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A family of definite integrals involving Legendre’s polynomials

The main objective of this article is to provide the analytical solutions (not previously found and not
available in the literature) of some problems related with definite integrals integrands of which are the
products of the derivatives of Legendre’s polynomials of first kind having different order, with the help of
some derivatives of Legendre’s polynomials of first kind P, (z), Rodrigues formula, Leibnitz’s generalized
rule for successive integration by parts and certain values of successive differential coefficients of (2% — 1)"
at x = £1.
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1 Motivation and objectives

Legendre polynomials are studied in most science and engineering mathematics courses, mainly in
those courses focused on differential equations or special functions. Legendre polynomials, also known
as spherical harmonics or zonal harmonics, were first introduced in 1782 by Adrien-Marie Legendre.
Legendre polynomials are used in several areas in physics and mathematics. For example, Legendre and
Associate Legendre polynomials are widely used in the determination of wave functions of electrons in
the orbits of an atom [1,2] and in the determination of potential functions in the spherically symmetric
geometry [3]. In 1784, the significant of Legendre polynomials is sensed when the attraction of spheroids
and ellipsoids was studying by A. Legendre. They may arise from solutions of Legendre ODE, such as
the analog ODEs in spherical polar coordinates and the famous Helmholtz equation.

The main aim of this work is to fill up the gap in the existing literature on definite integrals
integrands of which are the product of the derivatives of two families of classical Legendre’s polynomials
of first kind, by adding certain definite integrals in the incomplete list, as shown in the following possible
combinations of definite integrals:

First combination of definite integrals:

+1
Already Solved / P (z)Pp,(z)dz (1)
-1
+1
Unsolved/ P, (z)P,,/ (z)dx (2)
-1
+1
Unsolved/ P, (z)P,," (z)dx (3)
-1
+1
Unsolved/ P, (2)Py" (z)dz (4)
-1
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+1
Already Solved/ P, (z)P,(z)dz (5)
-1
+1
Unsolved/ P, (z)P,/(x)dx (6)
-1
+1
Unsolved/ P, (z)P,” (z)dx (7)
-1
+1
Unsolved/ P, (z)P,)” (z)dz (8)
—1
Second combination of definite integrals:
+1
Unsolved/ P,/ (2)Py, (z)dx 9)
-1
+1
Already Solved/ P,/ ()P (z)dz (10)
-1
+1
Unsolved/ P,/ ()P (z)dz (11)
-1
+1
Unsolved/ P,/ ()P, (z)dz (12)
-1
+1
Repeated with (6)/ P,/ (2)Py,(z)dx (13)
-1
+1
Already Solved/ P,/ (z)P,/ (x)dz (14)
-1
+1
Unsolved/ P,/ ()P, (z)dz (15)
-1
+1
Unsolved/ P,/ ()P, (z)dz (16)
-1
Third combination of definite integrals:
+1
Unsolved/ P,  (2)Py, (z)dx (17)
-1
+1
Unsolved/ P, ()P (z)dz (18)
-1
+1
Already Solved/ P, ()P (z)dz (19)
-1
+1
Unsolved/ P, ()P, (z)dx (20)
-1
+1
Repeated with (7)/ P, ()P, (z)dx (21)
-1
+1
Repeated with (15)/ P, ()P, (z)dz (22)
-1
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+1
Already Solved/ P, ()P, (z)dx (23)
-1
+1
Unsolved/ P, (2)P," (z)dx (24)
-1
Fourth combination of definite integrals:
Unsolved Pn’” m(z)dz (25)
-1
+1
Unsolved/ P, ()P (z)dx (26)
1

+1
Unsolved P ()P (z)dx (27)

-1

Unsolved/ 2 ()P (x)dx (28)

Repeated with (8)/ P, " (2)Py(z)dx (29)
-1
+1
Repeated with (16)/ P, (z)P,)/ (z)dx (30)
-1
+1
Repeated with (24)/ P, ()P, (x)dz (31)
-1
+1
Unsolved/ P, (z)P," (z)dx (32)
-1

Now there are twenty-six non-repeated combinations of the product of derivatives of two Legendre’s
polynomials. Out of twenty-six integrals only six integrals are solved. Now we have to solve remaining
twenty integrals solutions of which are not available in the literature of special functions.

For the sake of convenience we shall use the following notations and other results:

Suppose D*! {F(z)} = dcf,; {F(2)}, D" {F(2)} = fm {F(2)}, D7 {F(2)} = 5 {F(2)} = [{F(2)} da,
D™ {F(z)} = o= {F(x /// .m - times.. // {F(z)} dz dz dz..m- times ..dz dz.

Some derivatives of Legendre’s polynomials of first kind P,,(z), using Rodrigues formula [4; p.162, Eq.(7)]:

1 dr

_ (2 1\n
Pn(@) = 2np! dx™ (@ = 1",
D{P =P, _ L am™ s n"
{Pn(2)} = n(fﬂ)—mw(f - 1",
1 dn+2

D? {Py(x)} = Py () =

onnl dgnt2 T
1 dn+3

D*{Py(2)} = P," (z) = Il den 3T

where n is zero and positive integer.
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Leibnitz’s (also Leibniz) generalized rule for successive integration by parts:

I= / U(z).T(z)dz = / U.Tdx

I=(-D)°{DU}{D7'T} + (-1)' {D'U}{D*T} +
+(-1)*{D*U}{D*T} + (-1)*{D’U} {D'T} +
Foee e, + (-1 {D'U}{D~'T} +

+(—1)7+1 / {DJ‘HU} {D_J_lT} dz + constant of integration. (34)

d2n($2 _ l)n

T = D?"(2? —1)" = (2n)!

{Factorial of any negative integer }71 = 0.

Our present investigation is motivated by the work collected in beautiful monographs of [5-14]. The
article is organized as follows. In Section 2, we present some values of successive differential coefficients
of (z2 —1)" at = £1. In Section 3, we mention six known definite integrals. In Section 4, we establish
twenty new definite integrals. In Section 5, we have given the derivation of these new definite integrals.

2 Some successive differential coefficients of (z? —1)" at x = *1

ey = Lo e &

[D"(z* = 1)7]__, =2"r! (36)

(D" (2= 1)7]___ =2"r(-1)" (37)

(D @ =) = W (38)

(D2 1y = (—1)2’“7“!?"(2 + DD (39)

D2 1], 27rl(r + 1)(r8+ 2)r(r — 1) (40)

Do y] = 27l(r + 1)(r +82)r(r —1)(=1)" (41)
(DR 1] 2rl(r +1)(r + 2)(28+ 3)r(r — 1)(r - 2) 2)
D — 1y = (=1)271(r + D)(r + 2)(r + 3)r(r — 1)(r — 2)(=1)" (43)

p==1 48
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_ 2rlr+ 1)(r+2)(r+3)(r+4)r(r —1)(r —2)(r — 3)

(D@ = 1),y 551 (44)
[DT+4(952 1y = 2"rl(r + 1) (r +2)(r + 3)(r —1?—)8427“(1“ —1)(r—=2)(r—3)(-1)" (45)
[D7’+5(3:2—1)’”] _ 2rlr+ D)(r+2)(r+3)(r+4)(r+5)r(r—1)(r —2)(r —3)(r — 4) (46)

z=1 3840

4502 _ 1y (=027 (r + D(r +2)(r +3)(r +4)(r + 5)r(r = D(r = 2)(r = 3)(r = 4)(=1)"
D5 -1y, =
w==1 3840
(47)
With the help of Rodrigues formula and derivatives of the hypergeometric forms (Murphy formula
[4; p.166, Egs.(2) and (3)]) of Legendre’s polynomials P,(x), we can derive successive differential
coefficients of (22 — 1)" at x = £1.

3 Siz known definite integrals

+1
Integral(1). / P, ()P (z)dx =0, if ' m #n. (48)
~1
+1 5 2
Integral(5). {Pp(z)} da = il (49)
—1

The integrals (1) or (48) and (5) or (49) were derived by A. M. Legendre in the years 1784 and 1789
respectively ([15; p.281]; see also[16; p.277, Eqn’s (13) and (14)]).
Integral(10). When m and n are positive integers and m > n > 1, then

+1 nin
/1 P,/ ()P (2)dz = (2“) (14 (—1ymeny (50)

Special case of the integral (50)

/H P/ ()P () — {0 if (m + n)is an odd integer and m >n > 1,

1 n(n+1) if (m+n) is an even integer and m >n > 1.

Integral(14). When m and n are positive integers and m = n in equation (50), then

+1
1 {P,)(2)}? dz = n(n +1). (51)

The integrals (10) or (50) and (14) or (51) were asked in examination of Clare College London,
Cambridge University (1898)[17; p.170, Q.N.11];[18; p.309, e.g.(3)].
Integral(19). When m and n are positive integers such that m > n > 2, then

/H P, ()P (z)dz = _(nt2 {1+ (=)™} {3m(m +1) —n(n+ 1)+ 6}. (52)
1" " (n — 2)(48)
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Special case of the integral (52)

+1
/ P, ()P, (z)dz
-1

0 if (m 4 n) is an odd integer and
m>n> 2,

n(nﬂ)(gf)(n_l) {83m(m+1) —n(n+1)+6} if (m+n)is an even integer and
m>n > 2.

Integral(23). When m and n are positive integers and m = n in equation (52), then

T{Pn”(m)}Z dr= PED 1y 1a) (53)

. (n—2)1(12)

The integrals (19) or (52) and (23) or (53) were asked in examination of Mathematical Tripos,
Cambridge University (1897) [15; p.308, Q.N.2|; [18; p.309, e.g.(4)]. But the solutions of (52) and
(53) are not available in the literature of special functions.

Remark: We have verified the definite integrals of Legendre’s polynomials (48), (49), (50), (51),
(52) and (53) numerically by using Mathematica software.

4 Twenty unsolved and new definite integrals

Integral(2). When m and n are positive integers such that m > n, then

+1
/ P, (z)P,,/ (z)dz = {1 — (=1)™*"}. (54)

-1

Special case of the integral (54)

if (m+n) is an even integer and m > n.

/+1 P (2)P,/ (x)ds — {2 if (m + n) is an odd integer and m > n,
—1

Integral(6). When m and n are positive integers such that m = n in equation (54), then

+1
/ P, (z)P,/(z)dx = 0.

-1

Integral(3). When m and n are positive integers such that m > n, then

+1 _1\m+n
/1 P ()P (2)d = L 21) Y im(m 4+ 1) — n(n + 1)) (55)

Special case of the integral (55)

0 if (m 4+ n) is an odd integer and
+1 >
[ Pa@Pa @)de = e |
~1 m(m+1) —n(n+1) if (m+n) is an even integer and
m > n.
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Integral(7). When m and n are positive integers such that m = n in equation (55), then
+1
/ P, (z)P," (x)dz = 0.
-1
Integral(4). When m and n are positive integers such that m > n, then

+1 _ (_1\ym+tn
-1

x{m(m+1)(m+2)(m—1)—2nn+1)m(m+1)+nn+1)(n+2)(n—1)}. (56)
Special case of the integral (56)

+1
/ P, (2)P" (z)dx

-1
${m(m+1)(m +2)(m —1)—
=2n(n+ 1)m(m + 1)+
+nn+1)(n+2)(n—1)} if (m+n) is an odd integer and m > n,

0 if (m 4+ n) is an even integer and m > n.

Integral(8). When m and n are positive integers such that m = n in equation (56), then

+1
/ P,y (2)P," (z)dz = 0.
1

Integral(9). When m and n are positive integers such that m > n, then

+1
/_ P@Pu)ds =0, (57)

Repeated Integral(18). When m and n are positive integers such that m = n in equation (57), then

+1
/1 P,/ (2)Pp(z)dx = 0.

Integral(11). When m and n are positive integers such that m > n, then

+1 nn
/_1 P,/ (z)P,,” (z)dz = (;1) {1— (=)™} 2m(m+1)— (n+2)(n—1)}. (58)

Special case of the integral(58)

+1
/_1 P,/ (z)P," (z)dz

_ {n(njl) {2m(m+1) — (n+2)(n—1)} if (m+n) is an odd integer and m > n,

0 if (m+mn) is an even integer and m > n.

Integral(15). When m and n are positive integers such that m = n in equation (58), then

+1
/ P,/ ()P, (z)dz = 0.
1
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Integral(12). When m and n are positive integers such that m > n, then

1 / " o n(”"‘ 1) m+n
/1 P, ()P, (x)dx—T{l—F(—l) Y

x{3m(m+1)(m+2)(m—1)—3(n+2)(n—1)mm+1)+(n+2)(n+3)(n—1)(n—2)}. (59)
Special case of the integral (59)

+1
/ P,/ ()P (z)dz

1

0

25t {3m(m + 1)(m + 2)(m — 1)~

—3(n+2)(n — )ym(m + 1)+
+(n+2)(n+3)(n—1)(n—2)}

if (m 4+ n) is an odd integer and m > n,

if (m+n)is an even integer and m > n.

Integral(16). When m and n are positive integers such that m = n in equation (59), then

+ ’ " . (n + 3)! - n
/_1 P, ()P, (x)dx = =Nk > 3.

Integral(17). When m and n are positive integers such that m > n, then

+1
/ P/ @Pu@)s =0, (60)

Repeated Integral(21). When m and n are positive integers such that m = n in equation (60), then

+1
/ P,/ ()P, (z)dx = 0.

1

Integral(18). When m and n are positive integers and m > n > 2, then

i //$ /a? T = (n+2)' _(_1\ymtn
/1 P (#)Pr(x)d = s {1 (2171 (61)

Special case of the integral (61)

/+1 P ()P () {(71(7_1;)2,)(11) if (m + n) is an odd integer and m >n > 2,
n ()P (z)dx = :
-1 0

if (m+n) is an even integer and m >n > 2.
Repeated Integral(22). When m and n are positive integers such that m = n in equation (61), then
+1
/ P, ()P, (x)dz = 0.
-1
Integral(20). When m and n are positive integers such that m > n > 2, then

+ n !
/ P ()P (a)de = (n(_ ;)!284) {1 - (=1)™") x

x{6m(m+1)(m+2)(m—1)—4(n+3)(n—2)m(m+ 1)+ (n+3)(n+4)(n —2)(n—3)}. (62)
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Special case of the integral(62)

+1
/ P, ()P, (z)dx

-1

(ol {6m(m + 1)(m + 2)(m — 1)—
—4(n+3)(n —2)m(m + 1)+
)+ m+3)(n+4)(n—-2)(n—3)} if (m 4+ n) is an odd integer and
B m>mn2> 2,
0 if (m+mn) is an even integer and
m>n > 2.

\

Integral(24). When m and n are positive integers such that m = n in equation (62), then

+1
/ P, ()P, (z)dz = 0.
-1

Integral(25). When m and n are positive integers such that m > n, then

+1
/ P (2)Pon () = 0.
—1

(63)

Repeated Integral(29). When m and n are positive integers such that m = n in equation (63), then

+1
/ P, (2)Pp(z)dx = 0.
-1

Integral(26). When m and n are positive integers and m > n > 3, then

1 " / o (n+3)! _1\ym+n
/_1 P, ()P, (:U)dﬂc—i(n_?))!(%){l%—( 1yl

Special case of the integral (64)

(n+3)!

moien i (m+n) is an even integer and m >n > 3.

/+1 P, () Py (2)dar = {0 if (m + n) is an odd integer and m > n > 3,
-1

(64)

Repeated Integral(30). When m and n are positive integers such that m = n in equation (64), then

1 " / . (n + 3)! n
/_ CP@P (e = i = s

Integral(27). When m and n are positive integers and m > n > 3, then

1 " 1" o (n+3 m+n
/1 P, @)y (@) = S s {1 = (1)) fdm{m + 1) = (0 +4)(n = 3),

Special case of the integral (65)

+1
/ P, ()P (z)dx

-1
(n+3)!

(n—3)1(192) *
=49 x{dm(m+1)—(n+4)(n—3)} if (m+n)is an odd integer and m > n > 3,
0 if (m +n) is an even integer and m >n > 3.

(65)
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Repeated Integral(31). When m and n are positive integers such that m = n in equation (65), then

+1
/ P, ()P, (z)dz = 0.
-1

Integral(28). When m and n are positive integers such that m > n > 3, then

+1 n !
/_1 Pn"'(x)Pm"’(x)dx — (n E 3‘)"!(?;)840) {1 + (71)m+n} %

x{10m(m+1)(m+2)(m—1) =5(n+4)(n—3)m(m+1)+ (n+4)(n+5)(n—3)(n—4)}. (66)

Special case of the integral(66)

+1
/ Pn”/(a:)Pm”/(x)dw

-1

0 if (m 4+ n) is an odd integer and
m>n>3,
_ ey % {10m(m + 1)(m + 2)(m — 1)—
—5(n+4)(n —3)m(m+ 1)+
+(n+4)(n+5)(n—3)(n—4)} if (m+mn) is an even integer and
m>n>3

Integral(32). When m and n are positive integers such that m = n in equation (66), then

(n+3)!

+1
{Pn’”(a:)}2dx —
1

Remark: We have verified the definite integrals from (54) to (67) of Legendre’s polynomials numerically
by using Mathematica software.

§ Derivation of new definite integrals of section 4
Here, in this section we shall provide the detailed and systematic derivation of any one integral.

Derivation of integral (66):
Consider the integral when m >n > 3

+1
I= {2m+"(m!)(n!)}/_1 P, ()P, (z)dz. (68)

Using the equation (33), we have
+1
I = Dn+3(1‘2 _ 1)an+3(x2 _ 1)mdl’.
-1

Taking U = D""3(22 —1)", T = D™3(22 — 1)™ and using the Leibnitz integration formula (34) (with
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suitable value of J =n —4), we get

I = (71)0 {Dn+3( }{Dm+2(x2 1)m} +

+(=1)'{D"(2? } {D"(2® —1)"} +

+(_1)2 {Dn+5 }{Dm(l‘2 1)m} 4+

+(_1)3 {Dn+6( }{Dm 1(1,2 1)m}+

e +
+1

I = |:(_1)0 {Dn+3(l,2 }{Dm+2(x2 1)m} +

+(=D' {DrH }{Dm“(oﬂ D™} +

+(=1)" {D"*5 "D~ 1))+

+(=1)? { D" (2? }{Dm Ha? =)™} +

S T T TP PTPPRR +
+1

I=|(-D)%{D"@® - 1)"} { D" (2> — 1)} +

+(_ I{Dn+4 2 n} {Dm—i-l 2 1)m}+

+(_1) {Dn-l-ﬁ( }{Dm 1 1)m}+

L RO PPRPPOPPPRR +

+(_1)n74 {D2n71(m2 . 1)n} {Dmfn+6(x2 _ 1)m} +
_|_( l)n 3(2“) {Dm n+5( 2 1)m} +17 (69)

-1

= [upper limit of right-hand side expression of (69) at x = 1] —
—[lower limit of right-hand side expression of (69) at z = —1].

The values of fourth line to last line of right-hand side expression of (69) will be zero at = +1 because
(m—1), (m—2),....{m — (n — 5)} are less than m, in view of the equation (35).

I = (_1)0 {Dn+3($2 o 1)n} {Dm+2(1’2 o 1)m} + (_1)1 {Dn+4(l‘2 o 1)n} {Dm—&-l(xQ o 1)m} +
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+1
(12 {DM (a2 — 1)) { D7 (a2 — 1)7%}] | (70)

Now using the results [see equations (36), (37), (38), (39), (40), (41), (42), (43), (44), (45), (46) and
(47)] (with suitable values of p and ) in the equation (70), we get

(10)2"n!In(n+1)(n+2)(n+3)(n — 1)(n — 2) 2"mIm(m + 1)(m + 2)(m — 1)
= [{ 480 } { 8 }_

(5)2"nInn+1)(n+2)(n+3)(n+4)(n—1)(n—2)(n—3) | [2™m!m(m+1)
- { 1920 } { } "

2
+{2nn!n(n+1)(n+2)(n+3)(n+4)(n+5)(n—1)(n—2)(n—3)(n—4) (2" ]_

3840

- [ { (10)(=1)2"n!n(n + 1)(n + 2)(n + 3)(n — 1)(n — 2)(=1)" } y
480

8
B { (5)2"nInn+ 1) (n+2)(n+3)(n+4)(n—1)(n —2)(n — 3)(—1)”} "
1920

X { (=1)2™mlm(m + 1)(—1)m} .

. {2mm!m(m +1)(m +2)(m — 1)(—1>m} _

2

N { (=1)2"nIn(n+1)(n+2)(n+3)(n+4)(n+5)(n —1)(n — 2)(n — 3)(n — 4)(—1)”} y
3840

x {2mm!(—1)m}],

X

3840
x[10m(m + 1)(m + 2)(m — 1) + 10m(m + 1)(m + 2)(m — 1)(=1)""" = 5(n + 4)(n — 3)m(m + 1)—
—5(n+4)(n—3)m(m-+1)(=1)" "+ (n+4)(n+5)(n—3)(n—4)+ (n+4)(n+5)(n—3)(n—4)(=1)™"],

(2™ mlnln(n +1)(n + 2)(n + 3)(n — 1)(n — 2)
= { 3840 } %

x[10m(m + 1)(m + 2)(m — {1 + (=)™} = 5(n 4+ 4)(n — 3)m(m + 1){1 + (=1)™T"}+
+(n+4)(n+5)(n—3)(n— {1+ (—1)™"}],

I {2m+”m!n!n(n +1)(n+2)(n+3)(n—1)(n—2) }

(
)

(n+3)(n+2)(n+1)n(n —1)(n —2)(n —
3840 (n — 3)!

I ={2™ "mlnl} { 3)! } {1+ (-1)""}x

x[10m(m+1)(m+2)(m—1) =5(n+4)(n—3)m(m+1)+ (n+4)(n+5)(n —3)(n—4)]. (71)

Finally, cancelling the factor {2"t"mln!} in the equations (68) and (71), we obtain the integral (66).
Similarly, we can derive the remaining integrals.
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Conclusion

Here in this paper, we obtain some definite integrals related with the product of the derivatives
of Legendre’s polynomials of first kind of different order, by using the derivatives of Legendre’s
polynomials of first kind P, (x), Rodrigues formula, Leibnitz’s generalized rule for successive integration
by parts and some values of successive differential coefficients of (22 — 1)" at x = £1.

We conclude our present investigation by observing that, we can evaluate the following integral
i _+11 %Pm(x)} {%Pn(x)} dz by taking positive integral values of r and s, in analogous manner. The
classical Legendre polynomials P, (z) form a sequence of orthogonal polynomials with many historical
applications. Their use continues in recent times in applications such as beam theory [19], phone
segmentation [20], neural networks [21] and signal processing [22]; see also the recent works [23-25]

dealing extensively with the methodology and techniques based on Legendre polynomials.
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M.N. Kypermu, C.X. Manuk, /1. Axma

orcamusa-Muanus-Ucaamus (Opmanvik, yrusepcumem), Horo-leau, Yrdicmar

Kypambmga Jlexkanap kenmyinesiepi 6ap aHbIKTaJFaH WHTErpaJjaap

e o
YUipi

MakaJiaHblH Herisri MakcaTbl-aHBIKTAJFaH HHTErpajapMeH OaillaHblcThl Keibip ecemrepai (6ypbiH Ta-
ObLIMaraH JKoHe oJeOueTTe YKapusIaHOAFaH) aHAJIUTUKAJIBIK, YKOJIMEH IIenry. AHBIKTAIFAH WHTETPasIbIH
WHTErpaJl aCTBIHIAFBI OpHETi op Typsi perti Gipiami TekTi Jlekanap MOJMHOMIAPBIHBIH TYBIHIBLIAPBI-
HBIH KebeiTinmici 6osbin Tabbliaabl, 6yn perre P (x) 6ipinmi rekti JIexKaHAp MOJMHOMIAPBIHBIH Keibip
TybIAbLTApE], Poxpurec dopmynanaps, Jeibmunrin Tis6exrenren mudbdepenmuanipik, (x2 — 1)7, x = +1
KO3 durmeHTTepiHiy 6oikTepi MeH Keitbip MoHIepi OoilibiHITa Ti30€KTEn MHTErpaayFa apHAJFaH YKaJ-
NIBLTAHFAH epeXKeci KOJITaHbLIa IbL.

Kiam cosdep: Jlesxkanap kenmyiesiepi, Ponpurec (hopmystacer, 6ipTiHgern 6eikTen naTerpaaiay yuis JIeio-
HUIITIH YKaJITbUIAHFaH epexeci, Jlexkanap kenmyteci yinia Mepdu dopmyacsr.
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M.U. Kypemm, C.X. Mayuk, /1. Axma

Iorcamus-Munaua-Ucaamua (Lenmparorodi ynusepcumem), Horo-Zleau, Hnous

CeMmelicTBO oIlpeae/IeHHbIX NHTErpaJjioB, COAEPXKAIINX MHOTIOYJIEHbI
Jlexxanapa

OcHOBHA 11€JIb HACTOSIIEH CTATHH — JIATh AHAJIMTUIECKUE pelleHns (paHnee He HANIEHHDbIE U HE OIlyBJInKO-
BaHHBIE B JINTEPATYPE) HEKOTOPBIX 33124, CBA3AHHBIX C OLPEIEIEHHBIMU HHTErPaIaMHy, TOABIHTErPAIbHbI-
MU BBIPAXKEHUSIMU KOTOPBIX SIBJITFOTCS TIPOU3BEEHNsT ITPOU3BOIHBIX MOJMHOMOB JlexkaHipa mepBoro posa
PA3HOrO NOPSIJIKA, C IOMOIIBIO HEKOTOPBIX IIPOU3BOIHBIX TOJUHOMOB Jlexxanapa mepsoro poga Pr(x), dop-
mysbl Ponpureca, o6o6iiennoro npasmiia JlefiGHuna J1jisi 0Cae10BaTeIbHON0 NHTETPUPOBAHUS IO IACTIM
U HEKOTOPBIX 3HAMEHMH MOCIe0BaTeNbHbX Auddepennnatbapx kosbdunmenros (22 — 1)” mpr z = +1.

Kmouesvie caosa: mommuomsr Jlexxanmpa, dopmynra Pompureca, o6obientnoe npasuio Jleibuumna st mo-
CJIeIOBATEILHOIO MHTEIPUPOBAHUS 110 YacTsaM, (popmyia Mepdu st mHOrowieHa Jlexkanapa.
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