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Abstract

In this paper we introduce the concept of restrained star edge coloring
of graphs by restraining the conditions of the star coloring of graphs.
The restrained star edge coloring of graphs is a path based graph
coloring which is said to be proper if all the bichromatic subgraphs of
the graph are in the form of a galaxy. The minimum requirement
for this coloring is its restrained star chromatic index, denoted as
χ′
rs(G). This paper exclusively explains, the restrained star edge

coloring of several families of graphs including path, cycle, wheel,
etc., and provides the exact value of its respective restrained star
chromatic index, χ′

rs with the usage of appropriate illustrations. In
addition to this, an application of this coloring in the optimal utilization
of storage spaces and in ensuring safe storage practices is also briefly
elaborated.
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1 Introduction
A graph G is considered to be properly vertex (edge) colored if two adjoining
vertices (edges) are colored uniquely. Star coloring introduced by Grünbaum
[1973] is a path-based coloring in which no path of length 3 should be bicolored.
Following this, Fertin et al. [2004] observed that in a star vertex coloring any
bichromatic subgraph is in the form of galaxy. Where a galaxy is a forest composing
only of stars according to Gallian [2022]. This coloring was introduced along with
the acyclic coloring of graphs and several results of star coloring in comparison
with the acyclic coloring of graphs can be noted in Albertson et al. [2004] and
Brause et al. [2022].

The edge version of the same introduced by Deng [2007] states that a star-edge
coloring of a graph is a proper edge coloring if no path of length 4 is bicolored.
Following its entry several results and theorems have emerged in said topic and
can be seen in Bezegová et al. [2016], Casselgren et al. [2021], Evangeline Lydia
and Vijaya Xavier Parthipan [2022] and Lei and Shi [2020]. However, it can be
noted that the property “every bichromatic subgraph of a properly star colored
graph consists of tree composing only of stars” was not observed in the case of
star edge coloring of graphs. Having been inspired by the same we define the
concept of restrained star edge coloring of graphs, which is a variation of the star
edge coloring problem with an additional constraint as follows.

Definition 1.1. Given a graph G, the proper edge coloring of G in which all its
bichromatic subgraphs are in the form of a galaxy is referred to as the restrained
star edge coloring of the graph. Where, a galaxy is a graph whose disjoint
components are composed only of stars.

Moreover, this can be achieved only when no path of length 3 in the graph is
bicolored.

Definition 1.2. The smallest integer k ∈ N for which a proper coloring of the
graph G is obtained is termed as the restrained star chromatic index and is
expressed as χ′

rs(G).

In this paper we are using the abbreviated term ’RSE coloring’ to denote the
restrained star edge coloring of graphs. The next section is dedicated for some
preliminaries and pre-existing results which are required for the understanding of
the upcoming sections. In section 3, we present some properties and results of
this coloring including the definite value of the χ′

rs of some graph families, and in
section 4, we discuss one of the numerous possible application of this coloring in
ensuring safe storage practices of hazardous chemicals.
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2 Preliminaries
This division includes a few fundamentals that are essential in proving the theorems
in the upcoming sections. It is to be noted that all the graphs considered in this
paper are undirected, connected and finite.Chartrand and Zhang [2019]

A graph is said to be tree if there exists exactly one path between any pair of
vertices. A tree where all the vertices except the two endpoints have degree 2 is a
path graph . A path graph whose endpoints are adjacent, such that all its vertices
have degree 2 is known as a cycle graph. A cycle graph is said to be a wheel if it
has a vertex in the middle such that all the other vertices of the cycle are adjacent
to this vertex.

A complete bipartite graph is a graph that can be separated into two partitions in
such a way that each vertex of the partition-1 is adjacent to every other vertex in
partition-2 and no two vertices of the same partition are connected by an edge. A
Petersen graph is a non planar graph consisting of 10 vertices and 15 edges whose
chromatic index is 4.

Lemma 2.1. Deng [2007], Wang et al. [2019]. A cycle of order n ≥ 3 has a
proper 3-star edge coloring except when n ̸= 5 and 4-star edge coloring when
n = 5

Lemma 2.2. Wang et al. [2019]. The star chromatic index of a wheel graph with
order n ≥ 4 is described as

χ′
s(Wn) =


n+ 2 if n = 5

n+ 1 if n = 4, 6, 7

n− 1 if n ≥ 8

Lemma 2.3. Chartrand and Zhang [2019]. The chromatic index of a complete
bipartite graph is

χ′(km,n) = max{m,n}
Lemma 2.4. (Vizing’s Theorem) Chartrand and Zhang [2019]. For any graph G
with maximum degree ∆, satisfies the inequality,

∆ ≤ χ′(G) ≤ ∆+ 1

3 Restrained star edge coloring
In this section we provide some results on the RSE coloring and its corresponding
restrained star chromatic index, χ′

rs. In addition the RSE coloring for certain
families of graphs is also discussed.
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Remark 3.1. Any graph G satisfies the inequality, χ(G) ≤ χ′
s(G) ≤ χ′

rs(G)
where χ(G), χ′

s(G) and χ′
rs(G) represents the chromatic index, star chromatic

index and restrained star chromatic index of the graph G respectively.

Remark 3.2. For every graph G with order, n ≥ 4, χ′
rs(G) ≥ 3

Example 3.3. The Petersen’s graph exhibits a proper 5-RSE coloring.

From Remark 3.1 we obtain the inequalities 3 ≤ χ′ ≤ 4 and χ′(G) = 4 ≤
χ′
rs(G). The structure of the Petersen’s graph consists of K5 without the outer

edges, whose vertices are joined to vertices of an outer cycle C5 by an edge. Now
the steps involved in coloring the Petersen’s graph can be separated into three parts
namely, coloring the C5, the inner K5 without the outer edges and finally coloring
the inner edges joining C5 and K5. It is evident that 5 distinct colors are required
to properly color a 5-cycle. Thus, 5 ≤ χ′

rs(G). The inner K5 without its outer
edges is equal to a C5, since the vertices of the outer and inner cycle are separated
by edges, they can be colored using the same 5 colors. By making sure that the
parallel colors are distinct, the edge joining these two cycles can be colored by the
remaining color that is not used by the 4 adjacent edges. As per these coloring no
path of length 3 is bicolored, such that the coloring is proper.
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Figure 1: Some of the bichromatic subgraphs of RSE colored Petersen’s graph is
highlighted

Remark 3.4. Every bichromatic subgraph of the graph G that is properly RSE
colored results in a forest composing only of stars of orders 2 and 3.

Proof. Now a forest is a graph that contains disjoint union of trees. Assume a
graph of order n, the following two cases are possible as per the assignment of the
colors.
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Case 1. Suppose if a color pair occur in consecutive adjacent edges, then its
bichromatic subgraph will be of the form S3 and since as per our definition of
RSE coloring, 2 colors cannot consecutively occur more than once, the order of
the star graph cannot be more than 3.

Case 2. Suppose if the pair of colors did not occur in consecutive adjacent edges,
then its bichromatic subgraph will consist of disjoint star graphs of order 2, S2

and since we are considering the edges, the minimum order of the bichromatic
subgraph cannot be less than 2.

Therefore, if some pair of colors occur as adjacent pairs in one position and
individually in another position, then its bichromatic subgraph will consist of
disjoint star graphs of order 2 and 3 only.

Proposition 3.5. For any path graph Pn with n ≥ 4, χ′
rs(Pn) = 3

Proof. Let us consider a path of order 4, consisting of three edges. Thus, it
is obvious that 3 unique colors are required to properly color the graph as per
the definition. Suppose the colors used are c1, c2, c3, As the order of the graph
increases, it is evident that in each subsequent cases it is possible to color the
graph such that each color is repeated only at a distance of three. Since these three
colors are distinct, it is possible to color the graph Pn using these colors.

Theorem 3.6. For any cycle graph Cn of order n ≥ 3,

χ′
rs(Cn) =


3 if 3|n
5 if n = 5

4 otherwise

Proof. We shall examine the possibilities for χ′
rs by taking two cases on the order

of the cycle, Cn.

Case 1. In the case of a cycle of length 5, let the edges be {e1, e2, e3, e4, e5}.
It can be noted from Remark 3.1 that χ′

rs(C5) ≥ 3. Thus, 3 ≤ χ′
rs(C5) ≤ 5.

Now, χ′
rs(C5) = 5 as the usage of 4 colors will result in at least one bichromatic

subgraph becoming a P4 which is not a star.

Case 2. When n ̸= 5, we examine the coloring of the graph with the utilization of
three cases.

Subcase 2.1. Suppose n = 3k, where k = {1, 2, 3, . . . }. Then for all values of
k, the edge set {e1, e2, e3, . . . , e3k} can be separated into k paths of distance 3
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consisting of edges {e3i+1, e3i+2, e3i+3} where i = {0, 1, 2, . . . , (k−1)} and even
if the color class{c1, c2, c3} is repeated no path of length 3 will become bicolored,
thus ensuring all its bichromatic subgraphs form a galaxy. Thus, χ′

rs(G) = 3, as
per the coloring defined below.

c(ei) =


c1 if i ≡ 1 (mod 3)

c2 if i ≡ 2 (mod 3)

c3 if i ≡ 0 (mod 3)

∀ i ∈ N and i ≤ n

Subcase 2.2. Suppose n = 3k + 1, then for any value of k ∈ N, the edge
set will consist of k paths of distance 3 consisting of edges consisting of edges
{e3i+1, e3i+2, e3i+3} where i = {0, 1, 2, . . . (k − 1)} along with 1 additional edge
ek which cannot be colored using the same color class. Thus, we require an
additional color c4 to reach a proper coloring, therefore χ′

rs(G) = 4, as per the
coloring defined below.

c(ei) =


c1 if i ≡ 1 (mod 3)

c2 if i ≡ 2 (mod 3)

c3 if i ≡ 0 (mod 3)

∀ i ∈ N and i ≤ n− 1, c(ei) = c4 for i = n

Subcase 2.3. Suppose n = 3k + 2, then for any value of k ∈ N, the edge set can
be divided into k paths of distance 3 along with 2 additional edges. Depending on
the nature of n, two possibilities remain.

Subcase 2.3.1. Suppose n is even, then separate the edge set to equal partition of
length n/2. The edge partition would be {e1, e2, . . . , el} and {el+1, el+2, . . . , e2l}
where, l = 2k color the first edge of both the partition {e1, el+1} using the
color c1. The remaining edges {e1, e2 . . . , e2l}/{e1, el+1} of the partitions can
be colored using the rest of colors in the color class {c2, c3, c4} by repeating the
colors between edges of distance more than 3, thus χ′

rs(G) = 4. The coloring can
be defined as follows,

c(ei) =


c2 if i ≡ 2 (mod 3)

c3 if i ≡ 0 (mod 3)

c4 if i ≡ 1 (mod 3)

∀ i = {2, 3 . . . , l, l + 2 . . . , 2l}

and c(ei) = c1 for i = 1, l + 1

Subcase 2.3.2. Suppose n is odd, then separate the edge set into two subsequent
paths of length 4 consisting of edges {e4i+1, e4i+2, e4i+3, e4i+4} for i = {0, 1} and
k−2 subsequent paths of length 3 consisting of edges {e3i, e3i+1, e3i+2} where i =
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{3, 4, 5, . . . k}. The paths of length 4 are colored using the colors {c1, c2, c3, c4}
and the paths of length 3 are colored using the colors {c1, c2, c3} by ensuring that
the colors are repeated only at a distance more than 3, thus χ′

rs(G) = 4

Theorem 3.7. For any Wheel graph Wn of order n ≥ 4 and k ∈ N,

χ′
rs(Wn) =


n+ 4 if n = 6

n+ 2 if n = 3k + 1

n+ 3 otherwise

Proof. The process of coloring a wheel can be divided to two parts namely, coloring
the edges of the outer cycle and coloring the edges connecting the inner vertex
with the cycle. Now, since the a wheel graph of n vertices consist of a cycle
of length n − 1 and n − 1 edges incident from the center vertex with the inner
vertex being adjacent to all other vertices, the colors required to color the edges
connecting the inner vertex and the outer cycle cannot be from the same color
class.

Case 1. Let n = 6, it is trivial that 5 distinct colors are needed to color the edges
incident with the center vertex and 5 other distinct colors are necessary to color
the outer cycle as each edge is at a length of at most 3, then χ′

rs(G) = n+ 4.

Case 2. Let n ̸= 6, then we observe the following cases.

Subcase 2.1 Suppose n = 3k, k ∈ N, then the graph contains 3k − 1 edges
connecting the outer cycle with center vertex that can be properly colored only
with the usage of 3k − 1 colors, say {ci : where i = 1, 2 . . . , 3k − 1}. Now
the outer cycle can be colored using 4 additional colors as defined in theorem 3.6
using the colors {cj : where j = 3k . . . , 3k+3}. Thus, 3k+3 colors are required
in other words n+ 3 colors.

Subcase 2.2 Suppose n = 3k + 1, k ∈ N, then the graph contains 3k edges
connecting the outer cycle with center vertex that can be properly colored only
with the usage of 3k colors, say {ci : where i = 1, 2 . . . , 3k}. Now the outer
cycle can be colored using 3 additional colors as defined in theorem 3.6 using the
colors {cj : where j = 3k + 1, . . . , 3k + 3}. Thus, 3k + 3 colors are required in
other words χ′

rs(G) = n+ 2.

Subcase 2.3 Suppose n = 3k + 2, k ∈ N, then the graph contains 3k + 1 edges
connecting the outer cycle with center vertex that can be properly colored only
with the usage of 3k + 1 colors, say {ci : where i = 1, 2 . . . , 3k + 1}. Now the
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outer cycle can be colored using 4 additional colors as defined in 3.6 using the
colors {cj : where j = 3k + 2, . . . , 3k + 5}. Thus, 3k + 5 colors are required,
thus χ′

rs(G) = n+ 3.

Proposition 3.8. A complete bipartite graph km,n with m,n ≥ 2 has a proper
mn-RSE coloring.

Proof. Consider a complete bipartite graph consisting of m + n vertices and mn
edges such that m > n. A complete bipartite graph expresses a chromatic index of
max{m,n}, which is in turn equal to its maximum degree ∆. Then, according to
our hypothesis χ′(G) = m. Therefore, with the usage of Remark 3.1 we acquire
the inequality m ≤ χ′

rs(km,n) ≤ mn.

Suppose χ′
rs(G) < mn, then it implies it is possible to star color the graph

properly with mn − 1 colors. As per the structure of a complete bipartite graph
considered, there exist at least one path of P3 between every two vertices. This
would result in at least one path of length 3 becoming bicolored.

Thus, it is not possible to find a proper coloring using mn− 1 colors, resulting in
a contradiction. Which in turn would imply that χ′

rs(G) = mn, and the coloring
using mn distinct colors is the remaining possibility for a proper restrained star
coloring of the graph.
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Figure 2: The RSE coloring of k5,3

4 Application of Restrained star edge coloring
In this section, we explain one of the many possible applications of RSE coloring
of graphs in the proper utilization of storage spaces. Out of all kinds of goods
that are stored, the storage of chemicals must be handled with extreme caution
as possible misplacing could end up in severe damages. Certain incompatible
chemicals should not be stored together as their neutralization reactions might
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result in production of heat and gas, which in turn might even cause fire to erupt.
Such cases have also been reported in areas where the precautionary methods
were not followed. And some of these fires are hard to put off due to its chemical
reaction with the atmosphere. Thus, the importance of ensuring safe storage of
such chemicals is extremely significant.

Generally, for the safety of the environment and our well being, it is absolutely
necessary that these chemicals that are incompatible ought to be stored in separate
divisions (rooms) if possible but such kind of storage spaces is not available in all
laboratories that is low on space such as the chemistry laboratories in schools and
colleges. In such cases, it is said that the chemicals should be placed at least at a
distance of 3 meters apart. This is where the concept of RSE coloring can be used
to ensure that such incompatible chemicals are placed at a distance of at least 3
meters as according to its definition, every bichromatic subgraph is form a galaxy.
Therefore, by converting the area available to a graph and by finding its χ′

rs we
can find the optimal placement of such chemicals, thus minimizing the risk of fire.

Firstly, we assign color labels to the chemicals such that chemicals that cannot
be stored together are labelled using the same color. This is applicable as per
the basic definition of graph coloring which would ensure that a particular color
cannot be positioned together with the same color. Thus, the chemicals labelled
by the color say c1 cannot be placed together with another chemical with the
same labelling. After this we compare the storage area available to square grid of
length 1.5 meters and construct the graph by plotting its vertices and edges. Then
by finding the RSE-coloring of the graph thus constructed we can find the optimal
and safe way to store these chemicals.

Algorithm:

Step 1: Compare the area to a grid and figure out the area available for storage

Step 2: Select the area satisfying the requirement and ignore the remaining areas

Step 3: Plot the vertices of the graph by assigning a vertex to every adjacent
corner in such a way that each square contains 2 vertices.

Step 4: Join the vertices to get the edges of the graph.

Step 5: Find the RSE coloring of the graph obtained from the previous steps.

Step 6: Convert the coloring obtained by assigning the said color to the squares
of the grid.
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Step 7: This colored squares would provide the optimal way to store the chemicals
in a safe manner.

Example:

Consider the area map as given in the Figure 3, firstly we compare the area with
grids of length 1.5 meters and discard the squares whose area is less than that of
2.25 metres. Then two squares will make a distance of 3 meters and two squares
diagonally will have a distance of 4 metres between them.

Figure 3: The area map and its comparison with a grid of length 1.5m

Plot the vertices on the corner of each grid in a way that each grid would have two
diagonal vertices as illustrated in Figure 3. Then by joining these two vertices of
each square we get the edges. And by joining all the vertices we get a connected
graph.

Figure 4: The process of plotting the graph

Then by finding the RSE coloring of this graph, we can find the optimal way to
store the chemicals in such a way that every incompatible chemicals are kept at a
minimum distance of 3 meters.
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Figure 5: The RSE coloring and the optimal storage as per the area available

It can be noted that each chemical denoted by a particular color say (red) is
incompatible to a chemical of the same color (in this case, red). The color that
is distinct from that particular color (red) is used to denote either a chemical that
is compatible with the chemical of that particular color or empty spaces if no
other such chemicals are available. In this we have used the RSE coloring and its
respective χ′

rs to find the optimal way of storage of these hazardous chemicals.
However it can be noted that in the case of smaller scale the same results can
be achieved with the help of restrained star vertex coloring and its respective
restrained star chromatic number as well.

5 Results and Discussions
The RSE coloring of graphs is found to be an alluring topic with boundless
prospects. It is to be noted that it is a challenging task to find the exact value of
χ′
rs when the graph under consideration is complex, especially if the said graphs

is obtained as a result of some graph operations. In such cases this paper would
serve as a basis for understanding the said coloring of the basics of such complex
graphs and would help in further generalizations of the RSE coloring.

6 Conclusions
Thus, in this paper the RSE coloring of few families of graphs including path,
cycle, wheel, complete bipartite graph is defined and the definite values of its
respective χ′

rs is provided. In addition to this, a possible application of RSE
coloring in ensuring safe storage of chemicals is discussed in section 4. It was
observed that for any graph G its star chromatic index is less than or equal to
restrained star chromatic index, in other words χ′

s(G) ≤ χ′
rs(G).
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