Non-deterministic-M-fuzzy Lattices

Gireesan K.K.* Annie Sabitha Paul[†] Sabu Sebastian[‡]

Abstract

Goran Trajakoviski and *Tepavčević* introduced the L-fuzzy lattice in which a bounded lattice is fuzzified using a complete lattice. Using a complete consistent distributive multilattice M, we broaden the concept of L-fuzzy lattice to Nd-M-fuzzy lattice in this study. We also propose the idea of Nd-M-order relation on a set X. Additionally, we demonstrated that the equivalent condition for a Nd-M-fuzzy subset to be a Nd-M-fuzzy sublattice of a bounded lattice L.

Keywords: Nd-M-fuzzy subset, Nd-M-fuzzy relation, Nd-M-fuzzy lattice.

2020 AMS subject classifications: 06D50, 06D72, 06F99¹

^{*}Associate Professor of Mathematics, Government College of Engineering, Kannur - 670563, Kerala, India; gireesankk@gmail.com.

[†]Assistant Professor of Mathematics, Government College of Engineering, Kannur - 670563, Kerala, India; anniesabithapaul@gmail.com.

[‡]Associate Professor of Mathematics, Nirmalagiri College, Nirmalagiri, Kannur, Kerala, India; sabukannur@gmail.com.

¹Received on july 3, 2023. Accepted on November 28, 2023. Published on December 31, 2023. DOI: 10.23755/rm.v48i0.1270. ISSN: 1592-7415. eISSN: 2282-8214. ©Gireesan K.K. et al. This paper is published under the CC-BY licence agreement.

1 Introduction

Giving suitable fuzzification to crisp concepts is a significant challenge that many academics find intriguing. The membership function, however, provides a unique value in L for each member of its domain in L-fuzzy sets [Birkhoff [1940], Goguen [1967], Klir and Yuan [1995]]. In this case, we employ a membership function to fuzzify a clear idea by providing each member in its domain with a set of values. Consequently, by employing non-deterministic membership functions [Gireesan and Thrivikraman [2015], K.K.Gireesan [2014]], a non-deterministic M-fuzzy set was created, where M is a multilattice [Cordero et al. [2008], Avallone [2002], Johnston [1990], Medina et al. [2006]]. A different concept for a multilattices that is connected to lattices was recently presented by Cordero [Cordero et al. [2008]]. We are looking on how to extend fuzzy-related concepts using these kinds of structures.

Goran Trajakoviski and Tepavc evic developed L-fuzzy lattice, who used a complete lattice to fuzzify a bounded lattice [Tepavčević and Trajkovski [2001]]. Two types of fuzzy lattice were proposed by them. The first form of fuzzy lattice is created by fuzzying up the membership of the elements in a crisp lattice, and the second type is created by fuzzying up the order relation in a crisp lattice. They concluded that these two varieties of fuzzy lattices are identical.

As shown below, the document is organised. Defining the words multilattice, Nd-M-fuzzy subsets, and "L-fuzzy Lattice" in Section 2 as well as outlining some preliminary (theoretical) findings. The concept of Nd-M-fuzzy order relation is explored in more detail in section 3. The concept of Nd-M-fuzzy lattice is introduced and studied in section 4.

2 Preliminary Results

Assume that $F \subseteq M$ and that (M, \leq) is a partially ordered set. The minimal element of the set of upper bounds of F is called the multisupremum of F, and is denoted by Multisup(F). Similarly the maximal element of the set of lower bounds of F is called the multiinfimum of F, and is denoted by multiinf(F).

Definition 2.1. [Cordero et al. [2008]] A partially ordered set (M, \leq) is said to be ordered multilattice iff for all *i*, *j*, and *k* with $i \leq k$ and $j \leq k$, there exist $q \in Multisup \{i, j\}$ such that $q \leq k$.

It should be emphasised that our sets will instead contain a set of multisuprema rather than a supremum. Therefore, here we present some ordering, namely the Hoare ordering, the Smyth ordering, and the Egli-Milner ordering, respectively among the subsets of posets. **Definition 2.2.** [Medina et al. [2006]] let $G, H \in 2^M$, then $G \sqsubseteq_H H$ iff $\forall g \in G \exists h \in H$ such that $g \leq h$; $G \sqsubseteq_S H$ iff $\forall h \in H \exists g \in G$ such that $g \leq h$; $G \sqsubseteq_{EM} H$ iff $G \sqsubseteq_H H$ and $G \sqsubseteq_S H$.

Definition 2.3. [Johnston [1990]] Let G and H are two subsets of a algebraic multilattice (M, \land, \lor) and $m \in M$, then $m \land G = \bigcup \{(m \land g)/g \in G\};$ $m \lor G = \bigcup \{(m \lor g)/g \in G\};$ $G \land H = \bigcup \{(g \land h)/g \in G, h \in H\};$ $G \lor H = \bigcup \{(g \lor h)/g \in G, h \in H\}.$

Definition 2.4. [Gireesan and Thrivikraman [2015], K.K.Gireesan [2014]] Let $A \neq \emptyset$ and M be a complete distributive multi lattice. Then a function from A to 2^{M} is called Non deterministic M-Fuzzy subset of A (Nd-M-fuzzy subset) and Non-deterministic-M-fuzzy space is the set of all Nd-M-fuzzy subsets of A and is denoted by $(2^{M})^{A}$.

Definition 2.5. If a completely distributive multilattice M has an order reversing involution $': M \to M$, then M is said to be F multilattice and for any $P \in (2^M)^A$, $P'(a) = [P(a)]' = \{p' \mid p \in P(a)\}$

Definition 2.6. [Gireesan and Thrivikraman [2015]] Set relations rules on $(2^M)^X$

Suppose H and K belongs to $(2^M)^A$. Then

- 1. H = K, if H(i) = K(i), for every $i \in A$;
- 2. $H \leq K$, if $H(i) \sqsubseteq_{EM} K(i)$;
- 3. $L = H \lor K$, if L(i) =multisup $\{(H(i), K(i)) \mid \forall i \in A\} = \cup \{(h \lor k) \mid h \in H(i), k \in K(i)\}, \forall i \in A;$
- 4. $I = H \land K$, if $I(i) = multiinf \{(H(i), K(i)) \mid \forall i \in A\} = \cup \{(h \land k) \mid h \in H(i), k \in K(i)\}, \forall i \in A.$

Definition 2.7. [Ajmal and Thomas [1994], Tepavčević and Trajkovski [2001]] Suppose (A, \lor, \land) be a lattice and (L, \lor_L, \land_L) is a complete lattice with 0_L and 1_L and $\Omega \in L^A$. Then the set $\Omega_\beta = \{t \in A \mid \Omega(t) \ge \beta\}$ is called the β cut of Ω . Also Ω is called a fuzzy sub lattice of L, if

$$\Omega(s \wedge t) \wedge_L \Omega(s \vee t) \ge \min(\Omega(s), \Omega(t)) \ s, t \in A.$$

That is,

$$\Omega(s \wedge t) \wedge_L \Omega(s \vee t) \ge \Omega(s) \wedge_L \Omega(t).$$

Remark 2.1. $\Omega \in L^A$ is an *L*-fuzzy sub lattice of *A* iff Ω_β is a sublattice of *A* for each $\beta \in L$.

3 Non-deterministic-M-fuzzy relation

Definition 3.1. Suppose (M, \wedge_M, \vee_M) be a complete and consistent multilattice with greatest element 1_M and least element 0_M , where \vee_M and \wedge_M are multisupremum and multiinfimum of elements of M and A be a set, $A \neq \phi$. Then a Non-deterministic M-fuzzy relation on A is a mapping $\Phi : A \times A \to A$.

Definition 3.2. Assume $\beta \in 2^M$, then the set $\Phi_\beta = \{(a, b) : \beta \sqsubseteq_{EM} \Phi(a, b)\}$ is called the β -level of Φ .

Definition 3.3. An Nd-M-fuzzy relation Φ is called

- 1. Nd-M- reflexive, if $\Phi(i, j) = \{1\}, \forall i, j \in A;$
- 2. Weakly Nd-M- reflexive, if

 $\Phi(i,j) \sqsubseteq_{EM} \Phi(i,i)$ and $\Phi(j,i) \sqsubseteq_{EM} \Phi(i,i) \forall , i, j \in A;$

3. Nd-M- anti-symmetric, if

$$\Phi(i,j) \wedge_M \Phi(j,i) = \{0\} \ \forall \ i,j \in A \ with \ i \neq j;$$

4. Nd-M- transitive, if

$$\Phi(i,j) \land \Phi(j,i) \sqsubseteq_{EM} \Phi(i,k) \ , \forall \ i,j,k \in A.$$

If Φ is Nd-M-reflexive, Nd-M- antisymmetric and Nd-M-transitive, then Φ is called Nd-M-fuzzy ordering relation on A.

Definition 3.4. Suppose $(L, \vee_L, \wedge_L, 0, 1)$ is a bounded lattice and (M, \vee_M, \wedge_M) be a non-trivial complete and consistent multilattice. Let $\Omega \in (2^M)^L$. Then the $\Omega_\beta = \{t \in L \mid \beta \sqsubseteq_{EM} \Omega(t)\}$ is the β -level of Ω , where $\beta \in 2^M$.

4 Non-deterministic-M-fuzzy lattice

Definition 4.1. If a Nd-M fuzzy subset Ω belongs to $(2^M)^L$ and if $\beta \sqsubseteq_{EM} \Omega(s) \wedge_M \mu(t)$, $\forall s, t \in \Omega_\beta$ and Ω_β is a sub lattice of L for each $\beta \in 2^M$, then Ω is called a non-deterministic-M-fuzzy sub lattice (Nd-M-fuzzy sub lattice) of L.

Non-deterministic-M-fuzzy Lattice

Figure 1: The lattice L, the multilattice M and the β -level Ω_{β} where $\beta = \{a\}$ in Example 4.1

Example 4.1. *1. Any L*-*fuzzy lattice is a Nd*-*M*-*fuzzy lattice*.

- 2. Choose $\beta \in 2^M$ such that $\beta \wedge \beta = \beta$. Let $\Omega : L \to 2^M$ defined by $\Omega(t) = \beta$, $\forall t \in L$, Ω is a Nd-M-fuzzy lattice.
- 3. If (M, \wedge_M, \vee_M) be a multilattice with 0_M and 1_M and (L, \vee_L, \wedge_L) be a lattice where $M = \{0_M, a, b, c, d, 1_M\}$ and $L = \{0_L, p, q, r, s, t, u, v, w, 1_L\}$, then

$$\Omega = \begin{pmatrix} 0_L & p & q & r & s & t & u & v & w & 1_L \\ \{b\} & \{a\} & \{b\} & \{a,b\} & \{a\} & \{d\} & \{d\} & \{c,d\} & \{d\} & 1_M \end{pmatrix}$$

is an Nd - M-fuzzy lattice (see Fig.1). If $\beta = \{a\}$, then $\Omega_{\beta} = \{p, s, t, u, v, w, 1_L\}$.

Theorem 4.1. Assume Ω_{β} , where $\beta \in 2^{M}$ and $\Omega \in (2^{M})^{L}$, satisfies $\beta \sqsubseteq_{EM}$ $\Omega(s) \wedge_{M} \Omega(t), \forall s, t \in \Omega_{\beta}$, then Ω is a Nd-M-fuzzy lattice of L iff for every $s, t \in L$,

$$multiinf\{\Omega(s), \Omega(t)\} \sqsubseteq_{EM} multiinf\{\Omega(s \wedge_L t), \Omega(s \vee_L t)\}.$$

That is,

$$\Omega(s) \wedge_M \Omega(t) \sqsubseteq_{EM} \Omega(s \wedge_L t) \wedge_M \Omega(s \vee_L t).$$

Proof. Assume $\Omega_{\beta} = \{t \in L : \beta \sqsubseteq_{EM} \Omega(t)\}$ satisfies $\beta \sqsubseteq_{EM} \Omega(s) \wedge_M \Omega(t), \forall s, t \in \Omega_{\beta}$. Consider $P = \Omega(s) \wedge_M \Omega(t)$, then $P \sqsubseteq_{EM} \Omega(s)$ and $P \sqsubseteq_{EM} \Omega(t)$. That is, $s, t \in \Omega_P$. But by our hypothesis, Ω_P is a sub lattice of L, then $s \wedge_L t$ and $s \vee_L t$ belongs to Ω_P and so $P \sqsubseteq_{EM} \Omega(s \vee_L t)$ and $P \sqsubseteq_{EM} \Omega(s \wedge_M t)$. Since $s \wedge_L t$ and $s \vee_L t$ belongs to Ω_P , $P \sqsubseteq_{EM} \Omega(s \vee_L t) \wedge_M \Omega(s \wedge_L t)$. Therefore, $P = \Omega(s) \wedge_M \Omega(t) \sqsubseteq_{EM} \Omega(s \vee_L t) \wedge_M \Omega(s \wedge_L t)$.

Conversely, assume that Ω satisfies $\Omega(s) \wedge_M \Omega(t) \sqsubseteq_{EM} \Omega(s \vee_L t) \wedge_M \Omega(s \wedge_L t)$. Let P belongs to 2^M . Then For every $s, t \in \Omega_P$, Then $P \sqsubseteq_{EM} \Omega(s)$ and $P \sqsubseteq_{EM} \Omega(t)$. Hence $P \sqsubseteq_{EM} \Omega(s) \wedge_M \Omega(t)$. But our assumption, we have $P \sqsubseteq_{EM} \Omega(s) \wedge_M \Omega(t) \sqsubseteq_{EM} \Omega(s \wedge_L t) \wedge_M \Omega(s \vee_L t)$. Hence $P \sqsubseteq_{EM} \Omega(s \wedge_L t)$ and $P \sqsubseteq_{EM} \Omega(s \vee_L t)$. Since $s \vee_L t \in \Omega_P$ and $s \wedge_L t \in \Omega_P$, we obtain Ω_P is a sublattice of L, and thus Ω is an Nd-M fuzzy lattice.

Theorem 4.2. Suppose (L, \wedge_L, \vee_L) be a lattice (M, \wedge_M, \vee_M) be a bounded multilattice. Then $\Omega : L \to 2^M$ is an Nd-M- fuzzy lattice, the following relations eqivalent.

- 1. $\Omega(s) \wedge_M \Omega(t) \sqsubseteq_{EM} \Omega(s \wedge_L t);$
- 2. $\Omega(s) \wedge_M \Omega(t) \sqsubseteq_{EM} \Omega(s \vee_L t).$

The steps for creating a Nd-M- fuzzy lattice with a family of lattices as its family of level sets are shown below.

Consider two posets S_1 and S_2 that have disjoint underlying sets. The posets $(S_1 \cup S_2, \leq)$ is the disjoint union of posets S_1 and S_2 , where \leq is defined by $s \leq$ iff $s, t \in S_1$ and $s \leq t$ in S_1 or $s, t \in S_2$ and $s \leq$ in S_2 or $s \in S_1$ and $t \in S_2$. The sum of Posets S_1 and S_2 is called linear sum and is denoted by $(S_1 \oplus S_2, \leq)$.

Theorem 4.3. Let κ be the disjoint family of lattices. Then there is an Nd-M-fuzzy lattice whose non-trivial β -levels are precisely the lattices from κ .

Proof. Suppose κ i a collection of lattices (L_i, \wedge_i, \vee_i) with smallest element 0_i and greatest element 1_i . lowest element 0_i and greatest element 1_i , $(i \in I)$. Then create a Nd-M- fuzzy lattice using the assortment of lattices in the manner shown below.

Assume $M = \{0_M, 1_M\} \cup \{m_i, n_i : i \in I\}$ be the multilattice, where the order M is defined by $\forall i m_i \ge n_i, \forall i \text{ and } m_1 \ge n_2 \text{ and } m_2 \ge n_1$, where n_i ,'s are atoms and m_i 's are coatoms. Define the linear sum \oplus of these lattices is the set $L = 0_L \oplus \bigcup_{i \in I} L_i \oplus 1_L$, where 0_L and 1_L are the single element lattices. Now L is a lattice. Then define $O \in L \to \mathbb{N}^M$ by

a lattice. Then define $\Omega: L \to 2^M$ by

$$\Omega\{s\} = \{m_i, n_i\} \text{ iff } s \in L_i, i \in I \text{ and } \Omega\{0_L\} = \{0_M\}, \Omega\{1_L\} = \{1_M\}.$$

Non-deterministic-M-fuzzy Lattice

Figure 2: The lattices and the multilattice in Example 4.2

It is then evident that for every $\beta \in 2^M$, all of the non-trivial - β levels of Ω are precisely the lattices in κ .

Example 4.2. Let κ has three lattices L_1, L_2 and L_3 (see figure 2). Next, create L and M using the prior theorem. Following the mapping Ω provides the necessary Nd-M- fuzzy lattices.

$$\bar{L} = \begin{pmatrix} p & q & r & s & t & u \\ \{m_1, n_1\} & \{m_1, n_1\} & \{m_1, n_3\} & \{m_2, n_2\} & \{m_2, n_3\} & \{m_2, n_3\} \\ v & x & y & 0_L & 1_L \\ \{m_2, n_2\} & \{m_3, n_3\} & \{m_3, n_3\} & 0_M & 1_M \end{pmatrix}.$$

5 Conclusion

The terms L-fuzzy relation and L-fuzzy lattice were generalised to Nd-M-fuzzy relation and Nd-M-fuzzy lattice, respectively. Furthermore, we proved the necessary and sufficient condition for a Nd-M-fuzzy subset to be a Nd-M-fuzzy sublattice of L. Finally, we noticed that when the membership value in an L-fuzzy lattice is replaced by a set of values in a multilattice in M, the expansion of L-fuzzy lattices to Nd-M-fuzzy lattices is true with regard to the Egli-Milner ordering.

Acknowledgements

The authors are very grateful to referees for their constructive comments and suggestions.

References

- N. Ajmal and K. Thomas. Fuzzy lattices. *Information Sciences*, 79(3-4):271–291, 1994.
- A. Avallone. Modular functions on multilattices. Czechoslovak Mathematical Journal, 52:499–512, 2002.
- G. Birkhoff. Lattice theory, volume 25. American Mathematical Soc., 1940.
- P. Cordero, G. Gutiérrez, J. Martínez, M. Ojeda-Aciego, and I. de las Penas. Congruence relations on multilattices. In *Computational Intelligence In Decision And Control*, pages 139–144. World Scientific, 2008.
- K. Gireesan and T. Thrivikraman. *Non-deterministic Fuzzification using Multilattices*. PhD thesis, Cochin University of Science and Technology, 2015.
- J. A. Goguen. L-fuzzy sets. *Journal of Mathematical Analysis and Applications*, 18(1):145–174, 1967.
- I. J. Johnston. Some results involving multilattice ideals and distributivity. *Discrete Mathematics*, 83(1):27–35, 1990.
- K.K.Gireesan. Non-deterministic l-fuzzy topological spaces. *Bullettin of Kerala Mathematical Association*, 11(2):121–125, 2014.
- G. Klir and B. Yuan. *Fuzzy Sets and Fuzzy Logic*, volume 4. Prentice hall New Jersey, 1995.
- J. Medina, M. Ojeda-Aciego, and J. Ruiz-Calvino. Multi-lattices as a basis for generalized fuzzy logic programming. *Lecture Notes in Somputer Science*, 3849:61, 2006.
- A. Tepavčević and G. Trajkovski. L-fuzzy lattices: an introduction. *Fuzzy Sets* and Systems, 123(2):209–216, 2001.