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Abstract

Banach contraction principle behaves as a mathematical tool to solve
various practical problems arising during mathematical formulation
of many theoretical problems. In present work, the existence of a
unique common fixed point for pairs of minimal commutative map-
pings is discussed, which satisfy a generalized (ψ, φ)−weak contrac-
tion involving cubic terms of distance functions. Examples are given
in support of the obtained results and as an application the existence
of solution of system of certain functional equations arising in dy-
namic programming is discussed.
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1 Introduction
Fixed point theory is an important tool in nonlinear analysis. Its importance

lies in finding solutions of many problems of applied sciences, engineering and
economics. Banach contraction principle [2] is the versatile result of fixed point
theory which ensures the existence and uniqueness of a fixed point for every con-
traction mapping defined on a complete metric space. It is based on iteration
process.

Over a hundred years, researchers have been making efforts to extend, gener-
alize and improve the Banach fixed point theorem in various directions. Jungck
[15] was the first to prove a common fixed point theorem for a pair of commuting
mappings. This theorem opened the door for researchers to generalize the Banach
contraction principle for pair/pairs of mappings. Sessa [28] made an attempt to
relax commutative condition of mappings to weak commutative condition .

Further, Jungck [16] weakened the notion of commutative/weak commutative
mappings to compatible mappings. In 1993, Jungck, Murthy and Cho [17] gen-
eralized the notion of compatible mappings to compatible mappings of type (A).
The process of generalizing the concept of compatible mappings is still going on.
Pathak and Khan [23], Pathak et al. [24, 25], Rohen and Singh [27], Singh and
Singh [30] and Jha et al. [13] weakened this concept of compatible mappings to
compatible mappings of type (B), type (P ), type (C), type (R), type (E) and type
(K) respectively. One can call the variants of compatible mappings as minimal
commutative mappings.

In 1971, Ćirić [8] generalized Banach contraction principle for a self map
defined on a metric space (X , d) (say) satisfying the following condition:

d(Tu, Tv) ≤ kmax{d(u, v), d(u, Tu), d(v, Tv),
1

2
[d(u, Tv) + d(v, Tu)]}, (1)

0 < k < 1.
In 2005, Singh and Jain [29] proved a fixed point theorem for pairs of compat-

ible mappings along with weakly compatible mappings satisfying the contractive
condition of type (1) as follows.

Theorem 1.1. [29] Let (X , d) be a complete metric space and let f, g, L,M, S
and T be self mappings on X such that

(H1) L(X ) ⊂ ST (X ), M(X ) ⊂ fg(X );

(H2) ST = TS, Lg = gL, fg = gf , MT = TM ;

(H3) either fg or L is continuous;

(H4) the pair (M,ST ) is weakly compatible and the pair (L, fg) is compatible;
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(H5) for all u, v ∈ X and for some k , 0 < k < 1,

d(Lu,Mv) ≤ kmax{d(Lu, fgv), d(Mv, STv), d(fgu, STv),

1

2
[d(Lu, STv) + d(Lv, fgu)]}.

Then L,M, S, T, f and g have a unique common fixed point.

In 1984, Khan et al. [20] gave the idea of altering distance/ control function
as follows. An altering distance is an increasing and continuous function φ :
[0,∞)→ [0,∞) vanishing only at zero.

Many researchers used the notion of control function having various prop-
erties to generalize Banach contraction principle. In this direction, Boyd and
Wong [7] introduced φ contraction of the form d(Tu, Tv) ≤ φ(d(u, v)) for all
u, v ∈ X , where T is a self mapping defined on a complete metric space X and
φ : [0,∞) → [0,∞) is an upper semi continuous function from right such that
0 ≤ φ(t) < t for all t > 0. In 1997, Alber and Guerre-Delabriere [1] intro-
duced φ−weak contraction to generalize φ contraction in Hilbert spaces.Further,
Rhoades [26] extended the result of [1] in the setting of complete metric space
using the following contraction.

A self mapping T of a complete metric space (X , d) is said to be a φ− weak
contraction if for each u, v ∈ X , there exists a continuous non-decreasing function
φ : [0,∞)→ [0,∞) satisfying φ(t) > 0, for all t > 0 and φ(0) = 0 such that

d(Tu, Tv) ≤ d(u, v)− φ(d(u, v)). (2)

Dutta and Chaudhary [9] proved fixed point theorem for a self map satisfying
(ψ, φ)−weak contractive condition as follows.

Theorem 1.2. Let T be a self mapping of a complete metric space X satisfying

ψ(d(Tu, Tv)) ≤ ψ(d(u, v))− φ(d(u, v)),

for all u, v ∈ X and for some ψ, φ, where φ, ψ : [0,+∞) → [0,+∞) such that
φ is a lower semi continuous function and φ−1(0) = 0 and ψ is a non-decreasing
continuous function with ψ−1(0) = 0, then T has a unique fixed point in X .

In 2013, Murthy and Prasad [21] proved a fixed point theorem for a map sat-
isfying a weak contraction involving cubic terms of distance functions.

Theorem 1.3. [21] Let T be a self mapping of a complete metric space (X , d)
and φ : [0,∞) → [0,∞) be a continuous function with φ(0) = 0 and φ(t) > 0,

370



Kavita, S. Kumar, R. Kumar and Nikita

for each t > 0 such that

[1 + pd(u, v)]d2(Tu, Tv) ≤ pmax
{1

2
[d2(u, Tu)d(v, Tv) + d(u, Tu)d2(v, Tv)],

d(u, Tu)d(u, Tv)d(v, Tu),

d(u, Tv)d(v, Tu)d(v, Tv)
}

+m(u, v)− φ(m(u, v)),

(3)

where

m(u, v) = max
{
d2(u, v), d(u, Tu)d(v, Tv), d(u, Tv)d(v, Tu),

1

2
[d(u, Tu)d(u, Tv) + d(v, Tu)d(v, Tv)]

}
, (4)

p is a non negative real number. Then, map T has a unique fixed point in X .

In 2022, Kavita and Kumar [19] introduced a generalized (ψ, φ)−weak con-
traction involving cubic terms of distance functions and generalized the weak con-
traction (3).

Motivated by the result of Singh and Jain [29], we establish the existence
and uniqueness of a fixed point for pairs of compatible mappings and variants
of compatible mappings (type (A), type (B), type (C), type (P ), type (R), type
(K), type (E)) satisfying the generalized (ψ, φ)−weak contraction involving cu-
bic terms of distance functions. These results generalize the results of Jain et
al.[10, 11, 12], Jung et al.[14], Kang et al.[18], Murthy and Prasad [21], Pathak
et al. [24] and various results presented in the literature.

2 Preliminaries
First, we recall some definitions which will be needed in the sequel.

Definition 2.1. Let (X , d) be a metric space. A pair (S, T ) of self mappings
defined on X is said to be

(i) compatible [16] if and only if

lim
n→∞

d(STun, TSun) = 0,

(ii) compatible of type (A) [17] if

lim
n→∞

d(SSun, TSun) = 0 and lim
n→∞

d(TTun, STun) = 0,
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(iii) compatible of type (P ) [23] if

lim
n→∞

d(SSun, TTun) = 0,

(iv) compatible of type (B) [23] if

lim
n→∞

d(STun, TTun) ≤ 1

2
[ lim
n→∞

d(STun, Sz) + lim
n→∞

d(Sz, SSun)],

and

lim
n→∞

d(TSun, SSun) ≤ 1

2
[ lim
n→∞

d(TSun, T z) + lim
n→∞

d(Tz, TTun)],

(v) compatible of type (C) [25] if

lim
n→∞

d(STun, TTun) ≤ 1

3
[ lim
n→∞

d(STun, Sz) + lim
n→∞

d(Sz, SSun)

+ lim
n→∞

d(Sz, TTun)]

and

lim
n→∞

d(TSun, SSun) ≤ 1

3
[ lim
n→∞

d(TSun, T z) + lim
n→∞

d(Tz, TTun)

+ lim
n→∞

d(Tz, SSun)],

(vi) compatible of type (R) [27] if

lim
n→∞

d(STun, TSun) = 0

and

lim
n→∞

d(SSun, TTun) = 0,

(vii) compatible of type (E) [30] if

lim
n→∞

SSun = lim
n→∞

STun = Tz

and

lim
n→∞

TTun = lim
n→∞

TSun = Sz,
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(viii) compatible of type (K) [13] if

lim
n→∞

SSun = Tz and lim
n→∞

TTun = Sz,

whenever {un} is a sequence in X such that lim
n→∞

Sun = lim
n→∞

Tun = z, for some
z ∈ X .

Now, we highlight the relationship among various types of compatible map-
pings.

Remark 2.1. [6] Notions of compatible mappings and its variants are indepen-
dent to each other. Although, all types of compatible mappings are equivalent to
each other when one consider continuity of all mappings.

Remark 2.2. Notion of compatible mappings of type (R) is a combination of the
notion of compatible mappings and compatible mappings of type (P ), but it is
stronger than compatible mappings and compatible mappings of type (P ), see
([27, Example 1-2]).

Remark 2.3. If Sz = Tz, then compatible of type (E) implies compatible, com-
patible of type (A), type (B), type (C) and type (P ), however the converse may
not true (see [31, Example 2.4]).

Remark 2.4. If Sz 6= Tz, then compatible of type (E) is neither compatible nor
compatible of type (A),type (C), type (P ), (see [31, Example 2.3]).

In 1998, Pant [22] introduced the notion of reciprocal continuous mappings as
follows.

Definition 2.2. [22] A pair (S, T ) of self mappings of a metric space (X , d) is said
to be reciprocal continuous, if lim

n→∞
STun = Sz and lim

n→∞
TSun = Tz, whenever

{un} is a sequence in X such that lim
n→∞

Sun = lim
n→∞

Tun = z, for some z ∈ X .

Remark 2.5. It is clear that a pair of continuous self mappings is reciprocal
continuous, but the converse may not true (see [22]).

In 2011, Singh and Singh [31] split the concept of compatible mappings of
type (E) to the concept of S−compatible mappings of type (E) and T− compat-
ible mappings of type (E) and further, split the notion of reciprocal continuous to
the notion of S−reciprocal continuous and T−reciprocal continuous.

Definition 2.3. [31] Let (X , d) be a metric space and S, T : X → X be two
mappings. The pair (S, T ) is said to be
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(i) S−compatible of type (E), if lim
n→∞

SSun = lim
n→∞

STun = Tz,

(ii) T−compatible type (E), if lim
n→∞

TTun = lim
n→∞

TSun = Sz,

(iii) S− reciprocal continuous, if lim
n→∞

STun = Sz,

(iv) T− reciprocal continuous, if lim
n→∞

TSun = Tz,

whenever {un} is a sequence in X such that lim
n→∞

Sun = lim
n→∞

Tun = z, for some
z ∈ X ,

Remark 2.6. Compatible of type (E) implies both S−compatible of type (E) and
T−compatible of type (E), however, the converse may not true, see the example
given below.

Example 2.1. Let X = [0, 5] and d be a usual metric. Let S, T : X → X be two
mappings defined as Su = 5, Tu = 1, for u ∈ [0, 5

2
] − {5

4
}, Su = 0, Tu = 5,

for u = 5
4

and Su = 5−u
2
, Tu = u

2
, for u ∈ (5

2
, 5] . Clearly, S and T are

not continuous at u = 5
2
, 5
4
. Let us assume that un → 5

2
, un > 5

2
, for all n.

Then, Sun = 5−un

2
→ 5

4
= t and Tun = un

2
→ 5

4
= t. Therefore, we have

SSun = S(5−un

2
) = 5 → 5, STun = S(un

2
) = 5 → 5,Tt = 5 and TTun =

T (un

2
) = 1 → 1, TSun = T (5−un

2
) = 1 → 1, St = 0. Thus, the pair (S, T ) is

S−compatible of type (E), but not compatible of type (E).

Remark 2.7. The reciprocal continuity of the pair (S, T ) implies both S−reciprocal
continuity and T− reciprocal continuity, however, the converse may not true, see
example given below.

Example 2.2. Let X = [0, 5] and d be a usual metric. Let S, T : X → X be two
mappings defined as Su = 5, Tu = 0 for u ∈ [0, 5

2
) and Su = 5− u, Tu = u, for

u ∈ [5
2
, 5]. Let {un} be a sequence in X such that un → 5

2
, u > 5

2
, for all n. Then

Sun = 5−un → 5
2
, Tun = un → 5

2
= t, STun = S(un) = 5−un → 5

2
, St = 5

2

and TSun = T (5− un) = 0→ 0, Tt = 5
2
. It follows that lim

n→∞
STun = 5

2
= St

and lim
n→∞

TSun = 0 6= Tt = 5
2
. Therefore, the pair (S, T ) is S−reciprocal

continuous, but it is neither T−reciprocal continuous nor reciprocal continuous.

Now, we present some prepositions which are useful for our work.
Let(X , d) be a metric space and (S, T ) be a pair of self mappings of X .

Proposition 2.1. [17] Suppose the pair (S, T ) is compatible of type (A). If either
S or T is continuous, then (S, T ) is compatible.
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Proposition 2.2. [16, 27] Suppose the pair (S, T ) is compatible or compatible of
type (R). If

(i) Sz = Tz, then STz = SSz = TTz = TSz, for some z ∈ X .

(ii) lim
n→∞

Sun = lim
n→∞

Tun = z, for some z ∈ X , then

(a) lim
n→∞

TSun = Sz, if S is continuous at z,

(b) lim
n→∞

STun = Tz, if T is continuous at z,

(c) STz = TSz and Sz = Tz, if S and T are continuous at z.

Proposition 2.3. [23, 24, 25] Suppose the pair (S, T ) is compatible of type (B)
or type (C) or type (P ) on X . If for some z in X ,

(i) Sz = Tz, then STz = SSz = TTz = TSz.

(ii) lim
n→∞

Sun = lim
n→∞

Tun = z, then

(a) lim
n→∞

TTun = Sz, if S is continuous at z;

(b) lim
n→∞

SSun = Tz, if T is continuous at z;

(c) STz = TSz and Sz = Tz, if S and T are continuous at z.

Proposition 2.4. [31] Let {un} is a sequence inX such that lim
n→∞

Sun = lim
n→∞

Tun =

z, for some z ∈ X . If one of the following conditions is satisfied:

(i) the pair (S, T ) is S−compatible of type (E) and S− reciprocally continu-
ous,

(ii) the pair (S, T ) is T−compatible of type (E) and T− reciprocally continu-
ous,

Then (a) Sz = Tz and (b) if there exists t ∈ X such that St = Tt = z, then
STt = TSt.

3 Main Results
In this section, we establish the existence and uniqueness of fixed point

for pairs of minimal commutative mappings satisfying generalized (ψ, φ)−weak
contraction involving cubic terms of distance functions, where ψ ∈ Ψ and φ ∈ Φ,
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Ψ is a collection of all non decreasing, upper semi continuous (in each coordinate
variables) functions ψ : [0,∞)4 → [0,∞) such that

max{ψ(t, t, 0, 0), ψ(0, 0, 0, t), ψ(0, 0, t, 0), ψ(t, t, t, t)} ≤ t, for each t > 0.

and Φ is a collection of all continuous functions φ : [0,∞) → [0,∞) such that
φ(t) > 0 for each t > 0 and φ(0) = 0.

Let (X , d) be a metric space and f , g, L,M , S and T be self mappings defined
on X satisfying the following conditions:

(I) f(X ) ⊂ LM(X ) and g(X ) ⊂ ST (X ),

(II) LM = ML, ST = TS, fT = Tf and gM = Mg,

(III) one of f , g, LM and ST is continuous,

(IV) for all u, v ∈ X , there exists a function ψ ∈ Ψ, a function φ ∈ Φ and a real
number p ≥ 0 such that

[1 + pd(STu, LMv)]d2(fu, gv) ≤ pψ

(
d2(STu, fu)d(LMv, gv),

d(STu, fu)d2(LMv, gv),

d(STu, fu)d(STu, gv)d(LMv, fu),

d(STu, gv)d(LMv, fu)d(LMv, gv)

)
+m(STu, LMv)− φ(m(STu, LMv)),

(5)
where

m(STu, LMv) = max
{
d2(STu, LMv),

d(STu, fu)d(LMv, gv),

d(STu, gv)d(LMv, fu),

1

2
[d(STu, fu)d(STu, gv) + d(LMv, fu)d(LMv, gv)]

}
.

(6)

Let u0 ∈ X be arbitrary point. Using condition (I), one can find u1, u2 ∈ X such
that fu0 = LMu1 = v0 and gu1 = STu2 = v1. Continuing in this manner, one
can construct sequences such that

v2n = fu2n = LMu2n+1 and v2n+1 = gu2n+1 = STu2n+2, (7)

for each n = 0, 1, 2, 3 . . .
First, we prove a fixed point theorem for pairs of compatible mappings.
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Theorem 3.1. Let f , g, L, M , S and T be self mappings defined on a complete
metric space X satisfying the conditions (I)-(IV). If pairs (f, ST ) and (g, LM)
are compatible, then f , g, L, M , S and T have a unique common fixed point in
X .

Proof. In the view of [19, Theorem 2.3], the sequence {vn}, defined by (7), is a
Cauchy sequence in X . Since X is a complete metric space, so the sequence {vn}
converges to a point, say, z ∈ X , as n → ∞. Consequently, the sub sequences
{fu2n}, {STu2n}, {gu2n+1}, and {LMu2n+1} also converges to the same point
z ∈ X .

Case (i) If f is continuous, then {ffu2n} and {f(ST )u2n} converges to fz
as n → ∞. Since the pairs (f, ST ) is compatible on X , it follows from the
Proposition 2.2(ii) that {(ST )fu2n} converges to fz as n→∞.

Step 1. We claim that z = fz.Taking u = fu2n and v = u2n+1 in (5) and (6)
and letting n→∞, we have

[1 + pd(fz, z)]d2(fz, z) ≤ pψ(0, 0, 0, 0) +m(fz, z)− φ(m(fz, z)),

where

m(fz, z) = max
{
d2(fz, z), d(fz, z)d(z, z), d(fz, z)d(z, fz),

1

2
[d(fz, fz)d(fz, z) + d(z, fz)d(z, z)]

}
= d2(fz,z).

On simplifying, we have d2(fz, z) = 0, i.e., fz = z. Since f(X ) ⊂ LM(X ),
there exists a point w ∈ X such that z = fz = LMw.

Step 2. Taking u = fu2n and v = w in (5) and (6) and letting n→∞, we get

[1 + pd(z, z)]d2(z, gw) ≤ pψ

(
d2(z, z)d(z, gw), d(z, z)d2(z, gw),

d(z, z)d(z, gw)d(z, z), d(z, gw)d(z, z)d(z, gw)

)
+m(z, z)− φ(m(z, z)),

where

m(z, z) = max

{
d2(z, z), d(z, z)d(z, gw), d(z, gw)d(z, z),

1

2

[
d(z, z)d(z, gw) + d(z, z)d(z, gw)

]}
= 0.
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Using the property of φ, ψ in the above inequality, we have d2(z, gw) = 0,
i.e., gw = z. Since the pair (g, LM) is compatible on X and LMw = gw =
z, therefore, by Proposition 2.2(i), we have (LM)gw = g(LM)w and hence,
LMz = (LM)gw = g(LM)w = gz.

Step 3. Taking u = u2n and v = z in (5) and (6) and letting n→∞, we get

[1 + pd(z, gz)]d2(z, gz) ≤ pψ(0, 0, 0, 0) +m(z, gz)− φ(m(z, gz)),

where

m(z, gz) = max
{
d2(z, gz), d(z, z)d(LMz, gz), d(z, gz)d(gz, z),

1

2
[d(z, z)d(z, gz) + d(LMz, z)d(gz, gz)]

}
= d2(z, gz).

On solving, we get z = gz. Since g(X ) ⊂ ST (X ), therefore, for this z there
exists a point x ∈ X such that z = gz = STx.

Step 4. We claim that z = fx. For this, putting u = x and v = z in (5) and
(6), we get

[1 + pd(STx, LMz)]d2(fx, gz) ≤ pψ

(
d2(STx, fx)d(LMz, gz),

d(STx, fx)d2(LMz, gz),

d(STx, fx)d(STx, gz)d(LMz, fx),

d(STx, gz)d(LMz, fx)d(LMz, gz)

)
+m(STx, LMz)− φ

(
m(STx, LMz)

)
,

where

m(STx, LMz) = max

{
d2(STx, LMz), d(STx, fx)d(LMz, gz),

d(STx, gz)d(LMz, fx),
1

2

[
d(STx, fx)d(STx, gz)

+ d(LMz, fx)d(LMz, gz)
]}

= 0.

After simplification, we conclude that d2(fx, z) = 0. This gives that fx = z.
Since (f, ST ) is compatible on X and fx = STx = z, therefore, by Proposi-

tion 2.2(i), we have (ST )fx = f(ST )x, i.e.,STz = (ST )fx = f(ST )x = fz.
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Step 5. We claim that Tz = z. Substituting u = Tz, v = u2n+1 in (5) and (6)
and letting n→∞, we have

[1 + pd((ST )Tz, z)]d2(fTz, z) ≤ pψ(0, 0, 0, 0) +m((ST )Tz, z)

− φ(m((ST )Tz, z)),

where

m((ST )Tz, z) = max
{
d2((ST )Tz, z), d((ST )Tz, fTz)d(z, z),

d((ST )Tz, z)d(z, fTz),
1

2
[d((ST )Tz, fTz)d((ST )Tz, z)

+ d(z, fTz)d(z, z)]
}

= d2((ST )Tz, z).

Since ST = TS, STz = z, fT = Tf , fz = z, so (ST )Tz = (TS)Tz =
T (STz) = Tz and fTz = Tfz = Tz.

On Simplifying, the above inequality reduces to

pd3(Tz, z) + φ(d2(Tz, z)) ≤ 0,

which holds only for d(Tz, z) = 0, i.e., Tz = z. Also, STz = z implies that
Sz = z.

Step 6. Next we show that Mz = z. Substituting u = u2n v = Mz in (5) and
(6) and letting n→∞, we have

[1 + pd(z, (LM)Mz)]d2(z, gMz) ≤ pψ(0, 0, 0, 0) +m(z, (LM)Mz)

− φ(m(z, (LM)Mz),

where

m(z, (LM)Mz) = max
{
d2(z, (LM)Mz), d(z, z)d((LM)Mz, gMz),

d(z, gMz)d((LM)Mz, z),
1

2
[d(z, z)d(z, gMz)

+ d((LM)Mz, z)d((LM)Mz, gMz)]
}

= d2(z, (LM)Mz).

Since LM = ML, LMz = z, gM = Mg, gz = z, so (LM)Mz = (ML)Mz =
M(LMz) = Mz and gMz = Mgz = Mz.

On simplifying, we get

pd3(z,Mz) + φ(d2(z,Mz)) ≤ 0,
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which holds only for d(z,Mz) = 0, i.e., Mz = z. Also, LMz = z implies that
Lz = z. Thus, z is common fixed point of f , g, S, T , L and M .

Case (ii) If g is continuous, one can complete the proof on the similar lines of
case (i).

Case(iii) If ST is continuous. Then {(ST )(ST )u2n} and {(ST )fu2n} con-
verges to STz as n → ∞. Since the mappings ST and f are compatible on
X , it follows from the Proposition 2.2(ii) that {f(ST )u2n} converges to STz as
n→∞.

Next, we claim that STz = z. For this, substituting u = STu2n and v = u2n+1

in equation (5) and inequality (6) and letting n → ∞ with the property of φ and
ψ, we get

[1 + pd(STz, z)]d2(STz, z) ≤ pψ(0, 0, 0, 0) +m(STz, z)− φ(m(STz, z)),

where

m(STz, z) = max
{
d2(STz, z), d(STz, STz)d(z, z), d(STz, z)d(z, STz),

1

2
[d(STz, STz)d(STz, z) + d(z, STz)d(z, z)]

}
= d2(STz, z).

Using the value of m(STz, z) along with the property of φ and ψ, the above
inequality reduces to d2(STz, z) = 0, i.e., STz = z.

Next, we show that fz = z. Taking u = z and v = u2n+1 in (5) and (6) and
letting n→∞, we get

[1 + pd(STz, z)]d2(fz, z) ≤ pψ
(
d2(STz, fz)d(z, z), d(STz, fz)d2(z, z),

d(STz, Sz)d(STz, z)d(z, fz),

d(STz, z)d(z, fz)d(z, z)
)

+m(STz, z)− φ
(
m(STz, z)

)
,

where

m(STz, z) = max

{
d2(STz, z), d(STz, fz)d(z, z), d(STz, z)d(z, fz),

1

2

[
d(STz, fz)d(STz, z) + d(z, fz)d(z, z)

]}
= 0.

After simplification, one gets d2(fz, z) = 0. This implies that fz = z. Therefore,
STz = z = fz. Since f(X ) ⊂ LM(X ), there exists a point w ∈ X such that
z = fz = LMw.
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Now, we claim that gw = z. Substituting u = z and v = w in (5) and (6), we
have

[1 + pd(STz, LMw)]d2(fz, gw) ≤ pψ
(
d2(STz, fz)d(LMw, gw),

d(STz, fz)d2(LMw, gw),

d(STz, fz)d(STz, gw)d(LMw, fz),

d(STz, gw)d(LMw, fz)d(LMw, gw)
)

+m(STz, LMw)− φ
(
m(STz, LMw)

)
,

where

m(STz, LMw) = max

{
d2(STz, LMw), d(STz, fz)d(LMw, gw),

d(STz, gw)d(LMw, fz),
1

2

[
d(STz, fz)d(STz, gw)

+ d(LMw, fz)d(LMw, gw)
]}

= max

{
d2(z, z), d(z, z)d(z, gw), d(z, gw)d(z, z),

1

2

[
d(z, z)d(z, gw) + d(z, z)d(z, gw)

]}
= 0.

After simplification, we conclude that gw = z.
Since (g, LM) is a pair of compatible mappings in X and LMw = z =

gw, therefore, by Proposition 2.2(i), we have (LM)gw = g(LM)w and hence,
LMz = (LM)gw = g(LM)w = gz.

Now, we claim that z is a fixed point of LM and g. For this, putting u = v = z
in (5) and (6), we have

[1 + pd(STz, LMz)]d2(fz, gz) ≤ pψ
(
d2(STz, fz)d(LMz, gz),

d(STz, fz)d2(LMz, gz),

d(STz, Sz)d(STz, gz)d(LMz, fz),

d(STz, gz)d(LMz, fz)d(LMz, gz)
)

+m(STz, LMz)− φ
(
m(STz, LMz)

)
,
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where

m(STz, LMz) = max
{
d2(STz, LMz), d(STz, fz)d(LMz, gz),

d(STz, gz)d(LMz, fz),

1

2

[
d(STz, fz)d(STz, gz)

+ d(LMz, fz)d(LMz, gz)
]}

= d2(z, LMz).

On solving, the above inequality reduces to

[1 + pd(z, LMz)]d2(z, LMz) ≤ pψ(0, 0, 0, 0) + d2(z, LMz)− φ(d2(z, LMz)),

which gives d2(z, LMz) = 0 and hence, z = LMz = gz.
Following steps 5 and 6 of case (i), we have Tz = z,Mz = z. Also, STz = z,

LMz = z imply that Sz = z and Lz = z.
Case(iv) Suppose mapping LM is continuous. Following case (iii), one may

obtain the desired result.
Uniqueness: Suppose w1 6= w2 be two common fixed point of f, g, S, T , L

and M . Putting u = w1 and v = w2 in (5) and (6) and solving, we get

[1 + pd(w1, w2)]d
2(w1, w2) ≤ pψ(0, 0, 0, 0) +m(w1, w2)− φ

(
m(w1, w2)

)
,

where

m(w1, w2) == max
{
d2(w1, w2), d(w1, w1)d(w2, w2), d(w1, w2)d(w2, w1),

1

2

[
d(w1, w1)d(w1, w2) + d(w2, w1)d(w2, w2)

]}
= d2(w1, w2).

Simplifying the above inequality, we get d(w1, w2) = 0, i.e., w1 = w2. Hence,
mappings f, g, S, T, L and M have a unique common fixed point in X .

Now, we establish a common fixed point theorem for pairs of compatible map-
pings of type (A).

Theorem 3.2. Let f , g,L,M , S and T be self mappings defined on a complete
metric space X satisfying the conditions (I)-(IV). If pairs (f, ST ) and (g, LM)
are compatible of type (A), then f , g, L, M , S and T have a unique common fixed
point in X .

Proof. Suppose f is continuous on X and pairs (f, ST ) is compatible of type
(A). By Proposition 2.1, (f, ST ) is compatible. Then result follows easily from
Theorem 3.1.
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If g is assumed to be continuous, then by Proposition 2.1, (g, LM) being com-
patible of type (A) is compatible also. Then result follows from Theorem 3.1

Similarly, assuming ST or LM continuous, one can get the required result.

Next, we establish a common fixed point theorem for pairs of compatible map-
pings of type (B).

Theorem 3.3. Let f , g, L, M , S and T be self mappings defined on a complete
metric space X satisfying the conditions (I)-(IV). If pairs (f, ST ) and (g, LM)
are compatible of type (B), then f , g, L, M , S and T have a unique common fixed
point in X .

Proof. Following [19, Theorem 2.3], the sequence {vn}, defined by (7), is a
Cauchy sequence in X . X being a complete metric space, the sequence {vn}
converges to a point, say, z ∈ X , as n → ∞. Consequently, the sub sequences
{fu2n}, {STu2n}, {gu2n+1}, and {LMu2n+1} also converges to the same point
z ∈ X .

Suppose g is continuous. Then {ggu2n+1} and {g(LM)u2n+1} converges to
gz as n → ∞. Since the pair (g, LM) is compatible of type (B), it follows from
the Proposition 2.3(ii) that {(LM)(LM)u2n+1} converges to gz as n→∞.

Step 1. Now, we prove that gz = z. For this, taking u = u2n and y =
LMu2n+1 in (5) and (6) and letting n→∞, we get

[1 + pd(z, gz)]d2(z, gz) ≤ pψ(0, 0, 0, 0) +m(z, gz)− φ(m(z, gz)),

where

m(z, gz) = max
{
d2(z, gz), d(z, z)d(gz, gz), d(z, gz)d(gz, z),

1

2
[d(z, z)d(z, gz) + d(gz, z)d(gz, gz)]

}
= d2(z, gz).

Solving the above inequality, we get p d3(z, gz) + φ(d2(z, gz)) ≤ 0, which is
possible only if d(gz, z) = 0. This implies that gz = z. Since g(X ) ⊂ ST (X ),
there exists a point w ∈ X such that z = gz = STw.

Step 2. We claim that fw = w. For this, substituting u = w and v = u2n+1 in
(5) and (6) and letting n→∞, we get

[1 + pd(z, z)]d2(fw, z) ≤ pψ(0, 0, 0, 0) +m(z, z)− φ
(
m(z, z)

)
,

where

m(z, z) = max

{
d2(z, z), d(z, fw)d(z, z), d(z, z)d(z, fw),

1

2

[
d(z, fw)d(z, z) + d(z, fw)d(z, z)

]}
= 0.
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Simplifying the above inequality, we get d(fw, z) = 0 i.e., fw = z. Since
(f, ST ) is compatible of type (B) and fw = STw, therefore, by Proposition
2.3(i), f(ST )w = (ST )fw. Hence, STz = (ST )fw = f(ST )w = fz.

Step 3. Taking u = z and v = u2n+1 in (5) and (6) and letting n→∞, we get

[1 + pd(fz, z)]d2(fz, z) ≤ pψ(0, 0, 0, 0) +m(fz, z)− φ
(
m(fz, z)

)
,

where

m(fz, z) = max
{
d2(fz, z), d(fz, fz)d(z, z), d(fz, z)d(z, fz),

1

2

[
d(fz, fz)d(fz, z) + d(z, fz)d(fz, z)

]}
= d2(fz, z).

After simplification, we get p d3(fz, z) + φ(d2(fz, z)) ≤ 0, which is possible
only if d(fz, z) = 0, i.e., fz = z. Since f(X ) ⊂ LM(X ), there exists a point
x ∈ X such that z = fz = LMx.

Step 4. We claim that gx = z. For this, putting u = u2n and v = x in (5) and
(6) and letting n→∞, we get

[1 + pd(z, z)]d2(z, gx) ≤ pψ(0, 0, 0, 0) +m(z, z)− φ
(
m(z, z)

)
,

where

m(z, z) = max

{
d2(z, z), d(z, z)d(z, gx), d(z, gx)d(z, z),

1

2

[
d(z, z)d(z, gx) + d(z, z)d(z, gx)

]}
= 0.

Solving the above inequality, we conclude that d(z, gx) = 0, i.e., gx = z.
Since the pair (g, LM) is compatible of type (B) in X and gx = LMx, there-
fore, by Proposition 2.3(i), we have (LM)gx = g(LM)x and hence, LMz =
(LM)gx = g(LM)x = gz = z.

Step 5. Following steps 5 and 6 of case (i) of Theorem 3.1, we have Lz =
Mz = Tz = Sz = z. Uniqueness follows easily. Thus, z is a unique common
fixed point of S, T, L,M, f and g.

Similarly, one can complete the proof taking the mapping f or ST or LM to
be continuous.

Now, we discuss the existence and uniqueness of a common fixed point for
pairs of compatible mappings of type (C).
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Theorem 3.4. Let f , g, L, M , S and T be self mappings defined on a complete
metric space X satisfying the conditions (I)-(IV). If pairs (f, ST ) and (g, LM)
are compatible of type (C), then f , g, L, M , S and T have a unique common fixed
point in X .

Proof. Following [19, Theorem 2.3], the sequence {vn}, defined by (7), is a
Cauchy sequence in X and (X , d) being a complete metric space the sequence
{vn} converges to a point, say, z ∈ X , as n → ∞. Consequently, the sub
sequences {fu2n}, {STu2n}, {gu2n+1}, and {LMu2n+1} also converges to the
same point z.

Assume that g is continuous. Then sequences {ggu2n+1} and {g(LM)u2n+1}
converges to gz, as n → ∞. Since the pair (g, LM) is compatible of type (C), it
follows from the Proposition 2.3(ii) that {(LM)(LM)u2n+1} converges to gz, as
n→∞.

Following steps 1-5 of Theorem 3.3, z is a unique common fixed point of S,
T , L, M , f and g. Similarly, one can complete the proof, assuming T or ST or
LM to be continuous.

Now, we investigate the existence of a fixed point theorem for pairs of com-
patible mappings of type(P ) as follows.

Theorem 3.5. Let f , g, S, T , L and M be self mappings of a complete metric
space (X , d). If (f, ST ) and (g, LM) are the pairs of compatible mappings of
type (P ) satisfying conditions (I)-(IV), then all the mappings f , g, S, T , L and M
have a unique common fixed point in X .

Proof. In the view of [19, Theorem 2.3], the sequence {vn}, defined by (7), is a
Cauchy sequence in X and (X , d) being a complete metric space sequence {vn}
converges to a point, say, z ∈ X , as n → ∞. Consequently, the sub sequences
{fu2n}, {STu2n}, {gu2n+1}, and {LMu2n+1} also converges to the same point
z.

Assume that g is continuous. Then sequences {ggu2n+1} and {g(LM)u2n+1}
converges to gz, as n → ∞. Since the pair (g, LM) is compatible of type (P ), it
follows from the Proposition 2.3(ii) that {(LM)(LM)u2n+1} converges to gz, as
n→∞.

Rest of the proof follows on steps 1-5 of Theorem 3.3

Now, we study the existence of a unique fixed point for pairs of compatible
mappings of type(R) as follows.

Theorem 3.6. Let f , g, S, T , L and M be self mappings of a complete metric
space (X , d). If (f, ST ) and (g, LM) are the pairs of compatible mappings of
type (R) satisfying conditions (I)-(IV), then all the mappings f , g, S, T , L and M
have a unique common fixed point in X .
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Proof. Following [19, Theorem 2.3], the sequence {vn}, defined by (7), is a
Cauchy sequence in X and (X , d) is a complete metric space, so the sequence
{vn} converges to a point, say, z ∈ X , as n → ∞. Consequently, the sub
sequences {fu2n}, {STu2n}, {gu2n+1}, and {LMu2n+1} also converges to the
same point z ∈ X .

Assume that f is continuous. Then sequences {ffu2n} and {f(ST )u2n} con-
verges to fz, as n→∞. Since the pair (f, ST ) is compatible of type (R), it fol-
lows from the Proposition 2.2(ii) that {(ST )fu2n} converges to fz, as n→∞.

In the view of steps 1-6 of case (i) of Theorem 3.1, we conclude that z is a
unique common fixed point of S, T, L,M, f and g. Assuming either of g, ST ,
LM to be continuous, the proof follows from cases (ii)-(iv) of Theorem 3.1

Now, we prove fixed point theorem for pairs of compatible mappings of type
(K) as well as reciprocal continuous mappings.

Theorem 3.7. Let f , g, L, M , S and T be self mappings of a complete metric
space (X , d) satisfying the conditions (I), (II) and (IV). Then all the mappings f ,
g, L, M , S and T have a unique common fixed point in X , provided that (f, ST )
and (g, LM) are the pairs of reciprocal continuous mappings and compatible
mappings of type (K).

Proof. Following proof of [19, Theorem 2.3], the sequence {vn}, defined by (7),
is a Cauchy sequence in X . Since (X , d) is a complete metric space, so the se-
quence {vn} → w ∈ X , as n → ∞. Consequently, the subsequences {fu2n},
{STu2n}, {gu2n+1}, and {LMu2n+1} also converges to the same point w ∈ X .

Since the pair (f, ST ) is compatible of type (K), (ST )(ST )u2n → fw,
ffu2n → STw as n→∞. Also reciprocal continuity of the pair (f, ST ) implies
that (ST )fu2n → STw and f(ST )u2n → fw as n→∞.

Also, the pair (g, LM) is compatible of type (K) and reciprocal continuous,
therefore, (LM)(LM)u2n+1 → gw, ggu2n+1 → LMw, (LM)gu2n+1 → LMw
and g(LM)u2n+1 → gw as n→∞.

Now, we claim that LMw = STw. Taking u = fu2n, v = gu2n+1 in (5) and
(6) and letting n→∞, we get

[1 + pd(STw,LMw)]d2(STw,LMw) ≤ pψ(0, 0, 0, 0) +m(STw,LMw)

− φ(m(STw,LMw)),
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where

m(STw,LMw) = max
{
d2(STw,LMw), d(STw, STw)d(LMw,LMw),

d(STw,LMw)d(LMw,STw),

1

2
[d(STw, STw)d(STw,LMw)

+ d(LMw,STw)d(LMw,LMw)]
}

=d2(LMw,STw).

Solving the above inequality, we get d(LMw,STw) = 0, which implies that
LMw = STw. Next, we prove that LMw = fw. Letting u = w and v = gu2n+1

in (5) and (6) and taking the limit as n→∞, we get

[1 + pd(STw,LMw)]d2(fw, LMw) ≤ pψ
(
d2(STw, fw)d(LMw,LMw),

d(STw, fw)d2(LMw,LMw),

d(STw, fw)d(STw,LMw)d(LMw, fw),

d(STw,LMw)d(LMw, fw)d(LMw,LMw)
)

+m(STw,LMw)− φ
(
m(STw,LMw)

)
,

where

m(STw,LMw) = max
{
d2(STw,LMw), d(STw, fw)d(LMw,LMw),

d(STw,LMw)d(LMw, fw),

1

2

[
d(STw, fw)d(STw,LMw)

+ d(LMw, fw)d(LMw,LMw)
]}

= 0.

Simplifying the above inequality, we get d(fw, LMw) = 0, i.e., fw = LMw. So
STw = LMw = fw. Next, we claim that fw = gw. Putting u = v = w in (5)
and (6), we have

[1 + pd(STw,LMw)]d2(fw, gw) ≤ pψ
(
d2(STw, fw)d(LMw, gw),

d(STw, fw)d2(LMw, gw),

d(STw, fw)d(STw, gw)d(LMw, fw),

d(STw, gw)d(LMw, fw)d(LMw, gw)
)

+m(STw,LMw)− φ
(
m(STw,LMw)

)
,
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where

m(STw,LMw) = max
{
d2(STw,LMw), d(STw, fw)d(LMw, gw),

d(STw, gw)d(LMw, fw),

1

2

[
d(STw, fw)d(STw, gw)

+ d(LMw, fw)d(LMw, gw)
]}

= 0.

On solving, we get d2(fw, gw) ≤ 0, which is true for fw = gw.
Hence, LMw = gw = STw = fw, i.e., w is a coincidence point of f, g, ST and
LM . Taking u = u2n and v = w in (5) and (6) and letting n→∞, we get

[1 + pd(w,LMw)]d2(w, gw) ≤ pψ(0, 0, 0, 0) +m(w,LMw)− φ(m(w,LMw)),

where
m(w,LMw) = max{d2(w,LMw), 0, d(w, gw)d(LMw,w), 0} = d2(w,LMw).

After simplification, we get d(w, gw) = 0, i.e., w = gw. In the view of
steps 5 and 6 of case (i) of Theorem 3.1, we have Tw = w, Mw = w. Using
STw = LMw = w, we have Sw = w and Lw = w. Therefore, w is a common
fixed point of mappings f, g, S, T, L and M . The uniqueness follows easily.

Now, we discuss the existence of a unique common fixed point of compatible
mappings of type (E) .

Theorem 3.8. Self mappings f , g, S, T , L and M of a complete metric space
(X , d) satisfying conditions (I), (II) and (IV) have a unique common fixed point in
X , if the pairs (f, ST ) and (g, LM) satisfy either of the following conditions:

(a) (f, ST ) is ST -compatible of type (E) and ST -reciprocal continuous,
(g, LM) is LM -compatible of type (E) and LM−reciprocal continuous.

(b) (f, ST ) is f -compatible of type (E) and f -reciprocal continuous, (g, LM)
is g-compatible of type (E) and g-reciprocal continuous.

Proof. Following proof of [19, Theorem 2.3], the sequence {vn} defined by (7),
is a Cauchy sequence in X . Since (X , d) is a complete metric space, therefore,
{vn} converges to a point w ∈ X , as n → ∞. Consequently, the subsequences
{fu2n}, {STu2n}, {gu2n+1}, and {LMu2n+1} also converges to the same point
w ∈ X .

Suppose that pair (f, ST ) is ST−compatible of type (E) and ST−reciprocal
continuous, therefore, by Proposition 2.4, STw = fw.
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We claim that w is a fixed point of ST , i.e., STw = w. Letting u = w and
v = u2n+1 in (5) and (6) and letting n→∞, we have

[1 + pd(STw,w)]d2(fw,w) ≤ pψ(0, 0, 0, 0) +m(STw,w)− φ(m(STw,w)),

where

m(STw,w) = max
{
d2(STw,w), d(STw, fw)d(w,w), d(STw,w)d(w, fw),

1

2
[d(STw, fw)d(STw,w) + d(w, fw)d(w,w)]

}
= d2(STw,w).

Solving the above inequality, we get pd3(STw,w) + φ(d2(STw,w)) ≤ 0.
This is true only if d(STw,w) = 0, which implies that STw = w. Therefore, we
have w = STw = fw. Since f(X ) ⊂ LM(X ), there exists a point u∗ ∈ X such
that fw = LMu∗. Now, we claim that gu∗ = LMu∗. Taking u = w, v = u∗ in
(5) and (6), we get

[1 + pd(STw,LMu∗)]d2(fw, gu∗) ≤ pψ(0, 0, 0, 0) +m(STw,LMu∗)

− φ(m(STw,LMu∗)),

where

m(STw,LMu∗) = max

{
d2(STw,LMu∗), d(STw, fw)d(LMu∗, gu∗),

d(STw, gu∗)d(LMu∗, fw),

1

2
[d(STw, fw)d(STw, gu∗)

+ d(LMu∗, fw)d(LMu∗, gw)]

}
= 0.

Using the value of m(STw,LMu∗) along with the property of φ and ψ, the
above inequality reduces to d2(fw, gu∗) ≤ 0.This is true only if d(fw, gu∗) = 0,
i.e., gu∗ = fw. Hence, gu∗ = LMu∗ = fw = STw = w. Since the pair
(g, LM) is LM−compatible of type (E) and LM−reciprocal continuous and
LMu∗ = gu∗, by Proposition 2.4, LMw = (LM)gu∗ = g(LM)u∗ = gw.
Now, we prove that w is a fixed point of LM . Putting u = v = w in (5) and (6),
we get

[1 + pd(w,LMw)]d2(w, gw) ≤ pψ(0, 0, 0, 0) +m(w,LMw)− φ(m(w,LMw)),

where

m(w,LMw) = max
{
d2(w,LMw), d(w,w)d(LMw, gw),

d(w, gw)d(LMw,w),
1

2
[d(w,w)d(w, gw)

+ d(LMw,w)d(LMw, gw)]
}

= d2(w,LMw).
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On Simplifying, we get d(w,LMw) = 0, which implies that w = LMw.
Thus, w = STw = fw = LMw = gw. In the view of steps 5 and 6 of case (i)
of Theorem 3.1, we have Tw = w, Mw = w. Therefore, STw = w, LMw = w
imply that Sw = w and Lw = w. Hence, w is common fixed point of mappings
f, g, S, T, L and M . Uniqueness follows easily.

Similarly, one can complete the proof when the pairs (f, ST ) and (g, LM)
satisfy the condition (b).

4 Consequences and Examples
Taking suitable mappings f, g, S, T, L and M one can derive corollaries in-

volving two, three as well as four self mappings. As an example, one can deduce
the following corollaries for four self mappings by taking T = M = IX (identity
mappings of X ) in Theorems 3.1- 3.6, we have the following result for four map-
pings.

Corollary 4.1. Let S, L, f and g be self mappings of a complete metric space
(X , d) satisfying

(i) f(X ) ⊂ L(X ) and g(X ) ⊂ S(X ),

(ii) one of S, L, f , g is continuous,

(iii) for all u, v ∈ X , there exists a function ψ ∈ Ψ, a function φ ∈ Φ and a real
number p ≥ 0 such that

[1 + pd(Su, Lv)]d2(fu, gv) ≤ pψ

(
d2(Su, fu)d(Lv, gv), d(Su, fu)d2(Lv, gv),

d(Su, fu)d(Su, gv)d(Lv, fu),

d(Su, gv)d(Lv, fu)d(Lv, gv)

)
+m(Su, Lv)− φ(m(Su, Lv)),

where

m(Su, Lv) = max
{
d2(Su, Lv),d(Su, fu)d(Lv, gv), d(Su, gv)d(Lv, fu),

1

2
[d(Su, fu)d(Su, gv) + d(Lv, fu)d(Lv, gv)]

}
.

If (S, f) and (L, g) are either of the followings
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(a) compatible

(b) compatible of type (A)

(c) compatible of type (B)

(d) compatible of type (C)

(e) compatible of type (P )

(f) compatible of type (R).

Then S, L, f and g have a unique common fixed point in X .

Taking T = M = IX (identity mappings of X ) in the Theorems 3.7-3.8, we
have the following results.

Corollary 4.2. Let S, L, f and g be self mappings of a complete metric space
(X , d) satisfying conditions (i) and (iii) of Corollary 4.1. If (S, f) and (L, g) are
compatible of type (K) and reciprocal continuous, then S, L, f and g have a
unique common fixed point in X .

Corollary 4.3. Self mappings f , g, S and L of a complete metric space (X , d)
satisfying conditions (i) and (iii) of Corollary 4.1 have a unique common fixed
point in X , if the pairs (S, f) and (L, g) satisfy either of the following conditions:

(a) (S, f) is S-compatible of type (E) and S-reciprocal continuous, (L, g) is
L-compatible of type (E) and L−reciprocal continuous.

(b) (S, f) is f -compatible of type (E) and f -reciprocal continuous, (L, g) is
g-compatible of type (E) and g-reciprocal continuous.

Taking T = M = IX (identity mappings of X ), g = f , L = S in the Theorem
3.1- 3.6, we have the following result for two self mappings.

Corollary 4.4. Let (X , d) be a complete metric space and S, f : X → X be two
mappings satisfying the following conditions

(C1) f(X ) ⊂ S(X ),

(C2) for all u, v ∈ X , there exists a real number p ≥ 0, a function ψ ∈ Ψ, a
function φ ∈ Φ, such that

[1 + pd(Su, Sv)]d2(fu, fv) ≤ pψ
(
d2(Su, fu)d(Sv, fv),

d(Su, fu)d2(Sv, fv),

d(Su, fu)d(Su, fv)d(Sv, fu),

d(Su, fv)d(Sv, fu)d(Sv, fv)
)

+m(Su, Sv)− φ(m(Su, Sv)),
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where

m(Su, Sv) = max
{
d2(Su, Sv), d(Su, fu)d(Sv, fv), d(Su, fv)d(Sv, fu),

1

2
[d(Su, fu)d(Su, fv) + d(Sv, fu)d(Sv, fv)]

}
,

(C3) either S or f is continuous.

If S and f are compatible mappings or variants of compatible mappings ( type
(A) or type (B) or type (C) or type (P ) or type (R)), then S and f have a unique
common fixed point in X .

Taking T = M = IX (identity mappings of X ), g = f , L = S in the Theorems
3.7-3.8, we have the following results for two self mappings.

Corollary 4.5. Let (X , d) be a complete metric space. Suppose f, S : X → X are
two mappings satisfying the conditions (C1) and (C2) of Corollary 4.4. If (f, S)
is compatible of type (K) as well as reciprocal continuous, then f and S have a
unique common fixed point in X .

Corollary 4.6. Let f and S be self mappings of a complete metric space (X , d)
satisfying the conditions (C1) and (C2) of Corollary 4.4. If pair (f, S) satisfies
either of the following conditions:

(a) (f, S) is f−compatible of type (E) and f−reciprocal continuous;

(b) (f, S) is S−compatible of type (E) and S−reciprocal continuous.

Then f and S have a unique common fixed point in X .

Now, we present examples in support of Corollaries 4.1 and 4.3.

Example 4.1. Let X = [2, 20] and d be a usual metric. Let f, g, S, L be self
mappings of X defined by Su = 2, 2 ≤ u ≤ 5, Su = u − 3, 5 < u ≤ 20,
fu = 6, 2 < u < 5, fu = 2, u = 2 or 5 ≤ u ≤ 20, Lu = 2, gu = 2, u = 2,
Lu = 6, gu = 3, 2 < u ≤ 20. Let φ : [0,∞) → [0,∞) be a function defined by
φ(t) = 2t and ψ : [0,∞)4 → [0,∞) be a function defined by ψ(w1, w2, w3, w4) =
max {w1, w2, w3, w4}, wi ≥ 0, i = 1, 2, 3, 4. Consider a sequence {un} with
un = 2, for each n. Clearly φ ∈ Φ and ψ ∈ Ψ. Also, One can easily verified
that all the conditions of the Corollary 4.1 (a) are satisfied and 2 is the unique
common fixed point of f, g, S and L.
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Example 4.2. Let X = [2, 20] and d be a usual metric. Let f, g, L and S be
self mappings of X defined as Su = 2, 2 ≤ u ≤ 10, Su = u − 8, 10 < u ≤
20, fu = 2, 2 ≤ u ≤ 20, Lu = 2, gu = 2, u = 2, Lu = 6, gu = 3, 2 < u ≤ 20.
Here g(X ) = {2, 3} ⊂ [2, 12] = S(X ) and f(X ) = {2} ⊂ {2, 6} = L(X ).
For the sequence {un}, where un = 2, for each n, pairs (S, f) and (L, g) are
compatible of type (R). If we define a function φ : [0,∞)→ [0,∞) as φ(t) = 2t,
for each t ≥ 0 and define a function ψ : [0,∞)4 → [0,∞) as ψ(w1, w2, w3, w4) =
max {w1, w2, w3, w4}, wi ≥ 0, i = 1, 2, 3, 4 and take a real number p ≥ 3

2
, then

all the conditions of Corollary 4.1(f) are satisfied and 2 is the unique common
fixed point of f, g, S and L.

Example 4.3. Let X = [0, 5] and d be a usual metric. Define f, g, S, L : X → X
as gu = fu = 5+u

2
, Lu = Su = 5

2
+ u, 0 ≤ u < 5

2
, gu = fu = 5

2
, 5
2
≤ u ≤ 5,

Su = Lu = 5
2
, u = 5

2
and Su = Lu = 24

5
, 5
2
< u ≤ 5. Clearly, f(X ) = [5

2
, 15

4
) =

g(X ) and S(X ) = L(X ) = [5
2
, 5). The mappings are not continuous at u = 5

2
.

Let {un} be a sequence in X such that un → 0, un > 0, for all n. Then fun,
Sun → 5

2
= t and ffun = S(5+un

2
) → 5

2
, fSun = f(5

2
+ un) → 5

2
, SSun =

S(5
2

+ un) → 24
5

and Sfun = S(5+un

2
) → 24

5
. Also, we have St = 5

2
= ft. Thus

ffun, fSun → 5
2

= St = S(5
2
) and fSun → 5

2
= ft = f(1

2
). Therefore, the pair

(S, f) is f−compatible of type (E) and f−reciprocal continuous and the pair
(L, g) is g−compatible of type (E) and g−reciprocal continuous. In particular, if
we take ψ(t1, t2, t3, t4) = max{t1, t2, t3, t4}, where ti ≥ 0, i = 1, 2, 3, 4, φ(t) =
2t, t ≥ 0 and p = 3

2
, then all the conditions of Corollary 4.3 are satisfied and 5

2
is

a unique common fixed point of all the mappings f, g, S and L.

5 Application

Let U, V denote Banach spaces, Ŝ ⊂ U ,D ⊂ V are state space and decision
space respectively. Let R denotes the set of all real numbers and B(Ŝ) = {h :
Ŝ → R, h is bounded }. Let d(h, k) = sup{|h(u) − k(u)| : u ∈ Ŝ} for any
h, k ∈ B(Ŝ). Obviously, (B(Ŝ), d) is a complete metric space.

Bellman and Lee [5] gave the basic form of functional equation as follows:

g(u) = opt
v
G(u, v, g(τ(u, v))),

where u ∈ Ŝ, v ∈ D, τ is the transformation process, g(u) is the optimal return
with initial state u and the opt denotes max or min.

Now, we discuss the application of our result in finding a common solution of
the following functional equations that are arising in dynamic programming (see
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[3, 4, 5])

fi(u) = sup
v∈D
Fi(u, v, fi(τ(u, v))), u ∈ Ŝ (8)

gi(u) = sup
v∈D
Gi(u, v, gi(τ(u, v))), u ∈ Ŝ, (9)

where τ : Ŝ ×D → Ŝ and Fi,Gi : Ŝ ×D × R→ R, i = 1, 2.

Theorem 5.1. Let Fi,Gi : Ŝ × D × R → R, be bounded for i ∈ {1, 2}. Define
the mappings Pi,Qi : B(Ŝ)→ B(Ŝ) as follows

Pih(u) = sup
v∈D
Fi(u, v, h(τ(u, v))),

Qik(u) = sup
v∈D
Gi(u, v, k(τ(u, v))),

(10)

for all u ∈ Ŝ, h, k ∈ B(Ŝ), i = 1, 2. Suppose that the following conditions hold:

(a) for all u, t ∈ Ŝ, v ∈ D, h, k ∈ B(Ŝ),∣∣F1(u, v, h(t))−F2(u, v, k(t))
∣∣2 ≤M−1

(
pψ
(
d2(Q1h,P1h)d(Q2k,P2k),

d(Q1h,P1h)d2(Q2k,P2k),

d(Q1h,P1h)d(Q1h,P2k)d(Q2k,P1h),

d(Q1h,P2k)d(Q2k,P1h)d(Q2k,P2k)
)

+m(Q1h,Q2k)− φ(m(Q1h,Q2k))
)
,

where

m(Q1h,Q2k) = max

{
d2(Q1h,Q2k), d(Q1h,P1h)d(Q2k,P2k),

d(Q1h,P2k)d(Q2k,P1h)

1

2
[d(Q1h,P1h)d(Q1h,P2k)

+ d(Q2k,P1h)d(Q2k,P2k)]

}
,

M = 1 + pd(Q1h,Q2k), φ ∈ Φ, ψ ∈ Ψ, p is a positive real number,

(b) either there exists Pi ∈ {P1,P2} such that for any sequence {kn} of B(Ŝ)
and k ∈ B(Ŝ)

lim
n→∞

sup
u∈Ŝ
|kn(u)− k(u)| = 0, implies lim

n→∞
sup
u∈Ŝ
|Pikn(u)− Pik(u)| = 0
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or there existsQi ∈ {Q1,Q2} such that for any sequence {kn} ofB(Ŝ) and
k ∈ B(Ŝ)

lim
n→∞

sup
u∈Ŝ
|kn(u)− k(u)| = 0, implies lim

n→∞
sup
u∈Ŝ
|Qikn(u)−Qik(u)| = 0;

(c) for any h ∈ B(Ŝ), there exists k1, k2 ∈ B(Ŝ) such that

P1h(u) = Q2k1(u),P2h(u) = Q1k2(u), u ∈ Ŝ;

(d) for any i ∈ {1, 2}, lim
n→∞

sup
u∈Ŝ
|QiPikn(u)−PiQikn(u)| = 0, whenever {kn}

is a sequence of B(Ŝ) such that lim
n→∞

Qikn = lim
n→∞

Pikn = h, for some

h ∈ B(Ŝ).

Then the system of functional equations (8) and (9) have a unique common solu-
tion in B(Ŝ).

Proof. From conditions (b) -(d), Pi,Qi are self mappings of B(Ŝ). One of Pi,Qi

is continuous for i ∈ {1, 2}, P1(B(Ŝ)) ⊂ Q2(B(Ŝ)) and P2(B(Ŝ)) ⊂ Q1(B(Ŝ))
and the pairs of mappings (P1,Q1) and (P2,Q2) are compatible.

For η > 0, u ∈ Ŝ and k1, k2 ∈ B(Ŝ), there exists v1, v2 ∈ D such that

Piki(u) < Fi(u, vi, ki(ui)) + η, (11)

where ui = τ(u, vi), i = 1, 2. Also, we have

P1k1(u) ≥ F1(u, v2, k1(u2)), (12)
P2k2(u) ≥ F2(u, v1, k2(u1)). (13)

From (11),(13) and condition (a), we have

(P1k1(u)− P2k2(u))2 < (F1(u, v1, k1(u1))−F2(u, v1, k2(u1)) + η)2

= (F1(u, v1, k1(u1))−F2(u, v1, k2(u1)))
2 + ξ,

≤M−1
(
pψ
(
d2(Q1k1,P1k1)d(Q2k2,P2k2),

d(Q1k1,P1k1)d
2(Q2k2,P2k2),

d(Q1k1,P1k1)d(Q1k1,P2k2)d(Q2k2,P1k1),

d(Q1k1,P2k2)d(Q2k2,P1k1)d(Q2k2,P2k2)
)
+

m(Q1k1,Q2k2)− φ(m(Q1k1,Q2k2))
)

+ ξ,

(14)

where ξ = η2 + 2η(F1 −F2).
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From (11), (12) and condition (a), we have

(P1k1(u)− P2k2(u))2 > (F1(u, v2, k1(u2))−F2(u, v2, k2(u2))− η)2

=(F1(u, v1, k1(u2))−F2(u, v1, k2(u2)))
2 + ξ1,

≥ −M−1
(
pψ
(
d2(Q1k1,P1k1)d(Q2k2,P2k2),

d(Q1k1,P1k1)d
2(Q2k2,P2k2),

d(Q1k1,P1k1)d(Q1k1,P2k2)d(Q2k2,P1k1),

d(Q1k1,P2k2)d(Q2k2,P1k1)d(Q2k2,P2k2)
)
+

m(Q1k1,Q2k2)− φ(m(Q1k1,Q2k2))
)
− ξ,

(15)

where ξ1 = η2 − 2η(F1 −F2) < ξ.
From (14) and (15), we obtain

|P1k1(u)− P2k2(u)|2 ≤M−1
(
pψ
(
d2(Q1k1,P1k1)d(Q2k2,P2k2),

d(Q1k1,P1k1)d
2(Q2k2,P2k2),

d(Q1k1,P1k1)d(Q1k1,P2k2)d(Q2k2,P1k1),

d(Q1k1,P2k2)d(Q2k2,P1k1)d(Q2k2,P2k2)
)

+m(Q1k1,Q2k2)− φ(m(Q1k1,Q2k2))
)

+ ξ,

(16)

As η > 0 is arbitrary, so ξ is negligible and (16) is true for all u ∈ Ŝ, taking
supremum, we get

[1 + pd(Q1k1,Q2k2)]d
2(P1k1,P2k2) ≤ pψ

(
d2(Q1k1,P1k1)d(Q2k2,P2k2),

d(Q1k1,P1k1)d
2(Q2k2,P2k2),

d(Q1k1,P1k1)d(Q1k1,P2k2)d(Q2k2,P1k1),

d(Q1k1,P2k2)d(Q2k2,P1k1)d(Q2k2,P2k2)
)

+m(Q1k1,Q2k2)− φ(m(Q1k1,Q2k2)).

All the hypotheses of Corollary 4.1 are satisfied and P1,P2,Q1 and Q2 corre-
sponds to mappings f, g, S and L respectively. So, P1,P2,Q1 and Q2 have a
unique common fixed point k∗ ∈ B(Ŝ), i.e., k∗(u) is a unique common solution
of the system of functional equations (8) and (9).

6 Conclusion
In this paper, we have established common fixed point theorems for pairs of

minimal commutative mappings. These results generalize the results of Jain et
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al.[10, 11, 12], Jung et al.[14], Kang et al.[18], Murthy and Prasad [21], Pathak
et al. [24] and various results presented in the literature. Our result is useful in
studying the existence and uniqueness problems of certain functional equations
arising in dynamic programming. This result can be extended for multivalued
mappings and family of mappings.
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