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Abstract

A famous Black-Scholes differential equation is used for pricing op-
tions in financial world which represents financial derivatives more
closely. Option is one of the crucial financial derivatives. Sawangtong
P., Trachoo K., Sawangtong W. and Wiwattanapataphee B. obtained
analytical solution of Black-Scholes equation with two assets in the
Liouville-Caputo time-fractional derivative sense using Laplace ho-
motopy perturbation method (LHPM). The aim of this paper is to de-
rive solution of Liouville-Caputo time-fractional Black-Scholes equa-
tion with n assets using LHPM. Numerical results shows that our ap-
proach gives very accurate results and our formulas are quite close to
the plain vanilla options.

Keywords: Financial derivatives, European options, n-dimensional
Black-Scholes Equation; Liouville-Caputo Fractional Derivative,
Laplace homotopy perturbation method.

2020 AMS subject classifications: Primary: 91G20. Secondary:
35Q91. 1

*Department of Mathematics, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India;
sj ghevariya@spuvvn.edu

†S. G. M. English Medium College of Commerce and Management, CVM University, Vallabh
Vidyanagar, Gujarat, India; chetanbhai.patel@cvmu.edu.in
1Received on May 25, 2023. Accepted on December 10, 2023. Published on December 31, 2023.
doi: 10.23755/rm.v48i0.1230. ISSN: 1592-7415. eISSN: 2282-8214. ©The Authors. This paper
is published under the CC-BY licence agreement.

400



S. J. Ghevariya, C. N. Patel

1 Introduction

An agreement between two parties or financial institutes is called financial
derivatives. Options, Forward contacts, Futures, etc. are examples of financial
derivatives. Financial derivatives are used to manage risk associated with the un-
derlying asset significantly. Actually, financial derivatives are used to transfer risk
to another trader or financial institution. Options are without a doubt the main
component of a derivative that is frequently utilized in the financial market. Op-
tions will help to modified portfolios of the investors. As a result, the concept of
option trading has continually evolved. A contract between two parties to buy or
sell an underlying asset at a specific future date and price is known as option. The
specific future date is called expiry date of option while specific price is called the
striking price of option. There are mainly two types of options, namely call and
put options. Call (Put) option is an option in which holder of the option has the
right to buy (sell) the underlying asset at a specific future date and price. The cost
paid by the holder of option is known as option price or premium. Options exist in
two styles in the financial market, namely American and European. American op-
tion can be exercised before expiry date while European option is exercised at the
expiry date only. In 1973, Fisher Black and Myron Scholes derived a model for
pricing options for plain vanilla payoffs. This model was recognized worldwide
when Black and Scholes awarded a Nobel prize in 1997. Consequently, lots of
researcher worked with different payoffs Dedania and Ghevariya [2013a,b], Ghe-
variya [2020], R. J. Haber, P. J. Schönbucher and Wilmott [1999], Haug [2007], P.
Wilmott, S. Howison and Dewynne [1993]. Note that differential equation derived
by Black and Scholes known as Black-Scholes differential equation and Black-
Scholes model is a solution of that equation with initial and boundary conditions.
The solution of the Black-Scholes equation becomes the intrinsic aim of numerous
researchers. As a result, the Black-Scholes equation has been solved using a va-
riety of approaches to obtain approximate or closed-form solutions with a variety
of payoffs such as projected differential transform method (PDTM) S. O. Edeki
, O. O. Ugberbor and Owoloko [2015], S. O. Edeki , R. M. Jena, O. P. Ogundile
and Chakraverty [2021], Ghevariya [2021, 2022b], binomial method P. Wilmott,
S. Howison and Dewynne [2002], homotopy perturbation method (HPM) Ghe-
variya [2022a], Mellin transform Fadugba and Nwozo [2016], Ghevariya [2019],
Panini and Srivastav [2004], Yoon [2014], etc. The Black-Scholes equation is a
second order linear equation having parabolic nature.

It can be seen that fractional calculus plays an important role for finding ana-
lytical solution of partial differential equations with initial conditions Miller and
Ross [2003], Podlubny [1999]. Fractional calculus has been used in various fields
such as finance, physics, engineering, etc. Fractional differential equations and its
applications attracted many researchers in the field of Black-Scholes theory dur-
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ing the last four decades S. Kumar, D. Kumar and Singh [2014], Mehrdoust and
Najafi [2017], Meng and Wang [2010], Song and Wang [2013], H. Zhang, F. Liu,
I. Turner and Yang [2016]. Recently, various methods have been proposed to find
solution of fractional differential equations namely, HPM, Adomian decompo-
sition method (ADM), iteration method, Laplace homotopy perturbation method
(LHPM), etc. LHPM is the powerful method to obtain explicit solution which will
be transform fractional differential equations into algebraic equations and solving
them we get solution using inverse Laplace transform. Many problems arise in real
world with known physical interpretation. Liouville-Caputo fractional derivative
is applicable to such problems because it has initial conditions same as the tradi-
tional differential equation. Let f be a real valued n-times differentiable function
on [a, t], t > a where a ∈ R. Then for any α > 0, α /∈ {1, 2, ..., n} and n ∈ N
with n− 1 < α < n, the Liouville-Caputo fractional derivative of f is defined as

aD
α
t f(t) =

1

Γ(n− α)

∫ t

a

(t− η)n−α−1f (n)(η)dη.

Many researcher worked with multi-dimensional Black-Scholes equation S. J.
Ghevariya, C. N. Patel and Fadugba [2022], Guillaue [2019], J. Kim, T. Kim,
J. Jo, Y. Choi, S. Lee, H. Hwang, M. Yoo and Jeong [2016], Prathumwan and
Trachoo [2020], P. Sawangtong, K. Trachoo, W. Sawangtong and Wiwattana-
pataphee [2018], K. Trachoo, W. Sawangtong and Sawangtong [2017]. In this
paper, the LHPM has been used to solve n-dimensional Black-Scholes equation
with Liouville-Caputo fractional derivative sense. Note that LHPM is a method
that combines Laplace transform and homotopy perturbation method. Using a
Liouville-Caputo fractional derivative, Sawangtong P., Trachoo K., Sawangtong
W., and Wiwattanapataphee B. found an analytical solution to the Black-Scholes
equation for two assets P. Sawangtong, K. Trachoo, W. Sawangtong and Wi-
wattanapataphee [2018]. For European call and put options, we will provide an
analytical solution to the time-fractional Black-Scholes equation with n assets.
This paper is summarized as follows. Section-2 deals with the n-dimensional
Black-Scholes differential equation with Liouville-Caputo fractional derivative.
In section-3, we shall discuss about time- fractional LHPM. Using LHPM, we
will solve the time-fractional Black-Scholes differential equation analytically in
Section 4. We compare these formulas with the solution of known n-dimensional
Black-Scholes equation. The conclusion is covered in the final section.
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2 N -Dimensional Black-Scholes Equation with
Liouville-Caputo Fractional Derivative

The n-dimensional Black-Scholes equation Joonglee and Yongsik [2013] for
European call option is given by

∂C
∂τ

+
1

2

n∑
i,j=1

σiσjρijSiSj
∂2C

∂Si∂Sj

+ r

n∑
i=1

Si
∂C
∂Si

− rC = 0 (1)

with initial condition C(S1, S2, ..., Sn, τ) = 0, if at least one Si = 0 for 1 ≤
i ≤ n & boundary conditions C(S1, S2, ..., Sn, T ) = max

(∑n
i=1 aiSi − K, 0

)
and C(S1, S2, ..., Sn, τ) =

∑n
i=1 aiSi − Ke−r(T−τ), if at least one Si → ∞ for

1 ≤ i ≤ n, where C(S1, S2, ..., Sn, τ) is the price of call option at time τ , Si is the
value of ith underlying asset, σi is the volatility, ai is portion of the ith underlying
asset, r is the risk free interest rate, K is the striking price and ρij is the correlation
of ith and jth underlying assets for i ≤ i, j ≤ n.

Replacing C by P in Equation (1), we get Black-Scholes differential equation
for European put option with initial condition P(S1, S2, ..., Sn, τ) = Ke−r(T−τ),
if at least one Si = 0 for 1 ≤ i ≤ n & boundary conditions P(S1, S2, ..., Sn, T ) =

max
(
K−

∑n
i=1 aiSi, 0

)
and P(S1, S2, ..., Sn, τ) = 0, if at least one Si → ∞ for

1 ≤ i ≤ n, where P(S1, S2, ..., Sn, τ) is the price of put option at time τ .
Now for each i = 1, 2, ..., n, taking xi = ln(Si)−

(
r − 1

2
σ2
i

)
τ, t = T − τ and

C(x1, x2, ..., xn, τ) = e−r(T−τ) v(x1, x2, ..., xn, τ), the Equation (1) reduces to

∂v

∂t
− 1

2

n∑
i,j=1

σiσjρij
∂2v

∂xi∂xj

= 0, (x1, x2, ..., xn, t) ∈ ℜn × [0, T ] (2)

with initial and boundary conditions for call option transformed as

v(x1, x2, ..., xn, 0) = max
( n∑

i=1

ãie
xi −K, 0

)
, (3)

v(x1, x2, ..., xn, t) = 0, if at least one xi → −∞ and (4)

v(x1, x2, ..., xn, t) =
n∑

i=1

ãie
xi+

1
2
σ2
i t −K, if at least one xi → ∞, (5)

where ãi = aie
(r− 1

2
σ2
i )T . By replacing Liouville-Caputo fractional derivative in

Equation (2), we get time-fractional Black-Scholes equation for call option with
α ∈ (0, 1]

Dα
t v =

1

2

n∑
i,j=1

σiσjρij
∂2v

∂xi∂xj

, (6)
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where initial and boundary conditions are given by Equations (3)-(5). Similarly,
one can derive the time-fractional Black-Scholes equation for put option.

3 Introduction to Time Fractional LHPM
The HPM is introduced by He He [2003]. The basic idea about Laplace

homotopy perturbation method (LHPM) was given by Khan and Wu Khan and
Wu [2011]. Consider a general partial differential equation in n variables

G(v(x1, x2, ..., xn, t))− g(x1, x2, ..., xn, t) = 0, t ∈ Ω (7)

with initial and boundary conditions are given by

v(x1, x2, ..., xn, 0) = h(x1, x2, ..., xn) and B
(
v,

∂v

∂x1

,
∂v

∂x2

, ...,
∂v

∂xn

,
∂v

∂t

)
= 0,

where (x1, x2, ..., xn) ∈ ℜn,Ω is the domain, B is the boundary operator, G is a
differential operator, v(x1, x2, ..., xn, t) is to be determined and g(x1, x2, ..., xn, t)
is a known analytic function. Further, G can be split into two parts as given below.

G(v(x1, x2, ..., xn, t)) = Dα
t v(x1, x2, ..., xn, t) +N(v(x1, x2, ..., xn, t)),

where Dα
t is the Liouville-Caputo fractional derivative with α ∈ (0, 1], N is the

remaining part by taking out the simple part with first term. Hence, Equation (7)
can be written as

Dα
t v(x1, x2, ..., xn, t) +N(v(x1, x2, ..., xn, t)) = g(x1, x2, ..., xn, t). (8)

Now, applying the Laplace transform with respect to t on both sides of Equation
(8), we get

L[Dα
t v(x1, x2, ..., xn, t)] + L[N(v(x1, x2, ..., xn, t))] = L[g(x1, x2, ..., xn, t)].

Using Laplace transform of Liouville-Caputo fractional derivative Miller and Ross
[2003] in the above Equation, we get

L[v(x1, x2, ..., xn, t)] =s−αh(x1, x2, ..., xn)− s−αL[N(v(x1, x2, ..., xn, t))] (9)
+ s−αL[g(x1, x2, ..., xn, t)]. (10)

Applying the inverse Laplace transform on both sides of Equation (9), we get

v(x1, x2, ..., xn, t) = A(x1, x2, ..., xn, t)− L−1[s−αL[N(v(x1, x2, ..., xn, t))]],
(11)
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where A(x1, x2, ..., xn, t) can be find using the initial and boundary conditions
given in Equation (7). Consider a homotopy of Equation (11), u(t, p) : Ω ×
[0, 1] → R satisfying

H(u, p) =(1− p)[u− ũ0] + p
[
(u− A)

+ L−1
[
s−αL

[
N(v(x1, x2, ..., xn, t; p))

]]]
= 0, t ∈ Γ, (12)

where Γ is boundary of the domain Ω, p is an embedding parameter and ũ0 is
the boundary condition given in Equation (7) which can be freely chosen. From
Equation (12), we can see that

H(u, 0) = u− ũ0 = 0 and

H(u, 1) = u− A+ L−1
[
s−αL

[
N(v(x1, x2, ..., xn, t; p))

]]
= 0. (13)

The Equation (13) shows that when p changes from 0 to 1, u changes from ũ0 to
v. Hence, the approximate solution of Equation (7) can be assumed to be

u(x1, x2, ..., xn, t; p) =
∞∑
n=0

pnun(x1, x2, ..., xn, t). (14)

From Equations (12) and (14), we get
∞∑
n=0

pnun(x1, x2, ..., xn, t) = ũ0(x1, x2, ..., xn, t)

− p
[
ũ0(x1, x2, ..., xn, t)−A(x1, x2, ..., xn, t)

+ L−1
[
s−αL

[
N
( ∞∑
n=0

pnun(x1, x2, ..., xn, t)
)]]]

. (15)

By equating the coefficients of powers of p on both sides of Equation (15), we
get

u0(x1, x2, ..., xn, t) = ũ0(x1, x2, ..., xn, t),

u1(x1, x2, ..., xn, t) = A(x1, x2, ..., xn, t)− ũ0(x1, x2, ..., xn, t)

− L−1
[
s−αL

[
N(ũ0(x1, x2, ..., xn, t))

]]
um(x1, x2, ..., xn, t) = − L−1

[
s−αL

[
N(ũm−1(x1, x2, ..., xn, t))

]]
,

∀ m ≥ 2. (16)

Thus, the approximate solution of Equation (7) will be

v(x1, x2, ..., xn, t) = lim
p→1

∞∑
m=0

um(x1, x2, ..., xn, t). (17)

The convergence of the above series has been discussed in He [1999].
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4 A Solution of Liouville-Caputo Time Fractional
Black-Scholes Equation by LHPM

The use of LHPM to solve the Liouville-Caputo time fractional Black-Scholes
equation for European call options with n variables is the topic of discussion in
this section.

Theorem 4.1. The solution of n-dimensional Black-Scholes equation discussed in
Equation (6), is given by

C(S1, S2, ..., Sn, τ) =

e−r(T−τ)

[
max

( n∑
i=1

aiSie
(r− 1

2
σ2
i )(T−τ) −K, 0

)
+ (T − τ)αe−nr(T−τ)∆

+
1

2
(T − τ)α

n∑
i=1

[
σ2
i max

(
aiSie

(r− 1
2
σ2
i )(T−τ), 0

)
Eα,α+1

(1
2
σ2
i (T − τ)α

)]
+
1

2
(T − τ)2α Γ(α + 1) e−nr(T−τ) ∆ Eα,2α+1(w)

n∑
i,j=1

σiσjρij

−(T − τ)α Γ(α + 1) e−nr(T−τ)∆ Eα,α+1(w)

]
,

where

∆ =
n∏

i=1

Sie
1
2
σ2
i (T−τ) and w =

1

2
(T − τ)α

n∑
i,j=1

σiσjρij. (18)

Proof. We have Liouville-Caputo time fractional Black-Scholes equation for n
variables discussed in Equation (6) is given by

Dα
t v =

1

2

n∑
i,j=1

σiσjρij
∂2v

∂xi∂xj

, (19)

where initial and boundary conditions are given by Equations (3)-(5). Consider

N(v(x1, x2, ..., xn, t)) =
1

2

n∑
i,j=1

σiσjρij
∂2v

∂xi∂xj

.

Thus, Equation (19) will be

Dα
t v(x1, x2, ..., xn, t) = N(v(x1, x2, ..., xn, t)). (20)
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Now, applying Laplace transform with respect to time variable t on both sides of
Equation (20), we get

L
[
v(x1, x2, ..., xn, t)

]
=s−α max

( n∑
i=1

ãie
xi −K, 0

)
+

1

2
s−αL

[ n∑
i,j=1

σiσjρij
∂2v

∂xi∂xj

]
. (21)

The inverse Laplace transform of Equation (21) is obtained as

v(x1, x2, ..., xn, t) =max
( n∑

i=1

ãie
xi −K, 0

)
+

1

2
L−1

[
s−αL

[ n∑
i,j=1

σiσjρij
∂2v

∂xi∂xj

]]
. (22)

Applying a homotopy discussed in Equation (12) to the Equation (22), we get

(1− p)[v(x1, x2, ..., xn, t; p)− ṽ0(x1, x2, ..., xn, t)]

+ p

[
v(x1, x2, ..., xn, t; p)− max

( n∑
i=1

ãie
xi −K, 0

)
− 1

2
L−1

[
s−αL

[ n∑
i,j=1

σiσjρij
∂2v

∂xi∂xj

]]]
= 0, (23)

where p ∈ [0, 1] is an embedding parameter and ṽ0(x1, x2, ..., xn, t) can be chosen
independently. Here we choose

ṽ0(x1, x2, ..., xn, t) = max
( n∑

i=1

ãie
xi −K, 0

)
+ tα

n∏
i=1

exi . (24)

Hence, Equation (23) reduces to

v(x1, x2, ..., xn, t; p) =max
( n∑

i=1

ãie
xi −K, 0

)
+ tα

n∏
i=1

exi

−p

[
tα

n∏
i=1

exi − 1

2
L−1

[
s−αL

[ n∑
i,j=1

σiσjρij
∂2v

∂xi∂xj

]]]
.

(25)

From HPM, the solution of Equation (19) can be assumed as

v(x1, x2, ..., xn, t; p) =
∞∑

m=0

pmum(x1, x2, ..., xn, t). (26)
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Thus, Equations (25) and (26), yields

∞∑
m=0

pmum(x1, x2, ..., xn, t) =max
( n∑

i=1

ãie
xi −K, 0

)
+ tα

n∏
i=1

exi − p

[
tα

n∏
i=1

exi

− 1

2
L−1

[
s−αL

[ n∑
i,j=1

σiσjρij

∞∑
m=0

pm
∂2um

∂xi∂xj

]]]
.

(27)

By equating the coefficients of powers of p on both sides of Equation (27), we get

u0(x1, x2, ..., xn, t) =max
( n∑

i=1

ãie
xi −K, 0

)
+ tα

n∏
i=1

exi

um(x1, x2, ..., xn, t) =
tmα

2mΓ(mα + 1)

( n∑
i=1

σ2m
i max(ãiexi , 0)

)
+

t(m+1)αΓ(α + 1)

2mΓ((m+ 1)α + 1)

n∏
i=1

exi

( n∑
i,j=1

σiσjρij

)m

− tmαΓ(α + 1)

2m−1Γ(mα + 1)

n∏
i=1

exi

( n∑
i,j=1

σiσjρij

)m−1

, ∀ m ≥ 1.

Substituting these values in Equation (26), we obtain

v(x1, x2, ..., xn, t; p) =max
( n∑

i=1

ãie
xi −K, 0

)
+ tα

n∏
i=1

exi

+
∞∑

m=0

pm+1

[
t(m+1)α

2m+1Γ((m+ 1)α + 1)
d

+
t(m+2)αΓ(α + 1)

2m+1Γ((m+ 2)α + 1)

n∏
i=1

exi

( n∑
i,j=1

σiσjρij

)m+1

− t(m+1)αΓ(α + 1)

2mΓ((m+ 1)α + 1)

n∏
i=1

exi

( n∑
i,j=1

σiσjρij

)m]
.

where d =
∑n

i=1 σ
2(m+1)
i max(ãiexi , 0)
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Taking p → 1 in above Equation and simplifying, we get

v(x1, x2, , ..., xn, t) =max
( n∑

i=1

ãie
xi −K, 0

)
+ tα

n∏
i=1

exi

+
tα

2

n∑
i=1

(
σ2
i max(ãie

xi , 0) Eα,α+1

(1
2
σ2
i t

α
))

+
t2α

2
Γ(α + 1)

n∏
i=1

exiEα,2α+1

(
tα

2
δ

)
δ

−tαΓ(α + 1)
n∏

i=1

exiEα,α+1

(
tα

2
δ

)
, (28)

where Ea,b(t) =
∑∞

k=0
tk

Γ(ak+b)
is the Mittag-Leffler function, with a > 0 and

b ∈ R and δ =
∑n

i,j=1 σiσjρij . But xi = ln(Si)−
(
r− 1

2
σ2
i

)
τ, C(x1, x2, ..., xn, τ) =

e−r(T−τ)v(x1, x2, ..., xn, τ) and t = T − τ , Equation (28) can be written as

C(S1, S2, ..., Sn, τ) =

e−r(T−τ)

[
max

( n∑
i=1

aiSie
(r− 1

2
σ2
i )(T−τ) −K, 0

)
+ (T − τ)αe−nr(T−τ)∆

+
1

2
(T − τ)α

n∑
i=1

[
σ2
i max

(
aiSie

(r− 1
2
σ2
i )(T−τ), 0

)
Eα,α+1

(1
2
σ2
i (T − τ)α

)]
+
1

2
(T − τ)2α Γ(α + 1) e−nr(T−τ) ∆ Eα,2α+1(w)

n∑
i,j=1

σiσjρij

−(T − τ)α Γ(α + 1) e−nr(T−τ)∆ Eα,α+1(w)

]
,

where ∆ and w are given in Equation (18).

Similarly, one can derive solution of Liouville-Caputo time fractional Black-
Scholes equation for n variables of put option using LHPM. This formula is stated
without proof.
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Theorem 4.2. The solution of n-dimensional Black-Scholes equation for Euro-
pean put option discussed in Section 2, is given by

P(S1, S2, ..., Sn, τ) =

e−r(T−τ)

[
max

(
K −

n∑
i=1

aiSie
(r− 1

2
σ2
i )(T−τ), 0

)
+ (T − τ)αe−nr(T−τ)∆

+
1

2
(T − τ)α

n∑
i=1

[
σ2
i max

(
− aiSie

(r− 1
2
σ2
i )(T−τ), 0

)
Eα,α+1

(1
2
σ2
i (T − τ)α

)]
+
1

2
(T − τ)2α Γ(α + 1) e−nr(T−τ) ∆ Eα,2α+1(w)

n∑
i,j=1

σiσjρij

−(T − τ)α Γ(α + 1) e−nr(T−τ)∆ Eα,α+1(w)

]
,

where ∆ and w are given in Equation (18).

Theorem 4.3. S. J. Ghevariya, C. N. Patel and Fadugba [2022] Using the Laplace
transform homotopy perturbation method (LTHPM), the n-dimensional Black-
Scholes model for European options is given by

CLTHPM = max
( n∑

i=1

aiSi −K, 0
)

+
n∑

i,j=1
i<j

ρijS
2
i

(
(σ2

i + r)E2,σ2
i +r(T − τ)− E1,σ2

i +r(T − τ) + (T − τ)
)

+
n∑

i,j=1
i<j

ρijS
2
j

(
(σ2

j + r)E2,σ2
j+r(T − τ)− E1,σ2

j+r(T − τ) + (T − τ)
)

− rE1,−r(T − τ)
( n∑

i=1

max(ai, 0)Si +max
( n∑

i=1

aiSi −K, 0
))

,
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and

PLTHPM = max
(
K −

n∑
i=1

aiSi, 0
)

+
n∑

i,j=1
i<j

ρijS
2
i

(
(σ2

i + r)E2,σ2
i +r(T − τ)− E1,σ2

i +r(T − τ) + (T − τ)
)

+
n∑

i,j=1
i<j

ρijS
2
j

(
(σ2

j + r)E2,σ2
j+r(T − τ)− E1,σ2

j+r(T − τ) + (T − τ)
)

− rE1,−r(T − τ)
( n∑

i=1

max(−ai, 0)Si −max
(
K −

n∑
i=1

aiSi, 0
))

,

where Ea,b(t) = ta
∑∞

k=0
(bt)k

Γ(a+k+1)
is the Mellin-Ross function with a, b > 0.

Theorem 4.4. [Haug, 2007, P.2] The Black-Scholes model for plain vanilla pay-
offs are given by

CVanilla = SN(d1)−Ke−r(T−t)N(d2)

PVanilla = Ke−r(T−t)N(d2)− SN(−d1)

where N(·) is cumulative distribution function of standard normal random vari-

able and d1 =
ln(S/K)−(r− 1

2
σ2)

σ
√
T−t

, d2 = d1 − σ
√
T − t.

5 An Illustrative Example
In this section, we consider Black-Scholes models using LTHPM and Liouville-

Caputo time fractional derivative sense for n = 2. Further, the comparisons of
these models for n = 1 with the Black-Scholes model for plain vanilla payoffs
have been discussed. We examine call and put values against different values of
α (0.5, 0.7, 0.9) and asset prices. For that, take the striking price K = 70, the risk
free interest rate, r = 0.05, a1 = 2, a2 = 1, σ1 = 0.05, σ2 = 0.1, t = 0 and time
to expiration, T = 0.5. In Figures 1 & 2, we consider the correlation coefficient,
ρ = 0.25. Figure 1(a) (Figure 2(a)) represents values of call (put) option against
values of S1 by taking S2 = 25, while Figure 1(b) (Figure 2(b)) represents values
of call (put) option against values of S2 by taking S1 = 25. Figures 3(a) & 3(b)
represents values of call and put option against values of S1 by taking a1 = 1.
Further, it can be seen from Figures 1 & 2 that the variations of call and put values
for different values of α with the values from LTHPM are not far away. Also,
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from Figure 3, we observe that the model using Liouville-Caputo time fractional
derivative sense for α = 0.9 coincide with the model for plain vanilla payoffs.
This suggest that our model is more accurate than the model using LTHPM.
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Figure 1: Call value with n = 2
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Figure 2: Put value with n = 2
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CVanilla
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Figure 3: CVanilla, C0.9 and CLTHPM with n = 1

Table 1 shows the relative errors of call option prices for n = 2 from Theorem
4.1 of different values of α with values from Theorem 4.3. For that take K =
70, r = 0.05, σ1 = 0.05, σ2 = 0.1, ρ12 = 0.25, a1 = 2, a2 = 1, S1 = 100, S2 =
25, T = 0.5, t = 0. From Theorem 4.3, we get CLTHPM = 153.272.

α Cα Error (%)
0.1 156.909 2.318
0.2 156.897 2.310
0.3 156.881 2.300
0.4 156.861 2.288
0.5 156.840 2.275
0.6 156.818 2.261
0.7 156.795 2.247
0.8 156.772 2.233
0.9 156.750 2.219
1 156.728 2.205

Table 1: Relative error Cα and CLTHPM with n = 2

Further, for put option, consider S1 = 10, S2 = 12. From Theorem 4.2 and
Theorem 4.3, we get PLTHPM = 38.938 and Pα = 36.314. Hence the relative
error for put option is 7.226%. Table 2 shows the the relative errors of call option
prices for n = 1 from Theorems 4.1 & 4.4 of different values of α with values
from Theorem 4.3. For that take K = 70, r = 0.05, σ = 0.05, a1 = 1, S =
150, T = 0.5, t = 0. From Theorem 4.3 & 4.4, we get CLTHPM = 153.272 and
CVanilla = 81.728.
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α Cα
Error (%)

Cα & CVanilla Cα & CLTHPM

0.1 81.819 0.110 4.335
0.2 81.813 0.103 4.328
0.3 81.804 0.093 4.318
0.4 81.795 0.081 4.307
0.5 81.784 0.068 4.295
0.6 81.773 0.055 4.282
0.7 81.762 0.041 4.268
0.8 81.750 0.027 4.255
0.9 81.739 0.013 4.242
1 81.728 0.000 4.229

Table 2: Relative error Cα, CLTHPM and CVanilla with n = 1

Further, for put option, consider S = 10. From Theorems 4.2, 4.3 and 4.4, we
get PLTHPM = 61.481,Pα = 58.278 and PVanilla = 58.272. Hence the relative error
for PVanilla and Pα is 0.011%, while relative error for Pα and PLTHPM is 5.497%.

6 Discussion
The famous Black-Scholes model is used for valuing option price with single

asset as given in Theorem 4.4 derived by Fischer Black and Myron Scholes in
1973. Many authors have tried to improve it and in 2017, K. Trachoo,W. Sawang-
tong and P. Sawangtong presented a formula for valuing options based on two as-
sets using LTHPM K. Trachoo, W. Sawangtong and Sawangtong [2017]. In 2022,
S. J. Ghevariya, C. N. Patel and S. E. Fadugba had generalized it for n assets S. J.
Ghevariya, C. N. Patel and Fadugba [2022]. The researchers have also presented
a formula for valuing option price with two assets using Liouville-Caputo frac-
tional derivative Prathumwan and Trachoo [2020], P. Sawangtong, K. Trachoo,
W. Sawangtong and Wiwattanapataphee [2018]. In this paper we derived the for-
mula for valuing option price based on n assets using Liouville-Caputo fractional
derivative.

For n = 2, examples were presented to analyze the option prices derived
from Liouville-Caputo time fractional Black-Scholes equation and LTHPM given
in Theorem 4.3 by considering different values of α, while these option prices
compared with plain vanilla options given in Theorem 4.4 by considering n = 1.
Figures 1 and 2 shows values of call and put options with different values of α
against the underlying asset prices, in the context of fixed values of the param-
eters: K, r, a1, a2, σ1, σ2, T, ρ. Figure 3 indicates the value of option prices
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from Liouville-Caputo time fractional Black-Scholes equation, LTHPM and plain
vanilla. It is observed from all Figures that the values of call option increase and
the value of put option decrease linearly with values of asset prices.

7 Conclusion
Tables 1 & 2 show the performance, accuracy and validation of solution de-

rived in the context of Liouville-Caputo fractional derivative sense with respect to
LTHPM and plain vanilla options. Figures 1 & 2 indicate how close the call and
put values derived by authors and LTHPM for different values of α. Also Figure
3 shows that our solution is quite close to the well known model for plain vanilla
options for single asset.

The formulas derived in this paper are limited to assets paying no dividend.
Some extensions of the methodology can be explored for further research instead
of linear payoffs and assets paying no dividend.
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