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Abstract

In this research article, with the help of Nevanlinna theory we study
the uniqueness problems of transcendental meromorphic functions
having finite order in the complex plane C, of the form is given by
¢"(2) Z;l:l a;jp(z+c;) and P (z) Z?Zl a;j(z+c;) where L(z, ¢) =
ijl a;¢(z + c;) which share a non-zero polynomial p(z) with finite
weight. By considering the concept of weighted sharing introduced
by I. Lahiri (Complex Variables and Elliptic equations,2001,241-253),
we investigate difference polynomials for the cases (0, 2), (0, 1), (0, 0).
Our new findings extends and generalizes some classical results of
Sujoy Majumder[11]. Some examples have been exhibited which are
relevant to the content of the paper.
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1 Introduction

The Nevanlinna theory is a branch of complex analysis that has seen extensive
research work, which mainly deals with the study of distribution of solutions of the
equation f(z) = ain adisc |z| < r, where f(z) is an meromorphic(entire) func-
tion in the complex plane C and a € C U {oo}. In recent years many researchers
have been interested in value distribution of meromorphic functions. The proofs
in this paper uses the Nevanlinna theory and one can refer(W. K Hayman([4], C. C
Yang and H. X. Yi[13]) for the standard notations and definitions.

Let ¢ and v be two non-constant meromorphic functions defined in the open
complex plane C. For a € CU {oco} and k € ZT U oo, the set E(a, ¢) = {z :
¢(z) — a = 0} denotes all those a— points of ¢, where each a— point of ¢ with
multiplicity & is counted & times in the set and the set E(a, ¢) = {z : ¢(z) —
a = 0} denotes all those a— points of ¢, where the multiplicities are ignored. If
®(z) — a and (z) — a assumes the same zeros with the same multiplicities, then
we say that ¢(z) and 1(z) share the value « CM (Counting Multiplicity) and we
have E(a,¢) = FE(a,v). Suppose if ¢(z) — a and ¥(z) — a assumes the same
zeros ignoring the multiplicities, then we say that ¢(z) and ¢(z) share the value a
IM (Ignoring Multiplicity) and we will have E(a, ¢) = E(a, ).

In general, for a meromorphic function ¢(z), the quantity m(r, ¢) denotes
the proximity function of ¢(z), while N(r, ¢) denotes the counting function of
poles ¢(z) whose multiplicities are taken into account (respectively N (7, ¢) de-
notes the reduced counting function when multiplicities are ignored). The quantity
N(r,a; ¢) denotes the counting function of a— points of ¢(z) whose multiplici-
ties are taken into account(respectively N (7, a;¢) denotes the reduced counting
function when multiplicities are ignored). The notation N(r,a;¢| = 1) denotes
the counting function of simple a— points of ¢ and the notation N(r, a; ¢| > 2)
denotes the counting function of those a— points of ¢ whose multiplicities are
atleast 2(respectively N(r,a;¢| = 1) and N(r,a;¢| > 2) denotes the reduced
counting functions).

Suppose ¢ and 1) share 1 IM z is a zero of ¢(z) — 1 of order s and also
a zero ¥(z) — 1 of order ¢, then N(r,1;¢) counts those 1-points of ¢(z) and
Y (z) where s > t, NB (r,1; ¢) counts those 1-points of ¢(z) and 1 (z) where
s=t=1, Ng(r, 1; ¢) counts those 1-points of ¢(z) and ¥)(z) where s =t > 2,
N y=a(r, 1;1)) counts those 1-points of ¢(z) and () where s > ¢ = 2. It is to be
noted that each point in these counting functions are counted only once. Similarly
Np(r 1, @D),NS(T, 1;9), Nysa(r, 1; ¢) are defined.

The Nevanlinna characteristic function of a meromorphic function ¢ plays a

very important role in the value distribution theory and it is denoted by 7'(r, ¢).
We have T'(r, ¢) = m(r, ¢) + N(r, ¢), which clearly shows that 7'(r, ¢) is non-
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negetive. A meromorphic function «(z) is called a small function with respect
to ¢(z), if T'(r,a) = S(r,¢), where S(r, ¢) any quantity satisfying S(r,¢) =
o{T(r,¢)} as r — oo possibly outside a set of finite linear measure.

2  Definitions and Theorems

Definition 2.1. [6] Let k € N U {0} U {oo}. For a € C U {oo} we denote
by Ex(a, ¢) the set of all a— points of ¢ where an a- points of multiplicity m is
counted m times if m < k and k + 1 times if m > k. If Ex(a,¢) = Ex(a, ), we
say that ¢, 1) share the value a with weight k.

Definition 2.2. [13] Let a € C U {oco}. For a positive integer k, we denote by

(i) Niy(r, ﬁ) the counting function of a— points of f with multiplicity < k.

(ii) N (r, ﬁ) the counting function of a— points of ¢ with multiplicity > k.
Similarly the reduced counting function Ny(r, ﬁ) and N (r, ﬁ) are defined.

Definition 2.3. [6] Let p € N U {oo}. We denote by N,(r,a; ¢) the counting
function of a— points of ¢, where an a- point of multiplicity m is counted m times
ifm < pand p times if m > p. Then

N,(r,a;¢) = N(r,a,¢) + N(r,a,¢| > 2) + ...+ N(r,a,¢| > p). Clearly

Nl(T,CL; ¢) = N(r,a, (b)

Definition 2.4. [15] Let ¢(z) be a meromorphic function, Linear difference poly-
nomial L(z, ¢) defined as follows.

L(z,¢) = a1(2)¢(z + 1) + a2(2)d(2 + 2) + a3(2)d(2 + ¢3).......aa(2)p(z + ca)
be a linear difference polynomial, where ay(z), as(z)...aq(z) are non-zero small
functions relative to ¢(z), where ¢y, ca, c3...cq are complex constants.

In 2011, K. Liu, X. L, Liu and T. B Cao [9] studied the uniqueness of the
difference monomials and obtained the following results.

Theorem 2.1. [9] Let ¢ and 1) be two transcendental meromorphic functions
with finite order. Suppose ¢ € C\{0} andn € N. If n > 14, ¢"(z)¢(z + ¢) and
"(2)Y(2 + ¢) share 1 CM, then ¢(z) = t)(2) or ¢(2)¢(z) = t, where t" ™ = 1.

Theorem 2.2. [9] Let ¢ and 1 be two transcendental meromorphic functions
with finite order. Suppose ¢ € C\{0} and n € N. If n > 26, ¢"(z)¢(z + ¢) and
V"™ (2)Y(z + ¢) share 1 IM, then ¢(z) = t(z) or ¢(2)(2) = t, where t"! = 1.

In 2015, Y. Liu, J. P. Wang and F. H. Liu [10] improved Theorems 2.1 and 2.2
obtained the following results.
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Theorem 2.3. [10] Let ¢ € C\{0} and let ¢(z) and (=) be two transcendental
meromorphic functions with finite order, and n(> 14),k(> 3) be two positive
integers. If Ex(1,¢™(2)o(z+¢)) = Ex(1, 0™ (2)0(2 +¢)), then ¢(z) = t11(z) or
(2)¢(2) = to for some constants t, and t, satisfying t7 = 1 and t3™ = 1.

Theorem 2.4. [10] Let ¢ € C\{0} and let ¢(z) and (=) be two transcendental
meromorphic functions with finite order and n(> 16) be a positive integer. If
Ey(1,¢"(2)(2+c¢)) = Ea(1, 9" (2)0(2+40)), then (2) = t11)(2) or ¢(2)Y(z) =

ty for some constants t, and t, satisfying 7" = 1 and ti™ = 1.

Theorem 2.5. [10] Let ¢ € C\{0} and let ¢(z) and (=) be two transcendental
meromorphic functions with finite order, and n(> 22) be a positive integers. If
Ey(1,¢"(2)9(z+c)) = Ex(L, 9" (2)(2+0)), then ¢(z) = t13)(2) or ¢(2)(2) =

to, for some constants t, and ty satisfying 7' = 1 and t3+" = 1.

In 2017, Sujoy Majumder [11] replaced the sharing value 1 by a nonzero poly-
nomial p(z) in 2.3,2.4 and 2.5 and obtained the following results.

Theorem 2.6. [11] Let ¢ and 1) be two transcendental meromorphic functions
with finite order. Suppose ¢ € C\{0} and n € N be such that n > 14. Let p(# 0)
be a polynomial such that deg(p) < (n — 1)/2. If ¢"(2)p(z + ¢) — p(z) and
Y™ (2)Y(z + ¢) — p(z) share (0,2), then one of the following two cases holds:

1. ¢(2) = th(z) for some constant t such that t"™' = 1,

2. ¢(2)Y(2) = t, where p(z) reduces to a non-zero constant c and t is a con-
stant such that t" ' = .

Theorem 2.7. [11] Let ¢ and 1) be two transcendental meromorphic functions
with finite order. Suppose ¢ € C\{0} and n € N be such that n > 16. Let p(# 0)
be a polynomial such that deg(p) < (n — 1)/2. If ¢"(2)¢(z + ¢) — p(z) and
Y™ (2)Y(z + ¢) — p(2) share (0,1). Then the conclusion of Theorem 2.6 holds.

Theorem 2.8. [11] Let ¢ and 1 be two transcendental meromorphic functions
with finite order. Suppose ¢ € C\{0} and n € N be such that n > 26. Let p(# 0)
be a polynomial such that deg(p) < (n — 1)/2. If ¢"(2)p(z + ¢) — p(z) and
Y™ (2)Y(z + ¢) — p(2) share (0,0). Then the conclusion of Theorem 2.6 holds.

It is quite natural to ask the following question.
Question 1. Suppose L(z, ¢) = Z?Zl a;j¢(z + ¢;) is a linear difference polyno-

mial of finite order of meromorphic function ¢ with a(z), as(2)...a4(z) are non-
zero small functions relative to ¢(z), where c1, ¢, c3...c4 are complex constants,
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then what can we say about relation between two finite order non-constant mero-
morphic functions ¢ and 1, if their linear difference polynomials ¢"(z) ¢ a;

j=1
(2 + ¢;) and " (2) Z;l:l a;y(z + ¢;) share p(2)?
In this paper, we have attempted to answer the above question successfully.

Following are the main results of our paper.

3 Main Results

Theorem 3.1. Let ¢ and i) be two transcendental meromorphic functions of finite
order and n be a positive integer such that n > 4d + 5. Suppose that ¢; € C\{0}
forj=1,2,3..d. Let ¢"(z) Z;l:l a;d(z + ¢;) — p(z) and Y™ (2) ijl ajv(z +
¢;) — p(z) share (0,2) where p be a nonzero polynomial such that deg(p) <
(n — d)/2, then one of the following two cases holds:

1. ¢(2) = t)(2) for some constant t such that t"*¢ = 1,

2. ¢(2)Y(2) = t, where p(z) reduces to a nonzero constant ¢ and t is a con-
stant such that "% = 2.

Theorem 3.2. Let ¢ and 1) be two transcendental meromorphic functions of finite

order and n be a positive integer such that n > 951_4511. Suppose that ¢; € C\{0}

forj=1,2,3..d. Let ¢"(z) 25:1 a;jo(z + ¢j) — p(z) and P"(z) Z;l:l ajv(z +

¢;) — p(z) share (0,1) where p be a nonzero polynomial such that deg(p) <
(n — d)/2, then the conclusion of Theorem 3.1 holds.

Theorem 3.3. Let ¢ and i) be two transcendental meromorphic functions of finite
order and n be a positive integer such that n > 6d + 8. Suppose that c; € C\{0}
forj=1,2,3...d. Let ¢"(z) Z;l:l a;d(z + ¢;) — p(z) and Y™ (2) ijl ajv(z +
¢;) — p(z) share (0,0) where p be a nonzero polynomial such that deg(p) <
(n — d)/2, then the conclusion of Theorem 3.1 holds.

Remark 3.1. Theorems 3.1 - 3.3 extends and generalizes of Theorems 2.6 - 2.8
respectively.

Example 1. Let ¢(z) = sinz, ¥(z) = cosz. Choose ¢ = 2m,a; = 1 then
o™ (2) Z;.izl a;jo(z + ¢;) and Y™(z) Z;l:l a;y(z + ¢;) share p(z). Clearly we get
¢ = tv for a constant ¢.

Example 2. Let ¢(2) = (72 —3)2(z 4+ 1)e*~ V%, 4(2) = (72— 3)*(z 4+ 1)e” 17,
Choose ¢; = 1,a; = 1 then ¢"(z) Z?Zl a;¢(z +c;) and " (z) Z?Zl a; Y (z+¢))
share p(z). Clearly we get ¢ # t1) for a constant t.
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4 Auxiliary Lemmas

In this section, we present some necessary Lemmas.
Denote H by the following function.

H= (%’/ a @2?/1) - <‘\11//_/// a \112%/1) b

Lemma4.1. [12] Let ¢ be a non-constant meromorphic function and let ay, as, ....a,
be finite complex numbers, a, % 0, a,_1, ..., ag be meromorphic functions such
that T(r,a;) = S(r, f) fori =0,1,2..n Then

T(r, and" + an_1¢™ '+ ... + a16 + ag) = nT(r, ¢) + S(r, ¢).

Lemma 4.2. [3] Let ¢ be a non-constant meromorphic function of finite order p
and let ¢ € C\{0} be fixed. Then for each € > 0, we have

o (1 2D (58 (14— 50r0)

The following lemma is a slight modification of the original version.

Lemma 4.3. [5] Let ¢ be a non-constant meromorphic function of finite order
and c € C. Then

N(r,00;¢(z +¢)) < N(r,00;¢) + S(r,

N(r,0;¢(z +¢)) < N(r,0;¢) + 5(r, ¢)
N(r,00;¢(2 +¢)) < N(r,00;¢) + S(r, ¢)
N(r,0;¢0(z +¢)) < N(r,0;0) + S(r, p).

<

)

Lemma 4.4. [3] Let ¢ be a transcendental meromorphic function of finite order,
c € C\{0} be fixed then

T(r,¢(z+c) =T(r,¢) + S(r, ¢).
Lemma 4.5. [14] Let ¢ and 1) be two non-constant meromorphic functions. Then

¢ i
(4 ¢
Lemma 4.6. Let gf) be a transcendental meromorphic function of finite order and
let & = ¢"(z) Z] 1 a;0(% + ¢;), where n is positive integer. Then

N(T,OO; )—N(T’,OO; ):N(T,OO;(b)—i—N(’f’,0;1/1)—N(7’,OO;¢)—N(7’,0;¢).

(n—a)T(r,¢) <T(r,®)+ S(r, o).
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Proof. By Lemmas 4.1,4.2 and First Fundamental Theorem, we obtain
(n+d)T(r,¢) = T(r,¢"™) + S(r,9),
d(2)®
<7 (re P ) i)
Zd

j=1 a;¢(z + ¢;)
¢(2)

Tr,®)+T|r, S(r, o),
<T@t ( > aj¢(2+0j)> #8(09)
Z;l:l a;¢(z + ¢;)

¢4(2) ) + S(r, 8),
(r,®) 4+ 2dT(r, ) + S(r, ¢),
(r,®) + S(r, ¢).

<T(r,®)+ N (T,
<T
(n—ad)T(r,9) <T
This completes the proof of Lemma 4.6.
Lemma 4.7. Let ¢ and 1) be two transcendental meromorphic functions of finite

order, c € C\{0} and n € N such that n > d. Let p(z) be a nonzero polynomial
such that deg(p) < (n — d)/2. Then

1. if deg(p) > 1, then ¢"(2) 35_, a;0(z + ¢;).4™(2) 5o, ag(z + ¢;) #
p*(2);

2. ifp(z) = ¢ € C\{0}, then the relation ¢"(z) Z;l:l a;o(z + ¢;) Y™ (2)
Z;lzl a;v(z + ¢;) = p*(2), always implies ¢.\b = t, where t is a constant

such that t"t¢ = 2.

Proof. Suppose,

<¢”(z) Z a;o(z + cj)> (wz) Z a;b(z + cj)> = p*(2). )

Let hy = ¢ then by equation 2, we have

P*(2)
S a2+ ¢;)

hi(z) = 3)

We now consider the following two cases,
Case 1. Suppose hy is a transcendental meromorphic function. Now by Lemmas
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4.1, 4.2, 4.3 we get

S ai(z + ¢)

d d
<N ( Z]qﬁz—kc])—l—l\f(roz%zbz—kc])

nT(r,hy) = T(r, k) + S(r,hy) =T <r, Pi() ) +S(r, ),

+S<T, hl),
< d(T(r,¢) +T(r,v)) + S(r,hy).

which is a contradiction.
Case 2. Suppose hy is a rational function . Let

hl = 7T (4)

where hy and hs are two non-zero relatively prime polynomials. By equation 4,
we have
T(r, h1) = max{deg(hs), deg(h3)}Hogr + O(1). (5)

Now by equations 3-5, we have

n. max{deg(hs), deg(hs)}ogr = T(r,h}) + O(1) < d(T(r,¢) + T(r,))
+27(r,p) + O(1). ©6)

We see that max{deg(hz),deg(hs)} > 1. Now by equation 6, we deduce that
(n —d)/2 < deg(p), which contradicts our assumption that deg(p) < (n — d)/2.
Hence hy must be a non-zero constant. Let

hy =t € C\{0}. 7)

Now when deg(p) > 1, by equations 3 and 7, we arrive at a contradiction.Then

<¢"(2) Z a;p(z + Cj)) (W(Z) Z a;(z + Cj)) Z p’(2).

Suppose p(z) = ¢ € C\{0}. So by equation 3 we see that K7™ = ¢?. By equation
7 we get "4 = 2.
This completes the proof of Lemma 4.7.

Lemma 4.8. Let ¢ and 1 be two transcendental meromorphic functions of finite
order, c € C\{0} be finite complex constant such that for (j = 1,2...d) and n be
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a positive integer such that n > 4d + 3. Let (z) =

¢"@)zﬁ_1aﬁﬂz+%)) and

p(2)
¥R o ag(atey)

U(z) = JP(Z)

then one of the following conclusions occur.

>, where p(z) is non-zero polynomial and H = 0,

(i) (¢"(2) X1 a:0(2 + )} (67(2) Sy anlz + 1)) = (),

where ¢™(2) Z?Zl a;jP(z +¢;) — p(z) and P™(z2) Z;l:l ajY(z +¢j) —p(2)
share 0 CM,

(ii) ¢(z) = tp(2) for a constant t with t"T4=1.

Proof. By equation 1, H = 0 on integration we get

1  BY+A-B
d—1 v—1

®)

where A,B are constants and A # 0. From equation 8 it is clear that ® and V
share (1,00). We now consider following cases.
Case 1. Let B # 0 and A # B. If B = —1, then from equation 8 we have

—A

p=— "
U A1

Therefore N(r, A+ 1;¥) = N(r,®) < N(r,0;p) < T(r,p) = S(r,¢). So in

view of Lemma 4.6 and Second Fundamental Theorem, we get

U (2) Y @ (z + ¢5)
p(2)

(n—a)T(r,¢) <T (r, > + S(r.a)

<T(r, )+ S(ra),
< N(r,00; W) + N(r,0;¥) + N(r, A+ 1;0) + S(r, 1),
< 2(d+ 1)T(r,0) + S(r, ).

which contradicts n > 3d + 2.
If B # —1, from equation 8 we obtain that

1 —A
“(“E)‘wa%)

—( B-A
N <7“, 5 ;\Il> = S(r,v).
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Using the Lemma 4.6 and the same argument as used in the case when B = —1
we can get a contradiction.

Case 2. Let B # 0 and A = B. If B = —1, then from equation 8, we have
d d
<¢"(2) > ajp(z + cj)> (WZ) > ap(z+ cj)> = p%(2).
=1 j=1

when (67(2) Sy a;0(= + ¢)) = p(2) and (¥(2) S0y a0 (= + ¢)) = p(2)
share 0 CM. If B # —1, from equation 8 we have

1 BY

o (1+B)WY-1

— 1 —
N (r, T8 \If) = N(r,0;®) 4+ S(r.¢).

So in view of Lemmas 4.2, 4.6 and the Second Fundamental Theorem, we get

(n—d)T(r,) <T(r,9)+ S(r,v),
< N(r,00;9) + N(r,0; ) + N(r, (1 + B); V) + S(r,v),
<2(d+D)T(r, )+ (1 +d)T(r,¢) + S(r,¢) + S(r, ),
(n—d—3d—3)T(r,v) < S(r,).

which is contradiction, since n > 4d + 3.
Case 3. Let B = 0. From equation 8 we obtain

U+ A1

)
A

9)
If A # 1, then from equation 9, we obtain N (r,1 — A; W) = N(r,0; ®).

We can similarly deduce a contradiction as in Case 2. Therefore A = 1 and from
equation 9, we obtain ®(z) = V(z). That is

<¢n(2) Z a;d(z + Cj)) (@Dn(z) Z aj(z + Cj)) : (10)

Let h = % and then substituting ¢ = h in equation 10 we deduce

hn-i—l ¢

= : (11)
Y35 hay(z + )
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If h is not a constant , then we have

¢ Zj:1 a;(z + ¢j)
(n+1)T(r,h) <T (T, Z?Zl oot cj)> +T (T, " )

+5(r,0) +5(r ),

where T (r, h)=T(r, %) =T(r,¢) +T(r,0p) + S(r,¢) + S(r,1). we obtain
(n—d)[T(r,¢)+T(r,)] < S(r,¢)+ S(r,v), which is impossible.

Therefore h is a constant , then substituting ¢ = h in equation 10, we have
h"t? = 1. Therefore ¢ = 1t, where t is a constant with t"+% = 1.

This completes the proof of Lemma 4.8

Lemma 4.9. [7] If N(r,0;¢®)|¢ # 0) denotes the counting function of those
zeros of ¢ (z) is counted according to its multiplicity, then
N(r,0;¢M|¢ # 0) < kN(r,00;¢)+N(r,0;¢| < k)+kN(r,0;¢| > k)+S(r, ¢).

Lemma 4.10. [1] If ¢ and 1) be two non-constant meromorphic functions such
that they share (1,1). Then

ONL(r,1;0)+2N 1 (r, L)+ N (1, 13 ) =N poa(r, 1590) < N(r, 1;90)~N(r, 15 0).
Lemma 4.11. [2] Let ¢ and 1) share (1,1). Then

Nf>2(fr, L) < %N('r’, 0;0) + %N(r, 005 ¢) — %No(r, 0;¢") + S(r, ¢),

where Ny(r,0; ¢') is the counting function of those zeros of ¢ which are not the

zeros of ¢(¢ — 1).
Lemma 4.12. [2] If ¢ and 1) share (1,0). Then

1. Nysa(r, 1;9) < N(r,05¢) + N(r, 005 ¢) — No(r, 0;¢') + S(r, ¢);
2. Nysa(r, 159) < N(r,059) + N(r,00;9) — No(r,0;¢") + S(r, ¢).
Lemma 4.13. [2] Let ¢ and 1) share (1,0). Then
Ni(r,1:6) < N(r,0;0) + N(r,00;0) + S(r,9).

Lemma 4.14. [2] Let ¢ and 1) be two non-constant meromorphic functions shar-
ing (1,0). Then

Nio(r, 156) + 2N (r 1;0) + No(r,1;,0) — Ngo(r, 1;40) — Nyor (r, 15 6)

< N(T717¢) - N(rvla,@D)
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5 Proof of Main results

Proof of Theorem 3.1.
(z 4 aid(ztc; "(z 4 aip(z4c; .
Let @(2) _ <¢ ( )Z];(lz)J(b( + J)) and \IJ(Z> — (w ( )Z];(lz)Jw( + J))’ lt fOllOWS

that ® and W share (1, 2) except the zeros of p(z).
Case 1. Let H # 0 from 1, we obtain

N(r,00; H) < N.(r,1;®, %) + N(r,0; @ > 2) + N(r,0; ¥| > 2)
+ No(r,0;®") + No(r,0; T). (12)

where Ny(r,0; ®') is the reduced counting function of those zeros of @' which are
not zeros of ®(® — 1) and N(r,0; ') is similarly defined. Let z, be a simple
zero of @ — 1 such that p(zg) # 0. Then z is a simple zero of ¥ — 1 and a zero of
H. So

N(r,1;®[=1) < N(r,0; H) < N(r,00; H) + S(r,¢) + S(r,¢).  (13)
From equations 12 and 13 we get

N(r,1;®) < N(r,0;®| > 2) + N(r,0; ¥| > 2) + N.(r,1; &, ¥) + N(r, 1; @] > 2)
+No(r,0;0) + No(r,0;T") + S(r, ¢) + S(r, ). (14)

Now in view of Lemma 4.9 we get
No(r,0; %)+ N(r,1;®| > 2)+N.(r, 1;®,¥) < No(r,0; )+ N(r, 1;®| > 2)+

N(r,1;®| > 3) < N(r,0; U'|¥ #0) < N(r,0; ) + S(r,90).  (15)

Hence using equations 14, 15 and Lemmas 4.2, 4.6 we get from Second funda-
mental theorem that

(n—d)T(r,¢) <T(r,®)+ S(r, o)
< N(r,00;®) + N(r,0; ®) + N(r, 1;®) — Ny(r,0; D) + S(r, $),
< N(r,00;®) 4 Ny(r,0; ®) + No(r,0; ) + S(r, ¢) + S(r,¢),
(n—d)T(r,0) < (3+2d)T(r,¢) + 2+ d)T(r,) + S(r,¢) + S(r, ). (16)

Similarly, we can obtain
(n = d)T(r,¢) <3+ 2d)T(r, ) + (2+ )T (r,¢) + S(r,¢) + S(r, ). (A7)

Combining equations 16 and 17 we see that

(n—d—5—=3d) < S(r,¢) + S(r,v) (18)
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Since n > 4d + 5 equation 18 leads to a contadiction.
Case 2. Let H = 0. Then the theorem follows from Lemmas 4.7 and 4.8.
This completes the proof of Theorem 3.1.

Proof of Theorem 3.2.
(z 4 aip(ztci "(z d_aib(ztc; .
Let d(2) — (¢ (2) Xy ay9( +J)) and U(z) — (w (2) Sy as9( +J)>’ it follows

p(2) p(2)

that ® and ¥ share (1, 1) except the zeros of p(z). We now consider the following
two cases.

Case 1. H £ 0.

Using Lemmas 4.6 , 4.8 , 4.10 and equations 12 and 13 we get

(r,0;®] > 2) + N(r,0; ¥| >2) + N,(r,1;®,¥) + Np(r, 1; D)
+ N(r, 1;9) + Nig (1, 158) + No(r, 0, @) + No(r, 0, %)

< N(r,0;®| > 2) + N(r,0; 0| > 2) + 2N (r,1;®) + 2N (r, 1; V)
+ NG (r, 1;®) + No(r, 0; @) + No(r, 0: ') + S(r,6) + S(r, )

< N(r,0;®] > 2) + N(r,0; ¥ > 2) + Noso(r, 1; ) + N(r, 1; ¥)

— N(r,1;¥) 4+ Ny(r, 0; <I>/) + Ny(r, 0; \I//) + S(r,¢) + S(r, 1)

<N
<N

< N(r,0;®| >2) + %N(r,o; ) + N(r,0; | > 2)+
+ N(r,0; U [U £ 0) 4+ No(r,0; D) + S(r,¢) + S(r, )
N(r,1;®) < N(r,0;®| > 2) + %N(r, 0; ®) + Ny(r,0; W) + No(r,0; @) (19)
+ S(r, ) + S(r, ).

Hence by using equation 19, Lemmas 4.2 and 4.6 we get from Second Fundamen-
tal Theorem that

<

< N(r,00;@) + N(r,0;®) + N(r, 1 ®) — No(r, 0; @) + 5(r, 9),
— 1—

< N(r,00; D) + §N(r, 0; ®) + No(r,0; P) + No(r,0; V)
+ S(r,¢) + 5(r, 1),

(n— T, ¢) < X TP(r, ) + 2+ AT(r) + 5(r.6) + S(re).  (20)
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Similarly,

5d +7
2

(n—d)T(r,¢) < T(r,) + 2+d)T(r,¢) + 5(r,¢) + S(r,4). 21

Combining equations 20 and 21 we get

9d + 11
(1= ) o)+ T £ 560+ Sy @
Since n > (221) equation 22 leads to a contradiction.

Case 2. Let H = 0. Then the theorem follows from Lemmas 4.7 and 4.8.
This completes the proof of Theorem 3.2.

Proof of Theorem 3.3.
n(y d a:d(z4ci n(x d a;PY(z4+c; .
Let @(2) _ ¢ ( )Z];(lz)J(b( + J) and \IJ(Z> — (w ( )Z];(lz)f@b( + J)) , lt follows

that ® and W share (1, 0) except the zeros of p(z).
Here equation 13 changes to

Np(r,1;®) < N(r,0; H) < N(r,00; H) + S(r, ®) + S(r, ¥)  (23)
Taking Lemmas 4.9, 4.12, 4.13, 4.14 and equations 13 and 23 we get

N(r,1;®) < N;J)(r, 1;®)+ Np(r,1;®) + Np(r,1; ) + Ng(r, 1; )

< N(r,0;®| >2)+ N(r,0; 9| > 2) + N,(r,1;0,¥) + N (r,1; )
+NL(r,1;0) + N2(r,1;®) + No(r,0; @) + No(r,0: U)
+S(r,¢) + S(r,v)

< N(r,0;®| > 2)+ N(r,0; 9| > 2) + 2N (r,1;®) + 2N (r, 1; V)
+ N, 1:®) + No(r, 0, @) + No(r, 0, ) + S(r, ¢) + S(r, )

<N(r,0;®) > 2) + N(7,0; 9] > 2) + Nooa (1,15, 0) + Ny (7, 1; D)
+ Np(r,1;®) + N(r,1; %) — N(r, 1; ) + No(r,0; &) + No(r,0; 0")
+S(r,¢) + S(r, )

< No(r,0; @) + N(r,0; @) + No(r,0;T) + N (r,0; U'| W # 0) + No(r,0; )
+ S(r,¢) + S(r,v)

N(T’, 17 (I)) S NZ(rv 07 (I)) + N(Tu 07 (I)) + NZ(rv 07 \I]) + N(T, 07 ‘Ij) + N()(T? 07 (I)/)
(24)

+ S(r,¢) + S(r, ).

Hence taking equation 24, Lemmas 4.2 and 4.6, we get from Second Fundamental
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Theorem that

(n - d)T(Ta ¢) < T(Ta (I)) + S(’I", ¢)>
< N(r,00;®) 4+ N(r,0; ®) + N(r, 1; ®) — No(r, 0; CIDI) + S(r, 9),
< N(r,00;®) 4 2Ny (r, 0; ®) + No(r,0; ) + N(r,0; ¥)

+ S(r,¢) + S(r, ¥),
(n—d)T(r,¢) < (3d+5)T(r,¢) + (2d + 3)T(r, ) + S(r,¢) + S(r, ). (25)

Similarly, we obtain
(n = d)T(r,¢) < (3d +5)T(r, ) + (2d + 3)T(r, ¢) + S(r, ) + S(r, ). (26)
Combining equations 25 and 26, we get
(n—d—>5d=8)[T(r,¢) + T(r,)] < S(r,¢) + S(r ). 27)

Since n > 6d + 8 equation 27 leads to contradiction.
Case 2. Let H = 0. Then the theorem follows from Lemmas 4.7 and 4.8.
This completes the proof of Theorem 3.3.

6 Discussion and Conclusions

Nevanlinna theory is a powerful tool in complex analysis, with wide range
of applications in diverse areas of mathematics. Its insights into the behavior of
meromorphic functions, the distribution of values and the properties of solutions
of differential equations have profound implications for various fields of study. By
utilizing Nevanlinna’s theory, mathematicians can gain a deeper understanding of
complex functions and their behavior, leading to advancements in mathematical
theory like in signal processing, communication networks, design of filters and
controllers for systems and some practical applications.

In this article using the Nevanlinna theory, we investigate the value distribution
and uniqueness of linear difference polynomials of the type ¢" Z}l:l a;o(z+ ¢;)

and " ijl a;i(z + ¢;) transcendental meromorphic functions of finite order.
Also, by using the concept of weighted sharing introduced by Indrajit Lahiri, we
have studied uniqueness problem of linear difference polynomials sharing a non-
zero polynomial p(z) with finite weight. Our findings extends and generalizes
some previous results of Theorems 2.6, 2.7 and 2.8 respectively.

Continuing further research, we can pose the following open questions:
Open Problems.
1. Is the condition for n sharp in Theorems 3.1,3.2 and 3.3 ?
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2. Can 2?:1 a;j¢(z + ¢;) is replaced by A’¢ in Theorems 3.1,3.2 and 3.3, where
Ao =332 (=1) (7)ol + (n = 1)0)?
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