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Monophonic Distance Laplacian Energy of
Transformation Graphs S++−

n , S+−+
n , S+++

n
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Abstract

Let G be a simple connected graph of order n, vi its vertex. Let
δL1 , δ

L
2 , . . . , δ

L
n be the eigenvalues of the distance Laplacian matrix DL

of G. The distance Laplacian energy is denoted by LED(G). This
motivated us to defined the new graph energy monophonic distance
Laplacian energy of graphs. The eigenvalues of monophonic distance
Laplacian matrix ML (G) are denoted by µL

1 , µ
L
2 , . . . , µ

L
n and are said

to be ML- eigenvalues of G and to form the ML-spectrum of G, de-
noted by SpecML(G). Here MTG (vj) is the jth row sum of mono-
phonic distance matrix of M(G) and µL

1 ≤ µL
2 ≤, . . . ,≤ µL

n be the
eigenvalues of the monophonic distance Laplacian matrix is ML(G).
The monophonic distance Laplacian energy is defined as LEM(G).
In this paper we computed the monophonic distance Laplacian en-
ergy of S++−

n , S+−+
n , S+++

n graphs based on its spectrum values.
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1 Introduction

The concept of energy stems from chemistry to approximate the total π
electron energy of a molecule of a conjugated hydrocarbon. Conjugated hydro-
carbon can be represented by a graph called molecular graph according to the
rule: every carbon atom is represented by a vertex and every carbon-carbon bond
by an edge, hydrogen atoms are ignored. The eigenvalues of the molecular graph
represent the energy level of the electron in a molecule. An interesting quantity
in H¨uckel theory is the sum of the energies of all the electrons in a molecule, the
so called total π electron energy Eπ. The first results on energy of a graph was
obtained as early as 1940’s. The same concept of energy is extended to simple
graphs.

Spectral graph theory studies the relation between graph properties and the
spectra of certain matrices associated to it. It finds applications in other areas of
graph theory such as Chemistry, Biology, Physics, Computer Science, Statistics,
etc. Here we defind the monophonic distance Laplacian energy of graphs. The
concept of energy of a graph was introduced by I.Gutman in 1978[4]. The energy
of a graph G, indicated by E(G), is defined as the absolute sum of the eigenvalues

µi, (1 ≤ i ≤ n) of the adjacency matrix of the graph E(G) =
n∑

i=1

|µi|.

In 2006, Ivan Gutman and Bo Zhou[7] found the Laplacian energy of
graphs. Let µ1, µ2 . . . µn be the Laplacian eigenvalues of G. The Laplacian energy

of G has defined as LE(G) =
n∑

i=1

∣∣∣∣µi −
2m

n

∣∣∣∣. Also, In 2008, I.Gutman et.al.,[3]

have introduced the distance energy of graphs. The distance matrix or D- matrix
of G is defined as D = [dij], where dij is the distance between the vertices vi and
vj in G. The eigenvalues µ1, µ2, . . . , µp of the D- matrix of G are said to be the
D-eigenvalues of G and to form the D-spectrum of G, denoted by SpecD(G).

The distance Laplacian energy of graphs was introduced by Jieshan yang
et.al., in 2013[8]. The distance degree of the vertex vi, denoted by Di is given

by Di =
n∑

j=1

dij . The distance Laplacian matrix of a connected graph G is

DL = DL(G) = diag(Di) − D(G), where diag(Di) denotes the diagonal ma-
trix of the distance degrees. The distance Laplacian energy of G is denoted by

LED(G) is defined as LED(G) =
n∑

i=1

∣∣∣∣∣δLi − 1

n

n∑
j=1

Dj

∣∣∣∣∣. In 2015, V.S Shigehalli

and Kenchappa S Betageri[11] determined the color Laplacian energy. The seidal
Laplacian energy of graphs was initiated by H.S. Ramane and others in 2017[9].
The seidal signless Laplacian energy of graphs was derived by S. Harishchandra
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and Ivan Gutman in 2017[6]. Path Laplacian energy was introduced by Shridhar
Chandrakant Patekar and Maruti Mukinda Shikare in 2018[12]. The monophonic
distance in graphs was introduced by A.P. Santhakumaran and P.Titus in 2011[10].
Based on these we introduce a new concept monophonic distance Laplacian en-
ergy of graphs.

2 Definitions
Definition 2.1. Let G be a connected graph with vertex set {v1, v2, . . . , vn}. The
monophonic distance matrix G is defined as

M = M(G) = (dmij
)n×n, where dmij

=

{
dm(vi, vj) if i ̸= j

0 otherwise.

Here dm (vi, vj) is the monophonic distance of vi to vj .

Definition 2.2. The monophonic transmission MTG (v) of a vertex v as∑
u∈V (G)

dm(u, v) and monophonic transmission matrix MT (G) is the diagonal ma-

trix diag [MTG (v1) ,MTG (v2) , . . . ,MTG (vn)]. For 1 ≤ i ≤ n, MTG (vi) is the
ith row sum of M (G). The monophonic distance Laplacian matrix of a connected
graph G is defined as ML (G) = MT (G) −M (G). The eigen values of mono-
phonic distance Laplacian matrix ML (G) are denoted by µL

1 , µ
L
2 , . . . , µ

L
n and are

said to be ML- eigen values of G and to form the ML-spectrum of G, denoted by
SpecML(G). Since the monophonic distance Laplacian matrix is symmetric and
its eigen values are real,it can be ordered as µL

1 ≤ µL
2 ≤, . . . ,≤ µL

n .

Definition 2.3. [2] The monophonic distance Laplacian energy of a graph is de-

fined as LEM (G) =
∑n

i=1

∣∣∣∣µL
i − 1

n

∑n
j=1 MTG (vj)

∣∣∣∣.
3 Main Results
Definition 3.1. [1]Let G = (V (G), E(G)) be a graph and x, y, z be three vari-
ables taking values + or −. The transformation graph Gxyz is the graph having
V (G)∪E(G) as the vertex set and for α, β ∈ V (G) ∪ E(G), α and β are adjacent
in Gxyz if and only if one of the following holds:
(i) α, β ∈ V (G), α and β are adjacent in G if x = +; α and β are not adjacent in
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G if x = −.
(ii) α, β ∈ E(G), α and β are adjacent in G if y = +; α and β are not adjacent in
G if y = −.
(iii) α ∈ V (G), β ∈ E(G), α and β are incident in G if z = +; α and β are not
incident in G if z = −.
Thus,we may obtain eight kinds of transformation graphs, in which G+++ is the
total graph of G and G−−− is its complement. Also G−−+, G−+− and G−++ are
the complements of G++−, G+−+ and G+−− respectively.

Theorem 3.1. Let Sn be a star graph with n ≥ 3 vertices, S++−
n be the transfor-

mation graph and M(S++−
n ) be the monophonic distance matrix and its dimension

is (2n− 1)× (2n− 1). Then
(a) the spectrum of S++−

n is given by

SpecML(S++−
n ) =

(
0 3n+

√
n2 − 4n+ 8 3n−

√
n2 − 4n+ 8

1 n− 1 n− 1

)
(b)the monophonic distance Laplacian energy of S++−

n is

LEM (S++−
n ) =

2

2n− 1

[
(3n2 − 2n− 1) + (2n2 − 3n+ 1)

√
n2 − 4n+ 8

]
, for

n ≥ 3.

Proof. The graph S++−
n as shown in Figure: 1

v1 v2 v3 v4 v5

v
′
1 v

′
2 v

′
3 v

′
4

Figure 1: The graph S++−
n , n = 5

We have M(S++−
n )=(dmij

)(2n−1)×(2n−1)

where dmij
=


0 if vi = vj

1 if vi and vj are adjacent
3 if vi and vj are non adjacent
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The monophonic distance Laplacian matrix of S++−
n is

ML (S++−
n ) = MT (S++−

n )−M (S++−
n )

=

v1 v2 v3 . . . vn v
′

1 v2
′ v

′

3 . . . vn
′



v1 4n− 4 −3 −3 . . . −1 −3 −1 −1 . . . −1
v2 −3 4n− 4 −3 . . . −1 −1 −3 −1 . . . −1
v3 −3 −3 4n− 4 . . . −1 −1 −1 −3 . . . −1
...

...
...

...
. . .

...
...

...
...

. . .
...

vn −1 −1 −1 . . . 4n− 4 −3 −3 −3 . . . −3

v
′

1 −3 −1 −1 . . . −3 2n+ 2 −1 −1 . . . −1

v
′

2 −1 −3 −1 . . . −3 −1 2n+ 2 −1 . . . −1

v
′

3 −1 −1 −3 . . . −3 −1 1 2n+ 2 . . . −1
...

...
...

...
. . .

...
...

...
...

. . .
...

v
′

n −1 −1 −1 . . . −3 −1 −1 −1 . . . 2n+ 2

The ML-eigenvalues of S++−
n are



µL
1

µL
2
...
µL
n

µL
n+1
...

µL
2n−1


=



0

3n−
√
n2 − 4n+ 8

...
3n−

√
n2 − 4n+ 8

3n+
√
n2 − 4n+ 8

...
3n+

√
n2 − 4n+ 8


.

The ML- spectrum of S++−
n is

SpecML(S++−
n ) =

(
0 3n−

√
n2 − 4n+ 8 3n+

√
n2 − 4n+ 8

1 n− 1 n− 1

)
.

Let n ≥ 4

LEM

(
S++−
n

)
=

2n−1∑
i=1

∣∣∣∣µL
i − 6n2 − 4n− 2

2n− 1

∣∣∣∣
=

∣∣∣∣0− 6n2 − 4n− 2

2n− 1

∣∣∣∣+
(n− 1)

∣∣∣∣3n+ 1 +
√
n2 − 4n+ 8− 6n2 − 4n− 2

2n− 1

∣∣∣∣+
(n− 1)

∣∣∣∣(3n+ 1)−
√
n2 − 4n+ 8− 6n2 − 4n− 2

2n− 1

∣∣∣∣
Since µL

i − 1

2n− 1

∑2n−1
j=1 MTG (vj) < 0, where i = 2, 3, . . . , n, we have

LEM

(
S++−
n

)
=

[
6n2 − 4n− 2

2n− 1

]
+
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(n−1)

[
(6n2 − 4n− 2)− (2n− 1)

[
(3n+ 1) +

√
n2 − 4n+ 8

]
2n− 1

]
+

(n−1)

[
(3n+ 1)(2n− 1) + (2n− 1)

√
n2 − 4n+ 8− 6n2 + 4n+ 2

2n− 1

]
=

1

2n− 1

[
(6n2 − 4n− 2) + 2(n− 1)(2n− 1)

√
n2 − 4n+ 8

]
=

2

2n− 1

[
(3n2 − 2n− 1) + (2n2 − 3n+ 1)

√
n2 − 4n+ 8

]
.

Theorem 3.2. The monophonic distance Laplacian energy of S+−+
n is

LEM (S+−+
n ) =

2

2n− 1
[12n2 − 32n+ 19].

Proof. The graph S+−+
n as shown in Figure: 2

v1 v2 v3 v4 v5 v6 v7

v
′
1 v

′
2 v

′
3 v

′
4 v

′
5 v

′
6

Figure 2: The graph S+−+
n , n = 7

We have M(S+−+
n )=(dmij

)(2n−1)×(2n−1)

where dmij
=


0 if vi = vj

1 if vi and vj are adjacent
2 if vi and vj are non adjacent

The monophonic distance Laplacian matrix of S+−+
n is

ML (S+−+
n ) = MT (S+−+

n )−M (S+−+
n )
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ML
(
S+−+
n

)
=

v1 v2 v3 . . . vn v
′

1 v2
′ . . . vn

′



v1 4n− 6 −2 −2 . . . −1 −1 −2 . . . −2
v2 −2 4n− 6 −2 . . . −1 −2 −1 . . . −2
v3 −2 −2 4n− 6 . . . −1 −2 −2 . . . −2
...

...
...

...
. . .

...
...

...
. . .

...
vn −1 −1 −1 . . . 2n− 2 −1 −1 . . . −1

v
′

1 −1 −2 −2 . . . −1 4n− 6 −2 . . . −2

v
′

2 −2 −1 −2 . . . −1 −2 4n− 6 . . . −2
...

...
...

...
. . .

...
...

...
. . .

...
v

′

n −2 −2 −2 . . . −1 −2 −2 . . . 4n− 6

The ML-eigenvalues of S+−+
n are



µL
1

µL
2

µL
3
...

µL
n+1

µL
n+2
...

µL
2n−1


=



0
2n− 1
4n− 5

...
4n− 5
4n− 3

...
4n− 3


.

The ML- spectrum of S+−+
n is

SpecML(S+−+
n ) =

(
0 2n− 1 4n− 5 4n− 3
1 1 n− 1 n− 2

)
.

Then,LEM

(
S+−+
n

)
=

2n−1∑
i=1

∣∣∣∣µL
i − 8n2 − 18n+ 10

2n− 1

∣∣∣∣
=

∣∣∣∣0− 8n2 − 18n+ 10

2n− 1

∣∣∣∣+ ∣∣∣∣(2n− 1)− 8n2 − 18n+ 10

2n− 1

∣∣∣∣+
(n− 1)

∣∣∣∣(4n− 5)− 8n2 − 18n+ 10

2n− 1

∣∣∣∣+
(n− 2)

∣∣∣∣(4n− 3)− 8n2 − 18n+ 10

2n− 1

∣∣∣∣
Since µL

i − 1

2n− 1

2n−1∑
j=1

MTG (vj) < 0, where i = 2, we have

LEM

(
S+−+
n

)
=

[
8n2 − 18n+ 10

2n− 1

]
+

[
(8n2 − 18n+ 10)− (2n− 1)2

2n− 1

]
+

(n− 1)

[
(4n− 5)(2n− 1)− (8n2 − 18n+ 10)

2n− 1

]
+

(n− 2)

[
(2n− 1)(4n− 3)− (8n2 − 18n+ 10)

2n− 1

]

559



Diana R, Binu Selin T

=
1

2n− 1

[
12n2 − 32n+ 19 + (n− 1)(4n− 5) + (n− 2)(8n− 7)

]
=

2

2n− 1

[
12n2 − 32n+ 19

]
.

Theorem 3.3. Let S+++
n be the transformation graph of order 2n-1. Then the

monophonic distance Laplacian energy of S+++
n is

LEM (S+++
n ) =

2

2n− 1
[(6n2 − 14n + 7) + (2n2 − 5n + 2)

√
n2 − 2n+ 2, for

n ≥ 4.

Proof. The graph S+++
n as shown in Figure: 3

v1 v2 v3 v4 v5 v6 v7 v8

v
′
1 v

′
2 v

′
3 v

′
4 v

′
5 v

′
6 v

′
7

Figure 3: The graph S+++
n , n = 8

The monophonic distance matrix of S+++
n is
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M
(
S+++
n

)
=

v1 v2 v3 . . . vn v
′

1 v2
′ v

′

3 . . . vn
′



v1 0 3 3 . . . 1 1 2 2 . . . 2
v2 3 0 3 . . . 1 2 1 2 . . . 2
v3 3 3 0 . . . 1 2 2 1 . . . 2
...

...
...

...
. . .

...
...

...
...

. . .
...

vn 1 1 1 . . . 0 1 1 1 . . . 1

v
′

1 1 2 2 . . . 1 0 1 1 . . . 1

v
′

2 2 1 2 . . . 1 1 0 1 . . . 1

v
′

3 2 2 1 . . . 1 1 1 0 . . . 1
...

...
...

...
. . .

...
...

...
...

. . .
...

v
′

n 2 2 2 . . . 1 1 1 1 . . . 0

The monophonic distance Laplacian matrix of S+++
n is

ML (S+++
n ) = MT (S+++

n )−M (S+++
n )

ML
(
S+++
n

)
=

v1 v2 v3 . . . vn v
′

1 v2
′ . . . vn

′



v1 5n− 8 −3 −3 . . . −1 −1 −2 . . . −2
v2 −3 5n− 8 −3 . . . −1 −2 −1 . . . −2
v3 −3 −3 5n− 8 . . . −1 −2 −2 . . . −2
...

...
...

...
. . .

...
...

...
. . .

...
vn −1 −1 −1 . . . 2n− 2 −1 −1 . . . −1

v
′

1 −1 −2 −2 . . . −1 3n− 4 −1 . . . −1

v
′

2 −2 −1 −2 . . . −1 −1 3n− 4 . . . −1
...

...
...

...
. . .

...
...

...
. . .

...
v

′

n −2 −2 −2 . . . −1 −1 −1 . . . 3n− 4

The ML-eigenvalues of S+++
n are



µL
1

µL
2

µL
3
...
µL
n

µL
n+1

µL
n+2
...

µL
2n−1


=



0
2n− 1

(4n− 4)−
√
n2 − 2n+ 2

...
(4n− 4)−

√
n2 − 2n+ 2

4n− 5

(4n− 4) +
√
n2 − 2n+ 2

...
(4n− 4) +

√
n2 − 2n+ 2


The ML-spectrum of S+++

n is

SpecLM(S+++
n ) =

(
0 2n− 1 (4n− 4)−

√
n2 − 2n+ 2 4n− 5 (4n− 4) +

√
n2 − 2n+ 2

1 1 n− 2 1 n− 2

)
Let n ≥ 4
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LEM

(
S+++
n

)
=

2n−1∑
i=1

∣∣∣∣µL
i − 8n2 − 18n+ 10

2n− 1

∣∣∣∣
=

∣∣∣∣0− 8n2 − 18n+ 10

2n− 1

∣∣∣∣+ (n− 1)

∣∣∣∣(2n− 1)− 8n2 − 18n+ 10

2n− 1

∣∣∣∣+
(n− 1)

∣∣∣∣(4n− 5)− 8n2 − 18n+ 10

2n− 1

∣∣∣∣+
(n− 2)

∣∣∣∣(4n− 4) +
√
n2 − 2n+ 2− 8n2 − 18n+ 10

2n− 1

∣∣∣∣+
(n− 2)

∣∣∣∣(4n− 4)−
√
n2 − 2n+ 2− 8n2 − 18n+ 10

2n− 1

∣∣∣∣
Since µL

i − 1

2n− 1

2n−1∑
j=1

MTG (vj) < 0, where i = 2, 3, . . . , n, we have

LEM

(
S+++
n

)
=

[
8n2 − 18n+ 10

2n− 1

]
+(n−1)

[
(8n2 − 18n+ 10)− (2n− 1)2

2n− 1

]
+

(n− 1)

[
(4n− 5)(2n− 1)− (8n2 − 18n+ 10)

2n− 1

]
+

(n−2)

[
((4n− 4) +

√
n2 − 2n+ 2)(2n− 1)− (8n2 − 18n+ 10)

2n− 1

]
+

(n− 2)

[
((8n2 − 18n+ 10)− (4n− 4)−

√
n2 − 2n+ 2)

2n− 1

]
=

1

2n− 1

[
12n2 − 28n+ 14 + 2(n− 2)(2n− 1)

√
n2 − 2n+ 2

]
=

2

2n− 1
[(6n2 − 14n+ 7) + (2n2 − 5n+ 2)

√
n2 − 2n+ 2].

4 Conclusion

In this paper we derived a new graph energy called monophonic distance
Laplacian energy. We obtained monophonic distance Laplacian energy of trans-
formation graphs S++−

n , S+−+
n , S+++

n . In this study we computed monophonic
distance Laplacian spectrum based on these eigenvalues. Future scope of this
study is comparitive study of monophonic distance Laplacian energy of graphs
with other graphs. We can also extend this concept monophonic distance Lapla-
cian energy of graph to various graph distance parameters.
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