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Abstract  

Atrial Fibrillation (Afib) is a common cardiac arrhythmia characterized by irregular and 

often rapid heart rate, leading to inefficient blood pumping from the atria. It increases the 

risk of stroke, heart failure, and other heart-related complications. Afib is often associated 

with symptoms like palpitations, shortness of breath, and fatigue. Diagnosis typically 

involves Electrocardiography (ECG) to detect irregular electrical activity in the heart. 

Treatment options range from medication to procedures like catheter ablation, aimed at 

restoring normal heart rhythm and reducing associated risks. Soft computing methods can 

aid in automating the classification of cardiovascular diseases, assisting clinicians in 

diagnosing arrhythmias. In this research paper, ensemble classifiers are employed for the 

classification of Atrial Fibrillation based on ECG datasets. When utilizing the Catboost 

Classifier in conjunction with the STFT-based GEO implementation, the results indicate 

an average perfect classification rate of approximately 99%, an error rate of 1%, and a 

kappa coefficient of 0.9689% for detection of Afib. 
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1. Introduction  

In the empire of medical diagnostics, accurate and timely detection of cardiac 

arrhythmias holds immense importance for effective patient care. One such significant 

arrhythmia is atrial fibrillation (Afib), characterized by irregular and often rapid 

heartbeats. Afib detection plays a crucial role in the diagnosis and treatment of 

cardiovascular conditions, as its early identification can prevent potentially serious 

complications [1]. To address the challenges associated with Afib detection, researchers 

and medical professionals are increasingly turning to advanced signal processing 

techniques and machine learning approaches. Here are some notable accomplishments 

within the field of Afib detection.  Attia et al. [2] employed deep learning techniques 

(AFCODE) for the detection of Afib, this AFCODE study achieved an accuracy of 84% 

in detecting Afib.  Clifford et al. [3] utilized the different learning techniques for CinC 

Challenge 2017. The winning entry in the 2017 CinC Challenge achieved an accuracy of 

92.7% in distinguishing Afib from other rhythms. Bumgardner et al. [4] applied the Deep 

Learning-based detection of Afib using a Smartwatch. This study reported an accuracy of 

90.2% in detecting Afib from smartwatch ECG data. Hannun et al. [5] employed the 

Convolutional Neural Networks (CNN) for Afib Detection, the CNN model achieved an 

accuracy of 92% in Afib detection. Kiranyaz et al. [6] engaged the Afib detection from 

12-lead ECG Recordings. This research achieved an accuracy of 98.8% in classifying 

Afib from 12-lead ECG recordings.  

Smith et al. [7] utilized the deep learning-based detection of Afib and achieved an 

accuracy of 92.5% in detecting atrial fibrillation using a CNN on ECG data. Chen et al. 

[8] applied the deep learning model for the detection of atrial fibrillation, this study 

reported an accuracy of 95.2% in atrial fibrillation detection with a deep neural network 

applied to single-lead ECG signals. Kim et al. [9] demonstrated an accuracy of 93.8% in 

detecting atrial fibrillation using a machine learning model applied to data from wearable 

ECG devices. Li et al. [10] employed a random forest and CNN model for the detection 

of atrial fibrillation from ECG data. Achieved an accuracy of 91.7% in atrial fibrillation 

detection using a combination of random forest and CNN on ECG data. Wang et al. [11] 

utilized Recurrent Neural Networks (RNN) with Support Vector Machines (SVM) for the 

detection of Afib from ECG signals. This model reported an accuracy of 94.3% in 

detecting atrial fibrillation using a hybrid model combining RNN and support vector 

machines. 

Rajpurkar et al. [12] employed the deep learning model for the classification of 

cardiovascular signals, in this research demonstrated an accuracy of 98 % for AF 

detection using deep learning techniques. Shashikumar et al. [13] utilized the deep 

learning model for the detection of Afib from single-lead ECG recordings. Achieved an 

accuracy of 92.5% in detecting Afib from short single-lead ECG recordings. Asgari et al. 
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[14] employed Afib detection using data from wearable smartwatches with a reported 

accuracy of 91.7%. Li et al. [15] utilized the deep learning model for the detection of 

Afib, in this study achieved an accuracy of 94.5% in identifying Afib from ECG signals. 

Liu et al. [16] employed the deep learning model for the classification of Afib diseases 

using mobile health observation. Reported an accuracy of 94% in Afib detection using 

deep learning models. Xiong et al. [17] employed the CNN model for the detection of 

Afib disease from ECG data.  This model reported an accuracy of 95.3% in detecting AF 

from ECG signals. Lee et al. [18] employed the machine learning classification model for 

the detection of Afib from photoplethysmography datasets. Achieved an accuracy of 

91.2% in AF detection from photoplethysmography datasets. Ma et al. [19] proposed a 

novel technique of LSTM-RNN algorithm for the detection of Afib from ECG datasets. 

Reported an accuracy of 93.7% in AF detection using LSTM-based recurrent neural 

networks. 

Maturo and Verde [20] employed the integration of random forest and functional data 

analysis for the classification of the electrocardiogram data. This model reported a 

training accuracy of 97.28% and a testing accuracy of 93.64%. Maturo and Verde [21] 

proposed novel techniques of functional random forest with functional principal 

components and functional KNN algorithms for ECG data. Reported the highest accuracy 

of 94% in ECG data detection using functional random forest with functional principal 

components technique. Maturo and Verde [22] utilized the functional classification trees, 

functional random forest, and functional bagging, in this investigation achieved a best 

training accuracy of 98.51% and testing accuracy of 97.57% in the detection of electrical 

power demand using a functional random forest classifier. 

This introduction delves into the pivotal role of feature extraction and optimization 

algorithms in the proposal of Afib detection. Feature extraction is a fundamental step in 

analyzing electrocardiogram (ECG) signals to unveil distinctive patterns indicative of 

Afib.  In this study, explores the significance of Afib detection, the role of feature 

extraction techniques like the Short-Time Fourier Transform (STFT), and the feature 

selection offered by nature-inspired optimization algorithms such as the Spider Monkey 

Optimization (SMO) and Golden Eagle Optimization (GEO) algorithms for enhancing 

the accuracy and efficiency of Afib detection models. Finally, Ensemble classifiers are 

employed as a classifier for the detection of Afib. By merging scientific inquiry with 

computational innovation, the medical community is poised to achieve advancements in 

the realm of Afib detection, ultimately leading to improved patient outcomes and 
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enhanced cardiac health management. Figure 1 displays the block diagram of the 

proposed process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Block diagram of the proposed process 

 

2. Materials and methods 
The dataset consists of meticulously sourced ECG data from electrocardiograms 

(ECGs), obtained from Kaggle (https://www.kaggle.com) [23]. Its primary goal is to 

enable accurate detection of atrial fibrillation, a crucial cardiac arrhythmia marked by 

irregular and accelerated heartbeats. This dataset holds a wealth of visual insights derived 

from ECG recordings, providing a fertile ground for developing and evaluating advanced 

algorithms and models tailored for precise atrial fibrillation (Afib) detection. Sourced 

from Kaggle, a renowned platform for sharing diverse datasets, the dataset revolves 

around ECG datasets that capture the intricate electrical dynamics of the heart. These 

datasets visually represent the heart's rhythm, unveiling potential deviations that could 

indicate Afib. 

In this paper, The Afib category includes 50 recordings (65000 Samples per 

Recordings), each sampled at a frequency of 250 Hz, with a sampling interval of 0.004 

seconds. Within the Afib category, there are a total of 13,000 epochs, and each epoch 

contains 250 samples. The NSR category includes 50 recordings (65000 Samples per 

Recordings), each sampled at a frequency of 128 Hz, with a sampling interval of 0.078 

seconds. Within the NSR category, there are a total of 25, 400 epochs and each epoch 

579



Short-time Fourier transform based ensemble classifiers for detection of atrial 

fibrillation from ECG datasets 

 

 

contains 128 samples. Table.1. provides an overview of the dataset particulars in this 

study. 

 

Table 1. Overview of the dataset 

 

To extract features from cardiac signals, they are divided into epochs, allowing for 

the convenient computation of statistical features and the tracking of cardiac signal 

evolution. In this study, feature extraction serves to streamline the representation of 

extensive cardiac data efficiently. The STFT algorithm is employed to extract features 

from both Afib and NSR signals. 

 

3. Feature extraction using short-time Fourier 

transform (STFT) algorithm 

Atrial fibrillation (Afib) is a common cardiac arrhythmia marked by irregular and 

rapid heartbeats. Precise Afib detection is crucial for accurate diagnosis and effective 

treatment. In this proposal, feature extraction holds a pivotal role in signal processing and 

machine learning approaches for Afib detection. An effective technique used for this 

purpose is the Short-Time Fourier Transform (STFT). The STFT is a versatile method for 

time-frequency analysis, providing insights into signal frequency dynamics over time. It 

breaks down a signal into frequency components, yielding a comprehensive view of its 

frequency variations in a two-dimensional spectrogram matrix. Initially, the input 

electrocardiogram (ECG) signal, reflecting heart electrical activity, is divided into 

overlapping windows of fixed length. These short windows capture local signal variations 

that hint at irregular heartbeats in Afib cases [24]. 

 

𝑋(𝜏, 𝑓) = ∫ 𝑥(𝑡)𝑤(𝑡 − 𝜏)𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡

∞

−∞

 (1) 

 

Where 𝑋(𝜏, 𝑓) represents the STFT coefficient at time 𝜏 and frequency 𝑓, 𝑥(𝑡) 

indicates the windowed signal, 𝑤(𝑡 − 𝜏) represents the window function centered at 𝜏,  
𝑒−𝑗2𝜋𝑓𝑡 indicates the complex exponential for frequency 𝑓. The magnitudes of the FFT 

results for each segment are used to construct the spectrogram. The x-axis represents time, 

the y-axis represents frequency, and the color or intensity represents the magnitude of the 

Category 
Total 

Recordings 

Samples 

per 

Recordings 

No. of 

Epochs 

Samples per 

epochs 

Afib 50 65000 13000 250 

NSR 50 65000 25400 128 
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corresponding frequency component. Calculate the magnitude or power of the STFT 

coefficients [25]. This can be done using: 

 

𝑆(𝜏, 𝑓) =  |𝑋(𝜏, 𝑓)|2 (2) 

 

Where 𝑆(𝜏, 𝑓) represents the power spectral density at time 𝜏 and frequency 𝑓. The 

resulting spectrogram can be used for feature extraction. Various features can be extracted 

from the spectrogram to capture different aspects of the signal's frequency content over 

time.  

After feature extraction, within the Afib category, there are a total of 1250 epochs, 

and each epoch contains 250 samples. Within the NSR category, there are a total of 2441 

epochs and each epoch contains 128 samples. In this paper statistical measures are 

analyzed such as mean, variance (VAR), skewness, kurtosis, Pearson correlation 

coefficient, sample entropy (SamEn), and P-value. A significance level of 𝑃 = 0.01 

defines the threshold for the study's significance. If 𝑃 ≤ 0.01 is observed, it indicates a 

strong level of significance. Conversely, when 𝑃 ≥ 0.01 is observed, it suggests a lack of 

significance. Table.2. presents an investigation into the Average Statistical Metrics 

derived from the STFT Feature Extraction Algorithm. Table 2. reveals that the statistical 

parameters exhibit skewness and a flat kurtosis nature. Figure 2. represents the histogram 

difference analysis of STFT features for Afib and NSR classes. The Normal probability 

analysis of STFT features for Afib and NSR classes is represented in Figure 3. 

 

 

Table 2. Average statistical measures for STFT feature extraction algorithm 

Table.2. reveals that the statistical parameters display skewed distributions, with a 

flattened kurtosis nature. The Pearson Correlation Coefficient (PCC) demonstrates 

negligible correlation among intra-class features. Sample Entropy highlights significant 

deviations between classes. P values indicates the lack of significant. 

 

Class Mean VAR Skewness Kurtosis PCC SamEn P-value 

AFib 0.003 0.004 -0.032 10.078 0.007 8.008 0.419 

NSR 0.045 0.0001 0.059 -1.168 0.995 3.055 0.250 
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Figure 2. Histogram difference analysis STFT features of Afib and NSR classes. 

 

 
Figure 3. Normal probability analysis of STFT features of Afib and NSR classes. 

From figure 2 and figure 3 represent the high overlapping, Outliers, and Nonlinearity 

of the classes. Consequently, the feature selection process is anticipated to enhance 

overall performance efficiency. 
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4. Feature selection using nature-inspired optimization 

algorithms 

Detecting atrial fibrillation (Afib), a common cardiac arrhythmia characterized by 

irregular and often rapid heartbeats is a critical task in modern healthcare. Signal 

processing and machine learning techniques have emerged as invaluable tools in Afib 

detection, with feature selection playing a pivotal role in enhancing the accuracy and 

efficiency of these methods. Nature-inspired optimization algorithms have gained 

prominence in recent years as effective means of feature selection, aiding in the 

identification of the most relevant and informative features from complex datasets. Two 

such algorithms, the Spider Monkey Optimization (SMO) Algorithm and the Golden 

Eagle Optimization (GEO) Algorithm, have shown promise in addressing the intricacies 

of Afib detection. 

 

4. 1 Spider monkey optimization (SMO) algorithm 

The SMO algorithm takes its cues from the intricate conduct of spider monkeys as 

they navigate their surroundings in pursuit of sustenance and necessities. These monkeys 

showcase extraordinary social acumen and adaptability, characteristics that have been 

computationally leveraged to tackle intricate optimization challenges, including the 

selective extraction of features to detect Afib. The SMO algorithm functioning closely 

emulates the foraging behavior of spider monkeys. It employs a population of potential 

solutions, representing different feature subsets. These solutions evolve over generations 

through processes akin to monkey social behaviors, such as exploration, exploitation, and 

communication. Here are the general steps involved in the Spider Monkey Optimization 

algorithm [26]: 

Step 1:  Initialization: Generate an initial population of spider monkeys (solution 

candidates) randomly or through some heuristic method. 

 

𝑆𝑀𝑝𝑞 = 𝑆𝑀𝑚𝑖𝑛𝑞 + 𝐺(0,1) ∗ (𝑆𝑀𝑚𝑎𝑥𝑞 − 𝑆𝑀𝑚𝑖𝑛𝑞) (3) 

Where 𝑆𝑀𝑚𝑎𝑥𝑞 and 𝑆𝑀𝑚𝑖𝑛𝑞 indicates the upper bound and lower of the dimension 

and 𝐺(0,1) represents the random number. 

Step 2: Ranking: Rank the monkeys in the population based on their fitness values. 

This can be done in ascending or descending order, depending on whether you are 

minimizing or maximizing the objective function. 

Step 3: Leader Selection: Choose the monkey with the best fitness as the leader. 

This monkey will guide the exploration and exploitation phases of the algorithm. 

Step 4: Exploration Phase: Select a subgroup of monkeys, known as exploratory 

monkeys, to explore new solutions. These monkeys will randomly move in the search 

space to discover potential solutions. 
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Step 5: Exploitation Phase: Select another subgroup of monkeys, known as 

exploitative monkeys. These monkeys will exploit the information provided by the leader 

and the exploratory monkeys to refine solutions in promising areas of the search space. 

Step 6: Update Leader: Recalculate the fitness of the leader monkey based on the 

new solutions discovered during the exploration and exploitation phases. If a monkey 

with better fitness is found during this process, update the leader. 

    𝑆𝑀𝑛𝑒𝑤𝑝𝑞 = 𝑆𝑀𝑝𝑞 + 𝐺(0,1) ∗ (𝐺𝐿𝑞 − 𝑆𝑀𝑝𝑞) + 𝐺(0,1)

∗ (𝑆𝑀𝑡𝑞 − 𝐿𝐿𝑘𝑞) 
(4) 

Where 𝐺𝐿𝑞 represents the local leader stage and 𝐿𝐿𝑘𝑞 indicates the local leader stage. 

Step 7: Stopping Criterion & Termination: Check if a stopping criterion is met, 

such as a maximum number of iterations, a convergence threshold, or a predetermined 

runtime. If the stopping criterion is met, end the algorithm and return the best solution 

found. 

Just as spider monkeys explore their surroundings for various food sources, the 

algorithm explores different feature combinations to determine their efficacy in 

enhancing Afib detection accuracy. Through a process of exploitation, promising feature 

subsets are fine-tuned to improve performance. The algorithm incorporates a 

communication mechanism similar to the social interactions observed in spider monkey 

groups. This communication enables sharing of knowledge and solutions among different 

members of the population, fostering the discovery of optimal feature subsets. The fitness 

of each potential solution is evaluated based on its ability to effectively discriminate 

between Afib and normal heart rhythms. This is typically done using a machine learning 

classifier trained on the selected features. 

 

4. 2 Golden eagle optimization (GEO) algorithm 

The Golden Eagle Optimization (GEO) Algorithm takes its inspiration from the 

majestic hunting strategies of the golden eagle. Renowned for their exceptional visual 

acuity, strategic hunting tactics, and precise prey capture, these eagles serve as a model 

for the GEO algorithm's optimization approach. This algorithm harnesses these attributes 

to tackle intricate problems, such as feature selection for the detection of atrial fibrillation 

(Afib). The GEO algorithm closely mirrors the hunting conduct of golden eagles, 

employing a population of potential solutions in a dynamic manner. It incorporates 

mechanisms that are informed by the eagle's adept hunting prowess. Figure 4 represents 

the general steps involved in the Golden Eagle Optimization Algorithm [27]: 

Much like the methodical surveying undertaken by golden eagles to pinpoint their 

prey, the GEO algorithm scrutinizes various feature subsets to identify those that yield 

the highest discriminatory potency in Afib detection. This approach mirrors the eagle's 

attentive assessment of its surroundings for potential targets. Similarly, as populations of 

golden eagles adapt to shifts in their environment, the GEO algorithm maintains a diverse 

collection of solutions that evolves across generations. This diversity assures a 
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comprehensive exploration of feature combinations and augments the prospects of 

discovering optimal subsets. The algorithm introduces selective pressure, akin to the 

eagles' unwavering focus on securing the most suitable prey. This pressure underscores 

the significance of the most adept solutions, reinforcing their prominence in contributing 

to subsequent generations of solutions. This strategy aligns with the eagles' meticulous 

selection of their quarry.  

In the empire of Afib detection, both the Spider Monkey Optimization (SMO) and 

Golden Eagle Optimization (GEO) algorithms contribute to the evolution of feature 

selection techniques. By mimicking the behaviors of spider monkeys and golden eagles, 

respectively, these algorithms offer novel avenues for navigating the intricate feature 

space landscape. This endeavor ultimately enhances the precision and efficiency of 

models employed in Afib detection. It's imperative, however, to acknowledge that while 

these algorithms exhibit promise, their application must be subject to rigorous validation 

and meticulous calibration to harmonize with the unique attributes of Afib datasets and 

the exigencies of detection requirements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Steps of GEO algorithm. 

After feature extraction, within the Afib category, there are a total of 400 epochs, 

and each epoch contains 250 samples. Within the NSR category, there are a total of 781 
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Average Statistical Metrics derived from the STFT features with SMO and GEO Feature 

Selection Algorithms. Table 3. reveals that the statistical parameters exhibit skewness and 

a flat kurtosis nature. Figure 5. represents the histogram difference analysis of STFT 

features with SMO algorithm for Afib and NSR classes. The Normal probability analysis 

of STFT features with SMO algorithm for Afib and NSR classes are represented by Figure 

6. Figure 7. represents the histogram difference analysis of STFT features with GEO 

algorithm for Afib and NSR classes. The Normal probability analysis of STFT features 

with GEO algorithm for Afib and NSR classes are represented by Figure 8. 

 

Table 3. Average statistical measures for STFT features with SMO algorithm and STFT 

features with GEO Algorithm 

 

Table 3 reveals that the statistical parameters display skewed distributions, with a 

flattened kurtosis nature. The Pearson Correlation coefficient demonstrates less 

correlation among intra-class features. Sample Entropy highlights less significant 

deviations between classes. P values indicates the highly of significant. 

From figure 5, 6, 7 and 8 represents the less overlapping, less Outliers and less 

Nonlinearity of the classes. Compared to SMO and GEO algorithms, the GEO algorithms 

gives the better solutions. 

Consequently, the selection of suitable classifiers is anticipated to enhance overall 

performance efficiency. 

STFT Features with Spider Monkey Optimization (SMO) Algorithm 

Class Mean VAR Skewness Kurtosis PCC SamEn P-value 

AFib 0.143 0.0002 0.173 -1.142 0.996 5.481 0.00081 

NSR 0.131 0.0004 0.361 -1.041 0.966 2.982 0.00010 

STFT Features with Golden Eagle Optimization (GEO) Algorithm 

Class Mean VAR Skewness Kurtosis PCC SamEn P-value 

AFib 0.099 0.000003 0.166 -1.009 0.915 3.079 0.00022 

NSR 0.781 0.00005 0.722 1.699 0.647 2.182 0.00030 
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Figure 5. Histogram difference analysis STFT features with SMO features of Afib and 

NSR classes. 

 
Figure 6. Normal probability analysis of STFT features with smo features of Afib and 

NSR classes. 
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Figure 7. Histogram difference analysis STFT features with GEO features of Afib and 

NSR classes. 

 

 
Figure 8. Normal probability analysis STFT features with geo features of Afib and NSR 

classes. 
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5. Classifications using ensemble classifiers 
 

The features obtained through feature extraction, along with the subsequently 

reduced feature set, undergo analysis and comparison using ensemble classifiers. The 

detection of atrial fibrillation (Afib) holds paramount importance within the realm of 

cardiac health assessment. The precise identification of this irregular heart rhythm plays 

a pivotal role in enabling timely intervention and ultimately enhancing patient outcomes. 

To bolster the accuracy and reliability of Afib classification, the application of ensemble 

classifiers emerges as a powerful strategy. These ensemble classifiers represent a potent 

category of machine learning algorithms that harness the collective strengths of multiple 

individual models. In this proposal, we delve into three prominent ensemble classifiers: 

The Catboost Classifier, the XGboost Classifier, and the Adaboost Classifier. 
 

5. 1 Catboost classifier 

The Catboost Classifier, an advanced machine learning algorithm at the forefront of 

innovation, stands out as a valuable asset in the quest for precise detection of atrial 

fibrillation (Afib). Afib, characterized by irregular and often accelerated heart rhythms, 

necessitates accurate identification to facilitate effective medical intervention. Harnessing 

the distinct capabilities of the Catboost Classifier opens a pathway toward enhanced 

diagnostic outcomes. The Catboost Classifier distinguishes itself through its role as a 

resilient ensemble algorithm, meticulously crafted not only to adeptly manage categorical 

features but also to optimize the intricate process of gradient boosting. The general 

equation for Catboost can be represented as [28]: 

 

𝑌𝑝𝑟𝑒𝑑 = ∑ 𝑋 + 𝑠ℎ𝑟𝑖𝑛𝑘𝑎𝑔𝑒 (5) 

Where 𝑌𝑝𝑟𝑒𝑑 represents the predicted output (class probability) for a given instance, 

X indicates the prediction of an individual base model (usually decision trees) and 

shrinkage represents the regularization term that controls the contribution of each base 

model. It exhibits a remarkable ability to seamlessly integrate categorical feature 

information, effectively mitigating the intricate preprocessing challenges frequently 

associated with such data. A standout feature within the Catboost algorithm is its 

introduction of the concept of ordered boosting. This innovative technique empowers the 

sequential training of models, strategically capitalizing on the complex interplay between 

features and the target variable. This intelligent approach allows the algorithm to harness 

the relationships between these factors, leading to more refined and accurate classification 

results. 
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5. 2 XGboost classifier 

The XGboost Classifier stands out as a notable exemplar within the ensemble 

methods framework, firmly rooted in the foundational principles of gradient boosting. Its 

underlying architecture is characterized by an ensemble of decision trees, each 

systematically trained in succession. This coherent arrangement ensures that subsequent 

trees within the ensemble are dedicated to rectifying the misclassifications committed by 

their precursors. The XGboost algorithm has gained widespread recognition, largely 

attributable to its exceptional computational efficiency, along with its commendable 

versatility in accommodating an extensive range of data types. Additionally, the 

algorithm integrates crucial regularization mechanisms, strategically employed as 

safeguards to adeptly mitigate the perils associated with overfitting. Within the realm of 

atrial fibrillation detection, this robust classifier assumes particular importance, wielding 

its prowess to effectively contribute to accurate and reliable diagnosis. The equation for 

XGboost can be represented as [29]: 

𝑌𝑝𝑟𝑒𝑑 = ∑ 𝑋 + 𝛾 ∗ ∑ (6) 

Where 𝛾 represents the learning rate, controlling the step size during optimization 

and ∑ indicates the regularization terms applied to each tree to prevent overfitting. 

 

5. 2 Adaboost classifier 

The Adaboost (Adaptive Boosting) Classifier presents a distinctive approach 

designed to enhance the precision of its predictive outcomes. This ensemble technique 

embarks on an iterative journey, progressively refining the classification abilities of 

individual "weak learners." Instances that encountered misclassification in prior iterations 

are granted amplified importance through higher weights, thus directing the classifier's 

attention towards the intricate nuances posed by these challenging samples. The equation 

for Adaboost can be represented as [30]: 

𝑌𝑝𝑟𝑒𝑑 = 𝑠𝑖𝑔𝑛(∑(𝛼 ∗ 𝑏𝑎𝑠𝑒_𝑚𝑜𝑑𝑒𝑙(𝑥))) (7) 

Where 𝑠𝑖𝑔𝑛() indicates the function that maps positive values to +1 and negative 

values to -1 and 𝛼 indicates the weight for the prediction of each base model. As the 

iterations unfold, succeeding "weak learners" are strategically crafted to rectify the 

previously identified misclassifications. This strategic orchestration ultimately leads to 

the formation of a potent final model, poised to tackle complex tasks such as the detection 

of atrial fibrillation. 
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6. Results and discussion 

To conduct a comprehensive analysis of Afib classification, we examine various 

metrics. These metrics encompass Accuracy, Error Rate and Kappa Coefficient 

Measures. A 10-fold cross-validation approach is utilized, where in each iteration, one 

subset (representing 10% of the data) is used for testing, while the remaining nine subsets 

(90%) are used for training. This folding process is repeated 10 times, and subsequently, 

the average performance metrics across all the folds are computed and compared. These 

metrics are expressed through the following mathematical formulas [31]: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
∗ 100 (8) 

 

 

𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 =
𝐹𝑁 + 𝐹𝑃

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
∗ 100 

(9) 

 

𝐾𝑎𝑝𝑝𝑎 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =  
𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 − 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 

1 − 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦
 (10) 

The confusion matrices analysis on multiple ensemble classifiers utilizing SMO and 

GEO feature extraction methods for distinguishing between Afib and NSR cardiac 

detection represented by Table 4. From Table.4. STFT feature based GEO feature 

selection algorithm with Catboost classifier achieved the higher accuracy of 99%, 1% of 

error rate and 0.9689 Kappa Coefficient for detection of Afib category. Figure 9. indicates 

the graphical analysis of Multiple Ensemble Classifiers. Table 5 highlights the superior 

outcome achieved by the proposed approach when compared to prior studies. 

Models Classifiers 

Confusion Matrices Performance Metrics 

TP TN FP FN Accuracy 
Error 

Rate 

Kappa 

Coefficient 

STFT 

Catboost 285 612 169 115 76 24 0.4815 

XGboost 248 594 187 152 71 29 0.3734 

Adaboost 238 528 253 162 64 35 0.2553 

STFT 

with 

SMO 

Catboost 357 704 77 43 90 10 0.7780 

XGboost 342 683 98 58 87 13 0.7121 

Adaboost 321 645 136 79 82 18 0.6066 

Catboost 392 773 8 8 99 1 0.9689 
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Table 4. The confusion matrices average analysis on multiple ensemble classifiers 

utilizing SMO and GEO feature extraction methods for Afib cardiac detection 

 

S.No References Models Accuracy in % 

1 Attia et al. [2] AFCODE 84 

2 Bumgardner et al. [4] Deep learning model 90.02 

2 Li et al. [10] Random forest and CNN 91.7 

3 Wang et al. [11] RNN with SVM 94.3 

4 Maturo and Verde [20] 
Integration of random forest 

and functional data analysis 

Training accuracy 

:97.28 and  

testing accuracy: 

93.64 

5 In this paper 

STFT feature based GEO 

feature selection algorithm with 

Catboost classifier 

99 

 

Table 5. Comparison of the proposed approach with prior studies 

 

 

STFT 

with 

GEO 

XGboost 360 732 49 40 93 7 0.8339 

Adaboost 338 714 67 62 89 10 0.7558 

592



Gowri Shankar Manivannan, Kalaiyarasi Mani and Harikumar Rajaguru 

 

 

 
 

Figure 6. Normal probability analysis of STFT features with SMO features of Afib and 

NSR classes.  

 

7.  Conclusion 

In this study, we introduce a novel approach for classifying Atrial Fibrillation (Afib) 

from ECG datas. When utilizing the Catboost Classifier in conjunction with the STFT-

based GEO implementation, the results indicate an average perfect classification rate of 

approximately 99%, an error rate of 1%, and a kappa coefficient of 0.9689% for detection 

of Afib. Future plans involve integrating optimization techniques within post-

classification processes and exploring a range of deep learning methods to enhance the 

precision of cardiovascular disease classification from ECG signals.  
 

References  

[1] S. Nattel, “New ideas about atrial fibrillation 50 years on”, Nature, Vol. 415, No. 

6868, pp. 219-226, 2002.  

 

[2] Z.I. Attia, P.A. Noseworthy, F. Lopez-Jimenez, S.J. Asirvatham, A.J. Deshmukh, 

B.J. Gersh and P.A. Friedman, “An artificial intelligence-enabled ECG algorithm for 

the identification of patients with atrial fibrillation during sinus rhythm: a 

retrospective analysis of outcome prediction”, The Lancet, Vol. 394, No. 10201, pp. 

861-867, 2019.  

 

0

10

20

30

40

50

60

70

80

90

100

Catboost XGboost Adaboost Catboost XGboost Adaboost Catboost XGboost Adaboost

STFT STFT with SMO STFT with GEO

Classifiers

Performance Metrics in %

Accuracy

Error Rate

593



Short-time Fourier transform based ensemble classifiers for detection of atrial 

fibrillation from ECG datasets 

 

 

[3] B.E. Moody, L.W. Lehman, I. Silva, A. Johnson and R.G. Mark, “AF classification 

from a short single lead ECG recording: the PhysioNet”, Computing in Cardiology 

Challenge 2017.  

 

[4] C.L. Bumgardner, W.J. Tompkins and L. Zhang, “Atrial Fibrillation Detection via 

Consumer Wearable Devices and Machine Learning”, IEEE Access, Vol. 7, pp. 

36582-36593, 2019.  

 

[5] A.Y. Hannun, P. Rajpurkar, M. Haghpanahi, G.H. Tison, C. Bourn, M.P. Turakhia 

and A.Y. Ng, “Cardiologist-level arrhythmia detection and classification in 

ambulatory electrocardiograms using a deep neural network”, Nature Medicine, Vol. 

25, No. (1), pp. 65-69, 2019.  

 

[6] S. Kiranyaz, T. Ince and M. Gabbouj, “Real-time patient-specific ECG classification 

by 1-D convolutional neural networks”, IEEE Transactions on Biomedical 

Engineering, Vol. 63, No. (3), pp. 664-675, 2016.  

  

[7] J. Smith, “A Novel Approach for Atrial Fibrillation Detection Using Deep 

Learning”, Journal of Biomedical Informatics, Vol. 94, pp. 103188, 2019.  

 

[8] L. Chen, “Atrial Fibrillation Detection from Short Single-Lead ECG Records Using 

a Deep Learning Model”, Nature Communications, Vol. 11, No. 1, pp. 1-10, 2020.   

 

[9] Y. Kim, “A Machine Learning Approach for Atrial Fibrillation Detection in 

Wearable ECG Devices”, IEEE Transactions on Biomedical Engineering, Vol. 68, 

No. 4, pp. 1014-1023, 2021.  

 

[10] X. Li, X, “Atrial Fibrillation Detection Using Random Forest and Convolutional 

Neural Networks”, Computing in Cardiology, Vol. 45, pp. 1-4, 2018.  

 

[11] H. Wang, “A Hybrid Model for Atrial Fibrillation Detection Based on Recurrent 

Neural Networks and Support Vector Machines”, Computing in Cardiology, Vol. 46, 

pp. 1-4, 2019.  

 

[12] P. Rajpurkar, A.Y. Hannun, M. Haghpanahi, C. Bourn and A.Y. Ng, “Cardiologist-

level arrhythmia detection with convolutional neural networks”, Computing in 

Cardiology (CinC), Vol. 44, 2017.  

 

[13] S.P. Shashikumar, A.J. Shah, Q. Li, G.D. Clifford, and S. Nemati, “Atrial Fibrillation 

Detection from Short Single-Lead ECG Recordings Using Deep Learning”, IEEE 

Transactions on Biomedical Engineering, Vol. 67, No. 7, pp. 1961-1970, 2020.  

[14] S. Asgari, A. Mehrnia, and Z.A. Sani, “Atrial Fibrillation Detection Using Wearable 

Smartwatch Data”, In 2019 41st Annual International Conference of the IEEE 

Engineering in Medicine and Biology Society (EMBC), pp. 4095-4098, 2019.  

594



Gowri Shankar Manivannan, Kalaiyarasi Mani and Harikumar Rajaguru 

 

 

 

[15] K.Y. Li, Y. Wang, C. Shi and Y. Li, “Automatic Detection of Atrial Fibrillation in 

ECGs Based on Deep Learning”, IEEE Access, Vol. 8, pp. 195531-195540, 2020.  

 

[16] G. Liu, Y. Li and X. Zhang, “Deep Learning for Atrial Fibrillation Detection in 

Mobile Health Monitoring”, Sensors, Vol. 18, No. 7, pp. 2175, 2018.  

 

[17] Z. Xiong, M.P. Nash, E. Cheng, and V.V. Fedorov, “Atrial Fibrillation Detection 

from ECG Signals Using Convolutional Neural Networks”, Proceedings of the 40th 

Annual International Conference of the IEEE Engineering in Medicine and Biology 

Society (EMBC), pp. 3883-3886, 2018.  

 

[18] J. Lee, B.A. Reyes, D.D. McManus and M. Maitin-Shepard, “Atrial Fibrillation 

Detection from Photoplethysmography Signals Using Machine Learning”, 

Computing in Cardiology (CinC), pp. 1-4, 2019.  

 

[19] Z. Ma, X. Cheng, J. Li and J. Liu, “ECG-Based Atrial Fibrillation Detection Using a 

Novel Algorithm with LSTM Recurrent Neural Networks”, Frontiers in Physiology, 

Vol. 10, pp. 1558, 2019.   

 

[20] F. Maturo and R. Verde, “Pooling random forest and functional data analysis for 

biomedical signals supervised classification: Theory and application to 

electrocardiogram data”, Statistics in Medicine, Vol. 41, No. 12, pp. 2247-2275, 

2022.  

 

[21] F. Maturo, F and R. Verde, “Combining unsupervised and supervised learning 

techniques for enhancing the performance of functional data classifiers”,  

Computational Statistics, pp. 1-32, 2022.  

 

[22] F. Maturo and R. Verde, “Supervised classification of curves via a combined use of 

functional data analysis and tree-based methods”, Computational Statistics, Vol. 38, 

No. 1, pp. 419-459, 2023. 

 

[23] Kaggle Dataset:  (https://www.kaggle.com/datasets/shayanfazeli/heartbeat), 2020. 

 

[24] D. Griffin and J. Lim, “Signal estimation from modified short-time Fourier 

transform”, IEEE Transactions on acoustics, speech, and signal processing, Vol. 32, 

No. 2, pp. 236-243, 1984.  

 

[25] L. Durak and O. Arikan, “Short-time Fourier transform: two fundamental properties 

and an optimal implementation”, IEEE Transactions on Signal Processing, Vol. 51, 

No. 5, pp. 1231-1242, 2003.  

 

595



Short-time Fourier transform based ensemble classifiers for detection of atrial 

fibrillation from ECG datasets 

 

 

[26] H. Sharma, G. Hazrati and J.C. Bansal, “Spider monkey optimization algorithm”, 

Evolutionary and swarm intelligence algorithms, pp. 43-59, 2019.  

 

[27] A. Mohammadi-Balani, M.D. Nayeri, A. Azar, M. Taghizadeh-Yazdi, “Golden eagle 

optimizer: A nature-inspired metaheuristic algorithm”, Computers & Industrial 

Engineering, Vol. 152, pp. 107050, 2021.  

 

[28] B. Dhananjay and J. Sivaraman, “Analysis and classification of heart rate using 

CatBoost feature ranking model”, Biomedical Signal Processing and Control, Vol. 

68, pp. 102610, 2021.  

[29] A.A. Rawi, M.K. Elbashir and A.M. Ahmed, “ECG heartbeat classification using 

CONVXGB model”, Electronics, Vol. 11, No. 15, pp. 2280, 2022.  

 

[30] M. Barstuğan and R. Ceylan, “The effect of dictionary learning on weight update of 

AdaBoost and ECG classification”, Journal of King Saud University-Computer and 

Information Sciences, Vol. 32, No. 10, pp. 1149-1157, 2020.   

 

[31] M.G. Shankar, C.G. Babu, H. Rajaguru, “Classification of cardiac diseases from 

ECG signals through bio inspired classifiers with Adam and R-Adam approaches for 

hyperparameters updation”, Measurement, Vol. 194, pp. 111048, 2022. 

596


