

after 3 seconds of simulation run a thruster input is 

applied. Due to the application of thruster it starts 

moving in the forward direction with some ’u’ velocity 

as shown in Fig. 2 (i). From Fig 2 (ii) it can be seen that 

initially the airship has zero sway velocity but after 20 

seconds of flight as the rudder deflection is applied, it 

changes to 0.3 ms-1 and returns to its initial value when 

rudder input is removed after 40 s. Application of this 

input also changes yaw rate as well as yaw angle, as can 

be seen in Fig. 3 and 4 respectively. For evaluating the 

response of estimators, an elevator deflection case is 

also incorporated. Due to this input, changes in vertical 

velocity, pitch rate and pitch angle happen. Elevator 

deflection is applied after 40 s of flight time. Fig. 2 (iii) 

shows that initially its value is zero but due to the 

application of input it changes to 0.6 ms-1 and comes 

down to zero when the input is removed at 50 s. Effect 

of elevator deflection on pitch rate and pitch angle can 

be seen in Fig. 3 (ii) and 4 (ii) respectively. In order to 

evaluate the steady state response of estimators, after 90 

s of flight once again rudder deflection is applied. This 

time it is applied for 30 s. Due to its application it 

changes the sway velocity, yaw rate and yaw angle that 

can be seen in Figs. 2-4 respectively. 

Table 1 

Parameters of Airship 

Length of Hull 9 m 

Diameter of Hull 2.2 m 

Volume of Hull 25 m3 

Mass of Hull, gondola, fins and 

propellers 

24.073 Kg 

Moment of inertia 𝐼𝑥 2.842114 kg-m2 

Moment of inertia 𝐼𝑦  , 𝐼𝑧 26.769788 kg-m2 

Product of inertia 𝐼𝑥𝑧  0.001166 kg-m2 
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6.2 State Estimation Using Current Location 

Measurements Of Airship 

Figs 2-4 also show the estimation of linear velocities and 

angular velocities in BFRF and attitude angles in IRF by 

EKF, UKF and PF. True and measured values are 

generated from the modelling equations of airship. In 

measured values process and measurement noise is 

considered while true values correspond to noise free 

data. All estimators are fed with thruster, rudder and 

elevator inputs and x; y and z measurement data 

corrupted with noise. 

Fig 2 shows the estimation of linear velocities in 

body fixed reference frame. The response is zoomed in 

between 60 s to 60.04 s to show the performance of 

filters. It can be seen that the estimated values remain 

close to the true ones. Among the three filters, PF 

response overlaps while UKF response is close to true 

response and EKF shows a larger estimation error. Figs. 

2 (ii), 3 (i) and 4 (i) show ‘sway velocity’, ‘roll rate’ and 

‘roll angle’ respectively. It can be observed that the 

transient response of particle filter is oscillatory across 

true value and lasts for 10 s but after that achieves its 

steady state value and remain close to the true value. The 

key parameter of interest used for validating the state 

estimation is the estimation error between true and 

estimated values. In this study we performed the error 

analysis of EKF, UKF and PF estimation for a single 

simulation run. In reality the true states are never 

available. In order to get the confidence on estimator’s 

performances the error analysis should have small 

magnitude, zero mean and it should remain within a 1-𝜎 

uncertainty bound.  

Figs 5-7 show the plots of error analysis of estimators 

for linear velocities, angular velocities and attitude 

angles. From these plots, it can be concluded that the 

estimators fulfill the minimum performance criteria 

because magnitudes of errors are small, and their means 

are close to zero. Fig 5 shows the plots for linear 

velocities. From the plo0ts it can be seen that error for 

all estimators remain within a 1-𝜎 uncertainty bound. In 

zoomed-in portion from 60 s to 60.04 s black line 

indicates the desired error value. The portion shows that 

PF and UKF estimation error is close to zero while EKF 

estimation error is larger than PF and UKF. The same 

sort of error curves can be seen in Figs 6 and 7 for 

angular velocities estimation and Euler angle estimation. 

Mean estimation errors according to the Eq 55 is 

calculated for all estimated states and are given in Table 

2.   

𝑀𝑒𝑎𝑛 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 =
1

𝑁
∑ (𝑇𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒 (𝑖) −𝑖=𝑡

𝑖=0

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑉𝑎𝑙𝑢𝑒(𝑖))                                           (54) 

where, t is the total simulation time and N, is the total 

number of samples. From Table 2 it can be observed that 

PF bring about maximum of 89 % decrease in mean 

estimation error than EKF as in case of 𝜃 state and 

minimum of 1.24 % decrease as in case of 𝜓 state. UKF 

bring about maximum of 40 % decrease in mean 

estimation error as in case of v state and minimum of 

0.15% decrease as in case of r state. The table data shows 

that Performance of all filters are reasonable but PF and 

UKF perform superior to the EKF. 

Table 2 

Mean Estimation error of ekf, ukf and pf for state estimation 

State Mean estimation error 

EKF UKF PF 

𝜙 (roll 

angle) 

0.0001 0.00003 0.000004 

𝜃 (pitch 

angle) 

0.0026 0.0025 0.000029 

𝜓 (yaw 

angle) 

0.0761 0.00787 0.0061 

u (forward 

velocity) 

0.0113 0.0111 0.0020 

v (sway 

velocity) 

0.0004 0.00001 0.00001 

w (vertical 

velocity) 

0.0012 0.002 0.0004 

P (roll rate) 0.0003 0.0002 0.00004 

q (pitch rate) 0.001 0.0008 0.0001 

r (yaw rate) 0.0006 0.0019 0.0001 
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Fig. 2. Comparisons of EKF, UKF and PF for Linear 

velocity estimation 

 

Fig. 3. Comparisons of EKF, UKF and PF for Angular 

velocity estimation 

 

Fig. 4. Comparisons of EKF, UKF and PF for Euler angle 

estimation   

 

Fig. 5. EKF, UKF and PF performance analysis for Linear 

velocity estimation  

 

Fig. 6. EKF, UKF and PF performance analysis for Angular 

velocity estimation  

 

Fig. 7. EKF, UKF and PF performance analysis for Euler 

angle estimation 
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6.3 Model Uncertainties and State Estimation Using 

Current Location And Current Attitude Measurements 

Of Airship 

For evaluating the estimator performance in case of 

model uncertainty, same open loop simulation scheme is 

adopted as discussed in the previous subsection. 

However, in this case change in aerodynamic forces has 

been introduced after 10 s and lumped approach is 

adopted for estimating its cumulative effect (sec 3.1). In 

this case EKF and UKF have been designed. Model 

inputs in the form of thruster, rudder and elevator 

deflections and output measurements including current 

airship coordinates x, y, z and current airship attitudes 

𝜙, 𝜃, 𝜓 are applied to the filter. Filter estimates model 

inaccuracies and model uncertainties and linear and 

angular velocities of the airship.  

Figs 8 and 9 show the measured states by estimators 

and Figs 10 and 11 show the estimation of model 

uncertainties. Fig 8 shows the linear velocities plots, that 

are zoomed for 60 s to 60.04 s to quantify the individual 

performances of estimators. It can be seen that UKF 

outperforms EKF in the case of estimating linear 

velocities. Only For evaluating the estimator 

performance in case of model uncertainty same open 

loop simulation scheme is adopted as discussed in 

previous section but after 10s of simulation run change 

in aerodynamic forces has been introduced and lumped 

approach is adopted for estimating its cumulative effect. 

In this case EKF and UKF has been designed. Model 

inputs in the form of thruster, rudder and elevator 

deflections and measurements inputs, current airship 

coordinates (𝑥, 𝑦, 𝑧) and current airship attitude (𝜙, 𝜃, 𝜓) 

are applied to the filter. Filter estimates linear and 

angular velocities of airship, model inaccuracies and 

model uncertainties. Figures 8 and 9 shows the 

measured states by estimators. And figures 10 and 11 

shows the estimation change in model. Figure 8 shows 

the linear velocities plots, they are zoomed for 60s to 

60.04s to quantify the individual performances of 

estimators. It can be seen that UKF outperforms then 

EKF in the case of estimating linear velocities.  

Fig 9 shows the angular velocities plots. It can be 

seen that in case of estimating roll rate and yaw rate, 

performance of both the filters is same but in estimating 

pitch rate UKF slightly outperforms the EKF. Figs 10 

and 11 show that in the case of estimating model 

uncertainty, the transient response of EKF is better than 

UKF but in steady state UKF outperforms the EKF. 

These observations show that in case of detecting faults 

EKF can be preferred. Same error analysis has been 

performed for evaluating estimator performances in the 

case of state and model uncertainties 

estimation. True values have been generated and error 

between estimated and true values is calculated. Figs 12 

and 13 show error analysis for linear and angular 

velocities estimation. These plots show that the error 

remains in 1-𝜎 uncertainty bound implying that the 

estimators’ performances are acceptable. The zoomed 

portion of the plot shows that UKF outperforms EKF. 

Fig 14 and 15 show the plots of error and 1-𝜎 uncertainty 

bounds for estimation of model uncertainty for body 

fixed reference frame modelling equations of airship. 

These plots show that error remains within 1-𝜎 

uncertainty bound in this case also. Initially in transient 

state EKF performance is better than UKF but in steady 

state, UKF outperforms the EKF. In order to assess the 

cumulative performance of estimators, mean error has 

been calculated and given in Table 3 where 𝛿𝑢 

correspond to the model uncertainty in u state. 

 

Fig. 8. Comparisons of EKF and UKF for Linear velocity 

estimation 

 

 

Fig. 9. Comparisons of EKF and UKF for Angular velocity 

estimation 
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Fig. 10. Comparisons of EKF and UKF for model 

uncertainty estimation in total forces acting on airship in 

body axes 

 

Fig. 11. Comparisons of EKF and UKF for model 

uncertainty estimation in total Torques acting on airship in 

body axes 

 

Fig. 12. EKF and UKF performance analysis for Linear 

velocity estimation 

 

Fig. 13. EKF and UKF performance analysis for Angular 

velocity estimation 

 

Fig. 14.  Comparisons of EKF and UKF for model 

uncertainty estimation in total forces acting on airship in 

body axes 

 

Fig. 15. Comparisons of EKF and UKF for model 

uncertainty estimation in total Torques acting on airship in 

body axes 
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Table 3 

Mean estimation error of ekf, ukf and pf for state estimation 

state Mean estimation error 

EKF UKF 

u (forward 

velocity) 

0.0008 0.0027 

v (sway velocity) 0.0002 0.0007 

w (vertical 

velocity) 

0.0002 0.0006 

P (roll rate) 0.00227 0.00341 

q (pitch rate) 0.00042 0.00021 

r (yaw rate) 0.000085 0.000094 

𝛿𝑢  0.0478 0.0680 

𝛿𝑣  0.0120 0.0199 

𝛿𝑤  0.0091 0.0233 

𝛿𝑝  0.0065 0.0099 

𝛿𝑞  0.0435 0.0533 

𝛿𝑟  0.0123 0.0241 

7. Conclusion 

In this article the estimation of airship states and model 

uncertainty information with nonlinear and Bayesian 

estimators under minimum sensor measurements is 

addressed. Two problems have been addressed. In the 

first problem airship current coordinates are used as 

measurements and airship attitude and body axes linear 

and angular velocities are estimated. In this case EKF, 

UKF and PF are designed, and their individual 

performances are assessed. 1-𝜎 uncertainty bound, and 

error analysis are performed for getting confidence on 

the estimator performances. Error analysis shows that 

PF’s transient response is not satisfactory but in steady 

state it outperforms the EKF and UKF. As airship has 

slow dynamics, the transient response of particle filter 

can be deemed as acceptable. In the second problem 

airship body axes linear velocities and angular velocities 

and model uncertainties have been identified using EKF 

and UKF estimators. In this case, airship current 

coordinates and attitudes are considered as 

measurements for estimators. The study shows that EKF 

quickly responds to parameter change effect but in the 

steady state UKF outperform it. Error analysis is carried 

out that supports the observation.   
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