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Extensions of some differential inequalities for fractional
integro-differential equations via upper and lower solutions

This paper deals with some differential inequalities for generalized fractional integro-differential equations
by using the technique of upper and lower solutions. The fractional differential operator is taken in Caputo’s
sense and the nonlinear term divided into two parts depends on the fractional integrals of an unknown
function with two different fractional orders. The results are studied by employing a variety of coupled
upper and lower solutions. These theorems have some potential for extending the iterative techniques
to fractional order integro-differential equations and to coupled systems of integro-differential fractional
equations to obtain the existence of solutions as well as approximate solutions for the considered problem.
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Introduction

Although fractional calculus has existed for as long as «conventional» calculus, it was not until
recent decades that the study of fractional differential equations became popular. This is because
fractional operators commonly offer better accurate models than those with integer derivatives. See
[1,2] for the recent developments and further information. Among the different definitions for fractional
order derivatives, the Caputo fractional derivative stands out and has been intensely utilized since it
is best suited for describing many events and the initial conditions for fractional differential equations
are the same form as that of ordinary differential equations with integer derivatives. Due to the fact
that it is far more extensive than the theory of classical ordinary differential equations, the theory
of fractional differential equations has drawn a lot of attention. Although there has been tremendous
recent progress in the study of fractional differential equations, there is still a significant potential in
this area. After reviewing the literature, we find a number of publications on basic arguments, such
as existence, uniqueness and stability results for fractional differential equations. See [3–10] and the
references therein.

Differential and integral inequalities are crucial in the qualitative study of differential and integral
equations. They are used to investigate the concepts of existence, uniqueness, boundedness, stability,
continuous dependence, and so on. The method of upper and lower solutions is a quite effective concept
in the theory of nonlinear differential equations with initial or boundary conditions. Recently, these
methods have been applied to fractional differential equations as well as differential inequalities [11–20].
We give some comparison results for several types of coupled upper and lower solutions for a given
boundary value problems of fractional integro-differential equations. The results here can be viewed as
expansions and generalizations of corresponding analogous results from the integer order case to the
fractional order case.

The purpose of this paper is to refine some previously published results for a given boundary
value problems of fractional integro-differential equations by employing the method of upper and lower
solutions together with strict and non-strict inequalities.
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1 Mathematical Preliminaries

This section provides background knowledge on fractional calculus and fractional differential equations
in order to improve understanding.

Definition 1. [1] Let [a, b] ⊂ R, Re(q) > 0 and f ∈ L1[a, b]. Then the left and right Riemann-
Liouville fractional integrals Iqa+ and Iq

b− of order α are defined as

Iqa+f (x) :=
1

Γ (q)

x∫
a

f (t) dt

(x− t)1−q
, x ∈ (a, b]

and

Iq
b−f (x) :=

1

Γ (q)

b∫
x

f (t) dt

(t− x)1−q
, x ∈ [a, b)

respectively.

Definition 2. [1] Let [a, b] ⊂ R, Re(q) ∈ (0, 1) and f ∈ L1[a, b]. The left and right Caputo fractional
derivatives of order q are given by

cDq
a+f (x) := I1−qa+ Df (x) ,∀x ∈ (a, b]

and
cDq

b−f (x) := −I1−q
b− Df (x) , ∀x ∈ [a, b)

respectively.

Let F,G ∈ C [J × R× R+,R], u ∈ C1 [J,R], J = [0, T ]. We consider the following fractional
boundary value problem.

CDq1u (t) = F (t, u (t) , Iq2u (t)) +G (t, u (t) , Iq3u (t)) , g (u (0) , u (T )) = 0, (1)

where 0 < q3 ≤ q2 ≤ q1 < 1 and g ∈ C[R2,R]. From now on, the fractional operator CDq stands for the
left Caputo fractional derivative as well as Iq represents the left Riemann Liouville fractional integral
operator.

Definition 3. Let α, β ∈ C1[J,R]. Then α and β are said to be
(i) natural lower and upper solutions of (1) respectively if

CDq1α (t) ≤ F (t, α (t) , Iq2α (t)) +G (t, α (t) , Iq3α (t)) , g (α (0) , α (T )) ≤ 0, (2)
CDq1β (t) ≥ F (t, β (t) , Iq2β (t)) +G (t, β (t) , Iq3β (t)) , g (β (0) , β (T )) ≥ 0, (3)

(ii) coupled lower and upper solutions of type I of (1) respectively if

CDq1α (t) ≤ F (t, α (t) , Iq2β (t)) +G (t, α (t) , Iq3β (t)) , g (α (0) , α (T )) ≤ 0, (4)
CDq1β (t) ≥ F (t, β (t) , Iq2α (t)) +G (t, β (t) , Iq3α (t)) , g (β (0) , β (T )) ≥ 0, (5)

(iii) coupled lower and upper solutions of type II of (1) respectively if

CDq1α (t) ≤ F (t, β (t) , Iq2α (t)) +G (t, β (t) , Iq3α (t)) , g (α (0) , α (T )) ≤ 0,
CDq1β (t) ≥ F (t, α (t) , Iq2β (t)) +G (t, α (t) , Iq3β (t)) , g (β (0) , β (T )) ≥ 0,
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(iv) coupled lower and upper solutions of type III of (1) respectively if

CDq1α (t) ≤ F (t, β (t) , Iq2β (t)) +G (t, β (t) , Iq3β (t)) , g (α (0) , α (T )) ≤ 0,
CDq1β (t) ≥ F (t, α (t) , Iq2α (t)) +G (t, α (t) , Iq3α (t)) , g (β (0) , β (T )) ≥ 0,

(v) coupled lower and upper solutions of type IV of (1) respectively if

CDq1α (t) ≤ F (t, α (t) , Iq2α (t)) +G (t, β (t) , Iq3β (t)) , g (α (0) , α (T )) ≤ 0,
CDq1β (t) ≥ F (t, β (t) , Iq2β (t)) +G (t, α (t) , Iq3α (t)) , g (β (0) , β (T )) ≥ 0,

(vi) coupled lower and upper solutions of type V of (1) respectively if

CDq1α (t) ≤ F (t, β (t) , Iq2β (t)) +G (t, α (t) , Iq3α (t)) , g (α (0) , α (T )) ≤ 0,
CDq1β (t) ≥ F (t, α (t) , Iq2α (t)) +G (t, β (t) , Iq3β (t)) , g (β (0) , β (T )) ≥ 0.

Lemma 1. [3] Let m ∈ C1 [J,R] and assume that m (t1) = 0 for t1 ∈ (0, T ] and m (t) ≤ 0 for
0 ≤ t ≤ t1. Then we have CDqm (t1) ≥ 0.

The Laplace transform technique, as is well known, is a beneficial tool for solving initial value
problems. Using this method, the stated problem is turned to an algebraic expression. The next lemma,
which is about the inverse Laplace transform of the given function, is critical in this case.

Lemma 2. [21] Let α ≥ β > 0, α > γ, a, b ∈ R, sα−β > |a| and
∣∣sα + asβ

∣∣ > |b|. Then we get

L−1
{

sγ

(sα + asβ + b)

}
= tα−γ−1

∞∑
n=0

∞∑
k=0

(−b)n (−a)k
(
n+k
k

)
tk(α−β)+nα

Γ (k (α− β) + (n+ 1)α− γ) .

We prove the following lemma in order to solve the given linear fractional initial value problem. It
allows the corresponding result in [16] to be a specific case of this lemma.

Lemma 3. Assume that λ ∈ C1 [J,R], 0 < q3 ≤ q2 ≤ q1 < 1 and L1,M1,M2 ∈ R. The explicit
solution of the following linear fractional integro-differential equation,

CDq1λ (t) = L1λ (t) +M1I
q2λ (t) +M2I

q3λ (t) , λ (0) = λ0 (6)

is given by

λ (t) =
∞∑
n=0

∞∑
k=0

∞∑
i=0

(M1)
n (L1)

k (M2)
i (n+k

k

)(
n+k+i

i

)
tq1(n+k+i)+nq2+iq3

Γ (q1 (n+ k + i) + nq2 + iq3 + 1)
λ0

provided that |sq1+q3 | > |M2|, |sq1 −M2s
−q3 | > |L1| and |sq1+q2 −M2s

q2−q3 − L1s
q2 | > |M1|.

Proof. If we apply the Laplace transform on both side of the equation (6), we find the following
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relations

L
{
CDq1λ (t)

}
= L1L{λ (t)}+M1L{Iq2λ (t)}+M2L{Iq3λ (t)}

sλ (s)− λ0
s1−q1

= L1λ (s) +M1
λ (s)

sq2
+M2

λ (s)

sq3

sq1λ (s)− sq1−1λ0 = L1λ (s) +M1λ (s) s−q2 +M2λ (s) s−q3

λ (s) =
sq1+q2−1

sq1+q2 −M2sq2−q3 − L1sq2 −M1
λ0

=
sq1+q2−1

(sq1+q2 −M2sq2−q3 − L1sq2)
(

1− M1

sq1+q2−M2sq2−q3−L1sq2

)λ0
=

sq1+q2−1

sq1+q2 −M2sq2−q3 − L1sq2

∞∑
n=0

(M1)
n

(sq1+q2 −M2sq2−q3 − L1sq2)n
λ0

= sq1+q2−1
∞∑
n=0

(M1)
n

(sq1+q2 −M2sq2−q3 − L1sq2)n+1λ0

= sq1+q2−1
∞∑
n=0

(M1)
n

(sq1+q2 −M2sq2−q3)n+1
(

1− L1sq2
sq1+q2−M2sq2−q3

)n+1λ0

= sq1+q2−1
∞∑
n=0

(M1)
n

(sq1+q2 −M2sq2−q3)n+1

∞∑
k=0

(L1)
k (sq2)k

(
n+k
k

)
(sq1+q2 −M2sq2−q3)k

λ0

=

∞∑
n=0

∞∑
k=0

(M1)
n (L1)

k (n+k
k

)
s−q1−q2(k+1)+1 (sq1+q2 −M2sq2−q3)n+k+1

λ0

=
∞∑
n=0

∞∑
k=0

(M1)
n (L1)

k (n+k
k

)
s−q1−q2(k+1)+1 (sq1+q2)n+k+1

(
1− M2sq2−q3

sq1+q2

)n+k+1
λ0

=
∞∑
n=0

∞∑
k=0

(M1)
n (L1)

k (n+k
k

)
s−q1−q2(k+1)+1 (sq1+q2)n+k+1

∞∑
i=0

(M2)
i

(
n+ k + i

i

)
s(−q3−q1)iλ0

=

∞∑
n=0

∞∑
k=0

∞∑
i=0

(M1)
n (L1)

k (M2)
i (n+k

k

)(
n+k+i

i

)
s−q1−q2(k+1)+1+(q1+q2)(n+k+1)+i(q1+q3)

λ0

=
∞∑
n=0

∞∑
k=0

∞∑
i=0

(M1)
n (L1)

k (M2)
i (n+k

k

)(
n+k+i

i

)
sq1(n+k+i)+nq2+iq3

λ0

provided that |sq1+q3 | > |M2|, |sq1 −M2s
−q3 | > |L1| and |sq1+q2 −M2s

q2−q3 − L1s
q2 | > |M1|.

At this stage, we arrive at by implementing the inverse Laplace transform

L−1 {λ (s)} =
∞∑
n=0

∞∑
k=0

∞∑
i=0

(M1)
n (L1)

k (M2)
i

(
n+ k

k

)(
n+ k + i

i

)
L−1

{
1

sq1(n+k+i)+nq2+iq3

}
λ0

λ (t) =

∞∑
n=0

∞∑
k=0

∞∑
i=0

(M1)
n (L1)

k (M2)
i (n+k

k

)(
n+k+i

i

)
tq1(n+k+i)+nq2+iq3

Γ (q1 (n+ k + i) + nq2 + iq3 + 1)
λ0.

2 Formulas and theorems

Depending on the selection of upper and lower solutions of (1), we will assume the suitable
conditions to establish some differential inequalities.
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Theorem 1. Let α and β be natural lower and upper solutions of (1). F (t, u, v) and G(t, u, v) is
non-decreasing in v and following Lipschitz-like conditions are also satisfied for L1, L2,M1,M2 > 0

F (t, u1 (t) , v1 (t))− F (t, u2 (t) , v2 (t)) ≤ L1 (u1 − u2) +M1 (v1 − v2) , (7)
G (t, u1 (t) , v̄1 (t))−G (t, u2 (t) , v̄2 (t)) ≤ L2 (u1 − u2) +M2 (v̄1 − v̄2) (8)

whenever u1 ≥ u2. Then we have α (t) ≤ β (t) provided α (0) ≤ β (0) .

Proof. In order to make it compatible with the problem (1), the functions vi, v̄i must be evaluated
as follows vi = Iq2ui and v̄i = Iq3ui, i = 1, 2. Clearly, u1 ≤ u2 implies that v1 ≤ v2 and v̄1 ≤ v̄2.

We now set αε (t) = α (t)− ελ (t) for arbitrary small number ε > 0, where

λ (t) =
∞∑
n=0

∞∑
k=0

∞∑
i=0

(L)k (M1)
n (N1)

i (n+k
k

)(
n+k+i

i

)
tq1(n+k+i)+nq2+iq3

Γ (q1 (n+ k + i) + nq2 + iq3 + 1)

is unique positive solution of the equation

CDq1λ (t) = Lλ (t) +M1I
q2λ (t) +M2I

q3λ (t) , λ (0) = 1, (9)

where L is a positive number such that L > L1 + L2. Notice that αε (0) = α (0) − ελ (0) < α (0),
αε (t) < α (t) for 0 ≤ t ≤ T . If we differentiate αε (t) in terms of Caputo’s sense, and using (2) we get

CDq1αε (t) = CDq1α (t)− εCDq1λ (t)

≤ F (t, α (t) , Iq2α (t)) +G (t, α (t) , Iq3α (t))

−Lελ (t)−M1εI
q2λ (t)−M2εI

q3λ (t) .

We observe that αε (t) < α (t) on J yields Iq2αε (t) < Iq2α (t) and Iq3αε (t) < Iq3α (t) on J by the
definition of R-L fractional integral. We then employ the Lipschitz-like inequalities in (7) and (8) to
obtain

CDq1αε (t) ≤ F (t, α (t) , Iq2α (t))− F (t, αε (t) , Iq2αε (t)) +G (t, α (t) , Iq3α (t))

−G (t, αε (t) , Iq3αε (t))− Lελ (t)−M1εI
q2λ (t)−M2εI

q3λ (t)

+F (t, αε (t) , Iq2αε (t)) +G (t, αε (t) , Iq3αε (t))

≤ L1ε (α (t)− αε (t)) +M1εI
q2 (α (t)− αε (t)) + L2ε (α (t)− αε (t))

+M2εI
q3 (α (t)− αε (t))− Lελ (t)−M1εI

q2λ (t)−M2εI
q3λ (t)

+F (t, αε (t) , Iq2αε (t)) +G (t, αε (t) , Iq3αε (t))

= F (t, αε (t) , Iq2αε (t)) +G (t, αε (t) , Iq3αε (t)) + ελ (t) (L1 + L2 − L)

< F (t, αε (t) , Iq2αε (t)) +G (t, αε (t) , Iq3αε (t)) .

We intend to demonstrate αε (t) < β (t) for t ∈ [0, T ], which concludes the proof by letting ε −→ 0.
Suppose that αε (t) < β (t) on t ∈ [0, T ] is false. Then the set A = {t : t ∈ [0, T ] , αε (t) ≥ β (t)}
is nonempty. Let t∗ be the greatest lower bound of A, then αε (t∗) = β (t∗) and αε (t) < β (t) for
0 ≤ t < t∗.

By generating m (t) = αε (t) − β (t), it is written that m (t) ≤ 0 for 0 ≤ t < t∗ and m (t∗) = 0.
Because of Lemma 1, it leads to CDq1m (t∗) ≥ 0.
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Since αε (s) ≤ β (s) for 0 ≤ s ≤ t∗, we immediately get

Iq2αε (t∗) =
1

Γ (q2)

t∗∫
0

(t∗ − s)1−q2 αε (s) ds

≤ 1

Γ (q2)

t∗∫
0

(t∗ − s)1−q2 β (s) ds

= Iq2β (t∗) .

A similar discussion offers Iq3αε (t∗) ≤ Iq3β (t∗). By recalling the non-decreasing features of F and G,
we follow that

F (t∗, αε (t∗) , I
q2αε (t∗)) +G (t∗, αε (t∗) , I

q3αε (t∗)) > CDq1αε (t∗)

≥ CDq1β (t∗)

≥ F (t∗, β (t∗) , I
q2β (t∗)) +G (t∗, β (t∗) , I

q3β (t∗))

≥ F (t∗, β (t∗) , I
q2αε (t∗)) +G (t∗, β (t∗) , I

q3αε (t∗))

giving rise to a contradiction because of the fact that αε (t∗) = β (t∗). Then the inequality

αε (t) < β (t) ,∀t ∈ J

holds, which proves α (t) ≤ β (t) on J .

Corollary 1. This result includes the Theorem 2 in [11] as a special case when F ≡ 0 and q1 = q2
or G ≡ 0 and q1 = q3.

Theorem 2. Let α and β be coupled lower and upper solutions of type I of (1). F (t, u, v) and
G(t, u, v) is both non-increasing in v and they hold the following inequalities for u1 ≥ u2, v1 ≥ v2 and
L1, L2,M1,M2 positive constants such that

F (t, u1 (t) , v (t))− F (t, u2 (t) , v (t)) ≤ L1 (u1 − u2) , (10)
G (t, u1 (t) , v̄ (t))−G (t, u2 (t) , v̄ (t)) ≤ L2 (u1 − u2) , (11)
F (t, u (t) , v1 (t))− F (t, u (t) , v2 (t)) ≥ −M1 (v1 − v2) , (12)
G (t, u (t) , v̄1 (t))−G (t, u (t) , v̄2 (t)) ≥ −M2 (v̄1 − v̄2) . (13)

If α (0) ≤ β (0), then it yields that α (t) ≤ β (t) on J .

Proof. We begin by constructing αε (t) = α (t) − ελ (t) and βε (t) = β (t) + ελ (t) for ε > 0. The
function λ (t) is also supposed to be unique positive solution of (9) with L1 + L2 > L > 0 . It is clear
that βε (0) = β (0) + ελ (0) > β (0) and αε (0) = α (0) − ελ (0) < α (0) that imply αε (0) < βε (0) and
for 0 ≤ t ≤ T , we get βε (t) > β (t) and αε (t) < α (t).

Differentiating both sides of βε (t) = β (t) + ελ (t) leads to

CDq1βε (t) = CDq1β (t) + εCDq1λ (t)

≥ F (t, β (t) , Iq2α (t)) +G (t, β (t) , Iq3α (t))

+Lελ (t) +M1εI
q2λ (t) +M2εI

q3λ (t) .

Since βε (t) > β (t), we can utilize the inequalities (10) and (11) in hypothesis to get

F (t, βε (t) , Iq2α (t))− F (t, β (t) , Iq2α (t)) ≤ L1 (βε (t)− β (t)) ,

F (t, β (t) , Iq2α (t)) ≥ F (t, βε (t) , Iq2α (t))− L1 (βε (t)− β (t))
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and

G (t, βε (t) , Iq3α (t))−G (t, β (t) , Iq3α (t)) ≤ L2 (βε (t)− β (t)) ,

G (t, β (t) , Iq3α (t)) ≥ G (t, βε (t) , Iq3α (t))− L2 (βε (t)− β (t)) .

Putting these results into the foregoing inequality, we write
CDq1βε (t) ≥ F (t, βε (t) , Iq2α (t))− L1 (βε (t)− β (t))

+G (t, βε (t) , Iq3α (t))− L2 (βε (t)− β (t))

+Lελ (t) +M1εI
q2λ (t) +M2εI

q3λ (t)

= F (t, βε (t) , Iq2α (t)) +G (t, βε (t) , Iq3α (t)) + (L− L1 − L2)ελ (t)

+M1εI
q2λ (t) +M2εI

q3λ (t)

> F (t, βε (t) , Iq2α (t)) +G (t, βε (t) , Iq3α (t)) +M1εI
q2λ (t) +M2εI

q3λ (t) .

Since the fact that α (t) > αε (t), we can have Iq2α (t) > Iq2αε (t) and Iq3α (t) > Iq3αε (t). Therefore,
the following inequalities can be found by considering inequalities (12) and (13)

F (t, βε (t) , Iq2α (t))− F (t, βε (t) , Iq2αε (t)) ≥ −M1I
q2 (α (t)− αε (t)) ,

F (t, βε (t) , Iq2α (t)) ≥ F (t, βε (t) , Iq2αε (t))−M1I
q2 (α (t)− αε (t))

and

G (t, βε (t) , Iq3α (t))−G (t, βε (t) , Iq3αε (t)) ≥ −M2I
q3 (α (t)− αε (t)) ,

G (t, βε (t) , Iq3α (t)) ≥ G (t, βε (t) , Iq3αε (t))−M2I
q3 (α (t)− αε (t)) .

Combining these results with previous inequality, we arrive at
CDq1βε (t) > F (t, βε (t) , Iq2αε (t))−M1I

q2 (α (t)− αε (t))

+G (t, βε (t) , Iq3αε (t))−M2I
q3 (α (t)− αε (t))

+M1εI
q2λ (t) +M2εI

q3λ (t)

= F (t, βε (t) , Iq2αε (t)) +G (t, βε (t) , Iq3αε (t)) .

We intend to demonstrate α (t) < βε (t) on J . If we use the similar technique as before we first assume
that assertation is false which gives a contradiction itself. Therefore, when ε −→ 0 gives the desired
result.

Remark 1. Notice that if F (t, u, v) and G(t, u, v) are non-decreasing in v for each (t, u) whenever
α ≤ β, then natural lower and upper solutions given by (2) and (3) imply the coupled lower and upper
solutions of type I given by (4) and (5). Conversely, if F (t, u, v) and G(t, u, v) are non-increasing in
v for each (t, u) whenever α ≤ β, then coupled lower and upper solutions of type I reduce to natural
lower and upper solutions respectively.

Theorem 3. Let α and β be coupled lower and upper solutions of type II of (1) as well as F (t, u, v)
and G(t, u, v) is non-decreasing in v. We also assume that

F (t, u1 (t) , v (t))− F (t, u2 (t) , v (t)) ≥ −L1 (u1 − u2)
G (t, u1 (t) , v̄ (t))−G (t, u2 (t) , v̄ (t)) ≥ −L2 (u1 − u2)
F (t, u (t) , v1 (t))− F (t, u (t) , v2 (t)) ≤ M1 (v1 − v2)
G (t, u (t) , v̄1 (t))−G (t, u (t) , v̄2 (t)) ≤ M2 (v̄1 − v̄2)

whenever u1 ≥ u2, v1 ≥ v2, where L1, L2 > 0,M1,M2 ≥ 0 . Then α (0) ≤ β (0) implies that α (t) ≤ β (t)
on J .
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Proof. For the proof, we recall the previous definitions of functions αε (t) , βε (t) on J such that for
ε > 0

αε (t) = α (t)− ελ (t) , βε (t) = β (t) + ελ (t) .

The function λ (t) is the unique positive solution of (9) with L1 +L2 < L. We can achieve the desired
conclusion by using a similar process as described above.

Theorem 4. Let α and β be coupled lower and upper solutions of type III of (1) as well as both
F (t, u, v) and G(t, u, v) is non-increasing in v. We also assume that

F (t, u1 (t) , v1 (t))− F (t, u2 (t) , v2 (t)) ≥ −L1 (u1 − u2)−M1 (v1 − v2) ,

G (t, u1 (t) , v̄1 (t))−G (t, u2 (t) , v̄2 (t)) ≥ −L2 (u1 − u2)−M2 (v̄1 − v̄2)

whenever u1 ≥ u2, v1 ≥ v2 and L1, L2 > 0,M1, M2 ≥ 0. Then α (t) ≤ β (t) on J provided that
α (0) ≤ β (0).

Proof. By using analogous considerations as mentioned previously, we can gain the conclusion of
theorem directly. For space-saving, we omit the details here.

Corollary 2. If we take G ≡ 0 in the problem (1), then the results in Theorems 1–4 are reduced to
the results in [16].

Remark 2. It is worthwhile to note that if α ≤ β on J , then the monotonicity assumption of F and
G in Theorem 3 combined with allowing α, β to be the coupled lower and upper solutions of type II
respectively is equivalent to the case in which the monotonicity assumption of F and G in Theorem 4
combined with α, β being the coupled lower and upper solutions of type III respectively.

Theorem 5. Let α and β be coupled lower and upper solutions of type IV of (1). F (t, u, v) is non-
decreasing in v while G(t, u, v) is non-increasing in v. Assume further that following inequalities are
satisfied:

F (t, u1 (t) , v1 (t))− F (t, u2 (t) , v2 (t)) ≤ L1 (u1 − u2) +M1 (v1 − v2) , (14)
G (t, u1 (t) , v̄1 (t))−G (t, u2 (t) , v̄2 (t)) ≥ −L2 (u1 − u2)−M2 (v̄1 − v̄2) , (15)

where L1, L2 > 0,M1,M2 ≥ 0, whenever u1 ≥ u2, v1 ≥ v2. Then α (0) ≤ β (0) implies that α (t) ≤ β (t)
on J .

Proof. We begin by constructing βε (t) = β (t) + ελ (t) and αε (t) = α (t) − ελ (t) for ε > 0. The
function λ (t) is also supposed to be unique positive solution of (9) such that L > L1 + L2. It is clear
that βε (0) = β (0)+ ελ (0) > β (0) and αε (0) = α (0)− ελ (0) < α (0) imply αε (0) < βε (0). In addition
to that for 0 ≤ t ≤ T we get βε (t) > β (t) and αε (t) < α (t).

Differentiating both sides of βε (t) = β (t) + ελ (t) leads to

CDq1βε (t) = CDq1β (t) +C Dq1ελ (t)

≥ F (t, β (t) , Iq2β (t)) +G (t, α (t) , Iq3α (t))

+Lελ (t) +M1εI
q2λ (t) +M2εI

q3λ (t) . (16)

Since βε (t) > β (t) for 0 ≤ t ≤ T , we can employ the inequality (14) and (15) then it yields

F (t, βε (t) , Iq2βε (t))− F (t, β (t) , Iq2β (t)) ≤ L1 (βε − β) +M1I
q2 (βε − β) ,

F (t, β (t) , Iq2β (t)) ≥ F (t, βε (t) , Iq2βε (t))− L1ελ (t)−M1εI
q2λ (t) (17)

and
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G (t, α (t) , Iq3α (t))−G (t, αε (t) , Iq3αε (t)) ≥ −L2 (α− αε)−M2I
q3 (α− αε) ,

G (t, α (t) , Iq3α (t)) ≥ G (t, αε (t) , Iq3αε (t))− L2ελ (t)−M2εI
q3λ (t) . (18)

If we substitute (17) and (18) into (16), we get

CDq1βε (t) ≥ F (t, β (t) , Iq2β (t)) +G (t, α (t) , Iq3α (t))

+Lελ (t) +M1εI
q2λ (t) +M2εI

q3λ (t)

≥ F (t, βε (t) , Iq2βε (t))− L1ελ (t)−M1εI
q2λ (t)

+G (t, αε (t) , Iq3αε (t))− L2ελ (t)−M2εI
q3λ (t)

+Lελ (t) +M1εI
q2λ (t) +M2εI

q3λ (t)

> F (t, βε (t) , Iq2βε (t)) +G (t, αε (t) , Iq3αε (t)) .

A similar procedure can be applied to αε (t) = α (t)− ελ (t) to achieve the following result

CDq1αε (t) < F (t, αε (t) , Iq2αε (t)) +G (t, βε (t) , Iq3βε (t))

on [0, T ] .
We next prove that αε (t) < βε (t) on [0, T ]. Contrary to this claim, we presume for a moment that

the inequality is not true and, setting m (t) = αε (t) − βε (t) there would exist a point t∗ such that
m (t∗) = 0 and m (t) ≤ 0 for 0 ≤ t < t∗. We get at once CDq1m (t∗) ≥ 0 by Lemma 1. Obviously, it
causes a contradiction. Then, it has to be

αε (t) < βε (t)

on J . Finally, letting ε −→ 0, we reach at

lim
ε−→0

(α (t)− ελ (t)) ≤ lim
ε−→0

(β (t) + ελ (t)) ,

α (t) ≤ β (t) ,

for t ∈ J , ending the proof.

Corollary 3. This result is evaluated as the generalization of Theorem 2.10 in [17] to fractional
orders by simple modifications.

Theorem 6. Let α and β be coupled lower and upper solutions of type V of (1). F (t, u, v) is non-
increasing and G(t, u, v) is non-decreasing in v. Additionally, following inequalities hold:

F (t, u1 (t) , v1 (t))− F (t, u2 (t) , v2 (t)) ≥ −L1 (u1 − u2)−M1 (v1 − v2) , (19)
G (t, u1 (t) , v̄1 (t))−G (t, u2 (t) , v̄2 (t)) ≤ L2 (u1 − u2) +M2 (v̄1 − v̄2) , (20)

where L1, L2,M1,M2 > 0, whenever u1 ≥ u2, v1 ≥ v2. Then α (0) ≤ β (0) implies that α (t) ≤ β (t)
on J .

Proof. In that case, for some ε > 0, we compose βε (t) = β (t) + ελ (t) and αε (t) = α (t) − ελ (t)
where the function λ (t) is taken as the nonnegative unique solution of the following linear equation

CDq1λ (t) = Lλ (t) +M1I
q2λ (t) +M2I

q3λ (t) , λ (0) = 1.

Taking derivatives in Caputo’s sense on both sides of constructed functions and using (19) and (20),
we have the following strict inequalities

CDq1βε (t) > F (t, αε (t) , Iq2αε (t)) +G (t, βε (t) , Iq3βε (t))
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and
CDq1αε (t) < F (t, βε (t) , Iq2βε (t)) +G (t, αε (t) , Iq3αε (t)) .

At this stage we apply proof by contradiction with the help of Lemma 1 to show αε (t) < βε (t) on J .
As a final step, performing ε −→ 0, we get the desired result

α (t) ≤ β (t) ,

for t ∈ J , which completes the proof.

3 Conclusion

Using the method of upper and lower solutions, this research discusses some differential inequalities
for generalized fractional integro-differential equations. Multiple coupled upper and lower solutions
are used to examine the results. These theorems provide some possibilities for stretching iterative
techniques to fractional order integro-differential equations and coupled systems of integro-differential
fractional equations in order to determine the existence of solutions as well as approximations for the
problem under consideration.
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Жоғарғы және төменгi шешiмдер арқылы бөлшек реттi
интегралды дифференциалдық теңдеулер үшiн кейбiр

дифференциалдық теңсiздiктердiң кеңеюi

Мақалада жоғарғы және төменгi шешiмдер техникасын қолдана отырып, бөлшек реттi жалпыланған
интегралды-дифференциалдық теңдеулер үшiн кейбiр дифференциалдық теңсiздiктер қарастыры-
лған. Бөлшек дифференциалдық оператор Капуто мағынасында түсiнiледi, ал екiге бөлiнген сызы-
қтық емес термин екi түрлi бөлшек ретi бар белгiсiз функцияның бөлшек интегралдарына тәуелдi.
Нәтижелер әртүрлi байланысты жоғарғы және төменгi шешiмдердi қолдану арқылы зерттелген. Бұл
теоремалар қайталанатын әдiстердi бөлшек реттi интегралды-дифференциалдық теңдеулерге және
шешiмдердiң болуын, сондай-ақ қарастырылып отырған мәселе үшiн жуықталған шешiмдердi алу
үшiн бөлшек реттi интегралды-дифференциалдық теңдеулердiң байланысты жүйелерiне тарату үшiн
белгiлi бiр әлеуетке ие.

Кiлт сөздер: бөлшек дифференциалдық теңдеулер, дифференциалдық теңсiздiктер, жоғарғы және
төменгi шешiмдер, шеткi есеп.
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Расширения некоторых дифференциальных неравенств для
интегро-дифференциальных уравнений дробного порядка через

верхние и нижние решения

В статье рассмотрены некоторые дифференциальные неравенства для обобщенных интегро-диф-
ференциальных уравнений дробного порядка с использованием техники верхних и нижних реше-
ний. Дробно-дифференциальный оператор понимается в смысле Капуто, а нелинейный член, раз-
деленный на две части, зависит от дробных интегралов неизвестной функции с двумя различными
дробными порядками. Результаты изучены с использованием различных связанных верхних и ниж-
них решений. Эти теоремы имеют некоторый потенциал для распространения итерационных мето-
дов на интегро-дифференциальные уравнения дробного порядка и на связанные системы интегро-
дифференциальных уравнений дробного порядка для получения существования решений, а также
приближенных решений для рассматриваемой задачи.

Ключевые слова: дробные дифференциальные уравнения, дифференциальные неравенства, верхние
и нижние решения, краевая задача.
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