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An optimal control problem for the systems
with integral boundary conditions

In this paper, we consider an optimal control problem with a «pure», integral boundary condition. The
Green’s function is constructed. Using contracting Banach mappings, a sufficient condition for the existence
and uniqueness of a solution to one class of integral boundary value problems for fixed admissible controls
is established. Using the functional increment method, the Pontryagin‘s maximum principle is proved.
The first and second variations of the functional are calculated. Further, various necessary conditions for
optimality of the second order are obtained by using variations of controls.

Key words: integral boundary conditions, singular control, optimal control problem, existence and uniqueness
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Introduction

Boundary value problems with integral conditions last few decades became one of the intensively
studied classes of the problems of mathematical physics. These problems included different problems
with two-, three-, multiple and non-local boundary value problems [1-3|. One of the reasons that make
these problems so actual is that they have a strong relation with various fields of applications (see, for
example [4, 5| and references therein).

There exist many works devoted to investigation of the systems with local conditions and finding
necessary optimality conditions of first and second orders [6-10]. For such problems with integral
conditions we refer to [11-15].

Various type optimal control problems for the systems with boundary conditions are considered in
[16-22] and with integral boundary condition in [16, 17|, where the first order necessary conditions are
obtained. In some cases, when the first order optimality conditions are “degenerated”, i.e. are fulfilled
trivially one has to try to obtain second order conditions.

Another direction in investigation of the optimal control problems with multipoint and integral
boundary conditions is developing the numerical methods. For the first-order ordinary differential
equations such problems are studied in [23, 24].

In this paper, optimal control problem is investigated, when the state of the system is described
by differential equations with integral boundary conditions. The existence and uniqueness of solutions
to the boundary value problem is investigated. The first and second variations of the corresponding
functional are calculated. Optimality conditions of first and second order are obtained applying the
method of variations of the controls.
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Problem Statement

Consider the following system of differential equations with an integral boundary condition

%f:f(t,x,u(t)),ogtST, (1)
/ m( el 2)
u(t) e Ut 0,T], (3)

where z(t) € R"; f(t,x,u) is n-dimensional continuous function; C' € R" is a given constant vector
and m (t) € R™ "™ is n X n matrix function; u is a control parameter; U € R" is bounded set.
The problem is: to minimize the functional

T
J(u) = (z(0),z(T)) —I—/O F(t,z,u)dt (4)

on the solutions of problem (1)—(3).

The following assumption is accepted: the scalar functions ¢ (x,y) and F (t,z,u) are continuous
with respect to their own arguments and have continuous and bounded first order partial derivatives
with respect to x, y. As a solution of problem (1)-(3) corresponding to the fixed control u (t) we consider
absolutely continuous on [0, 7] function x(¢t) : [0,7] — R™. The space of such functions is denoted as
AC([0,T],R™). C([0,T], R™) stands for the space of continuous functions on [0, 7] which gets values
from R". It is obvious that this is a Banach with the norm ||lz[|c 1) = max|z(t)|, where || is the

(0,T]

norm in space R".

As admissible controls we consider the functions from the class of bounded measurable functions
with the values from the set U C R". We call the pair consisting of admissible control and the
corresponding solution of (1), (2) an admissible process.

Thus the admissible process {u (t),z (t,u)} that is a solution to (1)-(4), subject to (1)-(3), is said
to be an optimal process, and u (t) — an optimal control.

The existence of an optimal control in problem (1)—(4) is also assumed.

Ezistence of solutions of boundary value problem (1)—(3)

Let’s set the following conditions.
H1) Let det B # 0, where B = fo t)dt.
H2) f:]0,T] x R" x R" — R" is a contlnuous function and there exists the constant K > 0

lf(t,z,u) — f(t,y,u)| < K|z —y|, t€]0,T], z,y€ R",uel.
H3) L=KTM < 1,
L m(r)dr,0<t<s
— — 0
where M—Og’%)g(THM(t,s)H, M (t,s) —{ lf Pdrs<t<T.

Theorem 1. Under the condition H1) the function z(- ) E AC ([0,T], R™) is an absolutely continuous
solution to problem (1)-(3) iff

T
z(t) = B~C —l—/o M(t,7)f(r,z(7),u(T))dr. (5)

1f T)dr, 0<t<s,
HereM(t,S):{ lj“)m dr, s<t<T.
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Proof. It is obvious that if = z(+) is a solution to (1), then

2(t) = 2(0) + / £(s,2(5),u(5))ds, (6)

for t € (0,7), where x (0) is an arbitrary constant. To determine x (0) we suppose that the function
given by (6) satisfy (2), i.e.

T t
Bm(O):C’—/O m(t)/o f(r,z(7),u(r))drdt.

Since det B # 0 we have

T t
z(0) = B_lc—B_l/O m(t)/o flr,z(r),u(7))drdt. (7)

Considering in (6) the value of z (0) determined by equality (7) we get
T
z(t)=B"C +/ M(t,7)f(r,z(T),u(T))dr.
0

By this way we reduced boundary value problem (1)—(3) to the integral equation (5). It is easy to check
that the solution of integral equation (5) also satisfies (1)—(3). Theorem 1 is proved.
Introduce the operator P : C'([0,T], R") — C ([0,T], R") as

T
(Pa)(t) = B-1C + /O Mt 1) (7, (), u (7))dr. (8)

Theorem 2. Within the conditions H1)-H3) for any C' € R™ and for each fixed admissible control,
problem (1)—(3) has a unique solution that satisfies the following relation

T
z(t) = B~C —l—/o M(t,7)f(r,z(7),u(7))dr. 9)

Proof. Let C' € R™ and u (-) € U be fixed. Consider the mapping P : C ([0,T], R") — C ([0,T], R")
defined by (8). It is obvious that the fixed points of the operator (Pz)(t) are the solutions of (1)—(2).

To prove that the mapping P has a fixed point we apply the Banach contraction principle. For any
v,w e C([0,T], R™) we have

T
[(Po)(t) = (Pw)(t)] < /0 [M(t,5)| - [f(s,0(s),u(s)) = f(s,w(s),u(s))]ds <

< KTN [[o() ~wO)llcory > t€10.7],

or
||Pv — Pw||C[07T] < Liv— w”(J[O,T} :

The last relation shows that P is the contraction in the space C ([0, 7], R™). Thus, based on the principle
of contraction operators one can state that P has a unique fixed point at C ([0, 7], R™). It means that
integral equation (9) or boundary value problem (1)-(3) has a unique solution.

Theorem 2 is proved.
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Derivation of Pontryagin’s maximum principle

Here we assume that U is closed set in R". To obtain the necessary conditions for optimality one
should analyze the variation of the objective functional caused by some control impulse [7] i.e. one must
calculate the increment formula that obtained from Taylor’s series expansion. It is important to give
a definition of the conjugate system that allows one to determine the dominant term that leads to the
necessary condition for optimality. For the sake of simplicity, it is expedient to construct a linearized
model of system (8), (9) in some small neighborhood.

Let {u,z =z (t,u)} and {t = v+ Au, T =z + Az = x (t,4)} be two admissible processes. Introduce
the boundary value problem for problem (1)—(3):

Ai = Af (o), te[0,T),

T
/ m (1) A (1) dt = 0,
0

where Af (t,z,u) = f(t,Z,a) — f(t,z,u) stands for the total increment of the function f (¢, z,u).
Then we can represent the increment of the functional as

T
AJ (u) =J(a) —J (u) =Ap (z(0),z (1)) —I—/O AF (z,u,t)dt.

Consider the non-trivial vector-function 1 (t), v (t) € R™, and numerical vector A € R™. Then the
increment of the functional (4) can be written as

T
AJ (u) =J (@) —J (u) = Ap(x(0),z (1)) —l—/o AF (z,u,t)dt+

+/OT<1/J(t),Am'(t)—Af(t,x,u))dt+<>\,/0Tm(t)Ax(t)dt>.

Making standard operations for the increment of the functional we obtain the formula

T T
AJ(u):—/O AgH(t,w,x,u)dt—/o <AQW,Ax(t)>dt+

+ﬁ<%+m/(t),\+¢(t),Ax(t)>dt+<[%—w(O)] ,A$(0>>+

+ < [6%) ty (T)] , Az (T)> + s

where

H (t,2,z,u) = (Y, f (t,z,u)) — F (t,z,u),

T
i = —/ or ([|Az (t)|) dt + oy ([|Az (o) ||, [Az (t1)]]) -
0

Let the vector function 1 (¢) € R™ and vector A € R™ be a solution of the following conjugate
problem
V(1) = —HEREY () A, € (0,T],
(11)
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Then, formula (10) takes the form

T T
AJ(u)——/O AgH(t,w,x,u)dt—/o <AgW,A$(t)>dt+ng. (12)

Taking as parameters the point 7 € (0,7, number € € (0, 7], vector v € U and variation interval
(1 — e, 1) from [0, T] we consider needle-shaped variation of the admissible control. Then needle-shaped
variation of the control uw = u (¢) may be given by the relation

veU, te(r—e1]C[0,T], >0,

ﬂzus(”:{ w(t), té(r—erl (13)

To obtain the necessary optimality condition from the increment formula (12) one have to show that
on the needle-shaped variation @ (t) = u. (t) the state increment A.x (t) has the order ¢.
Since,

T
Az (t) = /0 M (t5)[f (5,3 () + Az (), (5)) — f (5,2 (5) it ()] ds+

T
+/ M(t,s) Ao f(s,2(s),u(s))ds.
0
The last implies that
T
e O < (107 [ 18af (b (1) u @) .
0

which proves the hypothesis on response of the state increment caused by the needle-shaped variation
given by (13)
Az (t)| < Le, t€[0,T], L= const > 0.

This also implies that for @ () = u. (¢) the relation

[ (a2 o)) dtt (18 (0]) = o)

holds true, where
Acz(t) =z (t,us) — x (t,u) ~ e.

It means that according to (12) the variation of the functional caused by the needle-shaped variation
(13) can be written

Acd (u) =J (ue) — J (u) = =AyH (8,9, z,u).c+o(e), ve U, s€l0,T]. (14)

Note that in the last expression, the mean value theorem was used.

Formula (14) with respect to the estimate for ||A.x| implies the necessary optimality condition in the

form of the maximum principle for the needle-shaped variation of optimal process {u®, 2" = z (t, uo)}.
Theorem 3. (Pontryagin‘s maximum principle). Assume that the admissible process {u® 2% =

z (t,u’) is optimal for problem (1)—(4) and ¢ (¢) is a solution to problem (11) calculated on the

optimal process. Then, inequality

AH (s,d}o,xo,uo) <0, foreveryv e U, (15)

is valid for all s € [0,77] .
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Remark. If the function f is linear with respect to (z,u) and the functions, F, ¢ are convex with
respect to x (0), = (T'), and z (), respectively, then maximum principle (15) is both necessary and
sufficient optimality condition. This fact can be easily obtained from the formula

T T
AT (u) = /0 AH (b4, u) dt + o, (| Az (0], [ Az (T)]) + /0 or (lz ()] dt

where o, > 0, op > 0.
The second order formula for the increment of the functional and variation of the functional

Let us suppose that the scalar functions ¢ (x,y) and F (¢,z,u) are continuous over their own
arguments and have continuous and bounded partial derivatives with respect to x,y and u up to second
order, inclusively. Let U be an open set in R" and {u,z = z (t,u)}, {t =u+ Au, T=x+ Az =z (t,0)}
be two admissible processes.

Under the above assumptions increment formula (12) turns to

= = Jo (P N (t) )t - § f (A () FHGEE A (t) ) dt-

4 2 z,u T,u
—fOT<Au(t) OLLLL) 4 LAY (1) PHEL2 A (1) ) dt+

/ 2 / 2
+1 (az (0) 28+ A0 (T) gy A z(0))+
(16)
1 / 82@ / 82@ ~
Take Au (t) = edu(t), where € > 0 is small enough number, du (¢) is some piecewise continuous

function. Then the expression AJ (u) = J (a) — J (u) for the fixed functions u (), Awu(t) will be a
function of the parameter . If the representation

AJ (u) =edJ (u) + %5252J (w) + o (%) (17)

holds true, then &.J (u) is called the first, §2J (u) the second variation of the functional. To get an
obvious expression for the first and second variations we have to select in Az (¢) the principal term
with respect to €.
Let
Az (t) = edx (t) +o(g,t), (18)

where 0x (t) is the variation of the trajectory. Obviously, such a representation exists and for the
function dx (t) one can obtain an equation in variations. Using the definition of Ax (t) we get

T
x(t) = / M(t,7)Af(r,2(7),u(T))dT.
0
Using the Taylor formula, we get:

Of (1,z,u)

T r, U
cin () +oe.t) = [ 0 (0r) { L2 () 4 ofe, 4 215

5 du + o1 (g, 7‘)} dr.

If to consider that the last formula is true for any € we have

/ Mt {3"0(?“)5 (7) +Wau(t)}d7. (19)
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Equation (19) is called the equation in variations. Obviously, (19) is equivalent to the following nonlocal
boundary value problem

_Of (t,z,u) af (t,x,u)
0z (t) = e dx (t) + 50 du(t), (20)
/T m (t) 6 (1) dt = 0. (21)
0
Any solution of (20) may be written in the form
oz (t) =@ (t)ox (0) + P (t)/ o1 (1) W&u (1) dr, (22)
0

where @ (t) is a solution of the equation

de(t)  Of (t,x,u)
dt Ox e (),

o (0) = E.

Let the solution of (20) determined by equality (22) satisfiy (21). Then for the solutions of problem
(20), (21) we obtain the explicit formula

/GtT Txu)é(r)dT, (23)
where
B (t)B _1f0 T)dT®~ () 0<s<t
G(t’s)_{ ® ) B! [Tm(r)®(r)drd~ (r), t<s<T

Blz/OTm(t){)(t)dt

Considering (18) in (16), we obtain

sf<"’H“‘”“‘ 5u(t)>dt—522{

2 X, u
[<5$’(t)78 H(gj; : ),5:17(t)> +
2 (o' (6) AL, sa(t)) + (o' () LR u() )] i

/ 9% / 82

2 2
— (02 (0) gy + 02 (T) 555, 02(T) ) } + o(e?).

Using (17) from the last we get

5. (u) = — /OT <M“’8‘W,5u(t)> dt
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Ju) = = Ji [0 PG, 600)) +
2 (o (1) ZHER, sa(t) ) + (o' (6) G0, su(t) )] i+
2 2
+ <5x'(0)—a§(5§2 + A (T) gy (5:1:(0)> +

+ <5x'(0)% + 82/ (T) 520, 0a(T )> .
Derivation of Legendre-Klebsh conditions
It follows from (17) that the conditions
§J(u?) =0, 62J(u") >0 (24)

are fulfilled on the optimal control u (¢).

From (24) it follows that
T o ,0 ,0
OH (t,¢", z% u?) B
/0 < - Ju(t) ) dt = 0.

Hence the validity of the equality

H(t, 9" 20 u°)
ou
can be proved along the optimal control that indeed is the Euler equation. From (24) we obtain the
validity of the following inequality along the optimal control

T = = Ji [{00' () ZHGL= 5w(r)) +

+2 (3 () PHERE ba(t) ) + (o' (6) G2 Gu(t) )| di+

=0, te[0,T] (25)

2 2
+(62/(0) 528 + AT (T) g 82(0) ) +

2 2
+(02(0) sy + 00/ (T) 5z 02(T) ) 2 0.

Inequality (26) is an implicit necessary optimality condition of first order. Since the verification of
the last conditions require heavy calculations their application meets difficulties.

To obtain more effective optimality conditions of the second order, we use (23) in (26) and introduce
the matrix function

2 2
R (7—7 S) = -G’ (07 T) 63([;32G <O7 S) -G (T7 7—) %G (07 S) -

~G'(0,7) %G (T,5) = G'(T,7) 5225G(T,) + [ G (t,7) GHG (t,5) dt.

(1)°
It allows us to obtain the following terminal formula for the second variation of the functional
J'f(r,zu of (s,x,u
(w) = = { Iy i (0un) LEELR(, ) 252, Gu(s) ) drds

+ T <5/u(t)%, 5u(t)> dt

+ 2f0 fo < %G (t,s) W, 5u(s)> dtds} )
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Theorem 4. Let the admissible control u (¢) satisfy condition (25). Then in order to this function
be optimal in problem (1)-(4), the inequality

82J( {fo fo < 78 f(guxu)R(T, S)L(SIU) ou(s )>d7'ds
+J§<&mﬂ@ﬂ%%&@ﬁmw>ﬁ+ (27)

+2 fOT fOT <5u’(t)782H(§;’gf’u)G (t,s) 73f(§f’"),5u(5)> dtds} >0

should be fulfilled for all du(t) € Ly[0,T].

The analogy of the Legandre-Klebsh condition for the considered problem follows from condition
(28).

Theorem 5. The inequality holds true

V/3211(97¢(9)=$(9)=U(9))
ou?

over the optimal process (u(t),z(t)) for all v € R" and 6 € [0,T].
Proof. To prove the theorem, we calculate the variation of the control

v<0 (28)

v telh,0+¢)
ou(t) {o tEl0,0+e) (29)
where € > 0, v is some r-dimensional vector.
By virtue of (23) the variation of the corresponding trajectory is
dz(t) = a(t)e + o(e, 1), t€[0,T], (30)

where a (t) is a continuous bounded function.
Substituting variation (29) into (27) and selecting the principal term with respect to € we obtain

0+¢

2J(u)=— [ v’agH(t’wgif(t)’u(t))”dt +ole) =
0
C e /82H(9 ¢(8i$(9)7u(9)) v+ 01 (6)

From this using condition of (24) the Legandre-Klebsh criterion (28) is obtained.

Condition (30) is the second order optimality condition. It is obvious that when the right hand
side of system (1) is linear with respect to control parameters, condition (28) also degenerates, i.e. is
fulfilled trivially.

If for all € (0,T), v € R" the relations

OH(0,4(0), 2(0), u(0)) L PH(6,9(6),2(0), u(6))
ou ou?
hold true then the admissible control u (¢) is said be a singular control in the classic sense.

Theorem 6. Assume that the control u (¢) is the singular in the classic sense. Then for optimality

of u (t)

=0, v =0,

{fo fo <8ft:ru (t S),W>dtd3+
(31)
2 [ I (PG ), g duds v <0
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should be fulfilled for all v € R™.

Condition (31) is an integral necessary condition of optimality of the controls singular in the classic
sense. One can obtain various type necessary optimality conditions by taking the special variation of
various forms in formula (30).

Conclusion

In this paper, the optimal control problem is considered when the considered system is described
by the differential equations with integral boundary conditions. The existence and uniqueness of
the solution is proved for the corresponding boundary value problem. The first and second order
increment formulas of the functional are obtained. Various necessary conditions of optimality of the
first and second order are obtained. Of course, such type existence and uniqueness results and necessary
conditions of optimality hold under the same sufficient conditions on nonlinear terms of the system of
nonlinear differential equations (1), subject to multi-point nonlocal and integral boundary conditions
type of

T J
m(t)z(t)dt+ Y Bja(t;) =C,

where B; € R" " are given matrices and

J
det | B+> B;| #0,
j=1

here, 0 < t; < t9 < ... <ty <T for controls singular in the classic sense. Selecting special variation in
different way in formula (30) we can get various necessary optimality conditions.
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M./Ix. Mapaanos, 9.A. IHlapudos,

Ozipbatiorcar ¥ammolk evtavim axademuacoinoi, Mamemamura otcone mexanuka urncmumymo, Baxy, Osipbatiotcan;
Baxy memaexemmix ynusepcumemi, Baxy, Osipbatiorcan

Nurerpasapl 1meKapaJblK, MapTTapbl 6ap >Kyiiesep yoiiH TAiMJIi
backapy ecebi

Maxkanana «Ta3a» UHTErpaJsIbl MeKapaJsIbIK MapTIeH THiM Il 6ackapy ecebi kapacToipbuiran. ['pus dyHKIIN-
SCBI KypbUIFaH. BaHaxThIH KBICHII OeifHe ey TPUHINITIH KOJIJaHa OTHIPHII, OeKITiITeH PYKCAT eTiireH 6acka-
Py Ke3iHJe MHTerpaJsiIbl MIeTTiK ecenTep/iiH, Oip KJIaChIHBIH, MIENIIMHIH 6ap OOJIYBIHBIH YKETKIJIKTI IIapTh
MEH 2KAJIFBI3ABIFBI aHBIKTAJIAbI. DYHKIMOHAJABIH aybITKYBI diciMeH [loHTpATruHHiH, MaKCUMyM HPUHITAII
npJtesiaeH . @yHKITMOHAJIBIH OipIHIM >KoHe eKiHIIN BapualsIapbl ecernTe/ireH. backapy bl Bapualsiia-
PBIHBIH KOMETrIMeH eKiHI peTTi THIMIUTIKTIH opTypJ/ii KaXKeTTi IapTTapbl aJbIH/IbI.

Kiam cesdep: mHTerpaabl MEKapasblK, MapTTap, epekine backapy, THiMal backapy ecebi, memimMHuin 6ap
JKOHE 2KAJIFBI3 OOJIYbI.

M./ I:x. Mapmanos, f.A. [Mlapucdor

Hnemumym mamemamuru u mexaruxy Hayuonaavnot axademuu nayx Azepbatiosicana, Baxy, Asepbatioocan;
Baxuncrkuti 2ocydapemeennoti yrHusepcumem, Baxy, Asepbatidocan

Ba,u;aqa OIITUMAJIBHOT'O yIIpaBJICHAA [IJId CUCTEM C MHTErpaJibHbIMHA
r'rpaHnMYYHbIMM YCJIOBUAMMA

B crarpe paccMmoTrpena 3a1ata ONTHMAIBHOTO YIIPABIEHUS C « IUCTHIM» HHTETPAIBHBIM TPAHUYIHBIM YCJIOBU-
eM. ITocrpoena dyuknus 'prna. C nmoMoIpo IpuHIMIIA CKUMAOIIX oTobparkeHuii Banaxa ycraHoBieHO
JOCTATOYHOE YCJIOBUE CYIIECTBOBAHUS U €IUHCTBEHHOCTU PEIIEHUSI OJTHOTO KJIACCa MHTEIPAJIBHBIX KPAEBbIX
3a7a4d npu (PUKCUPOBAHHBIX JOMYCTHUMBIX yIpaBieHusix. MerogoMm mpuparienuii OyHKIMOHATA JOKA3aH
npuHimn MakcumyMma llonrpsiruna. Berauciiensr nepsasi u Bropasi Bapuanun dyHkiuonasa. C IOMOIIBIO
BapuaIuii ypaBaeHUil TOJyIeHbl PA3INIHbIE HEOOXOIMMBbIE YCIOBHUS ONMTUMAJIHFHOCTH BTOPOTO TOPSIIKA.

Karouesvie crosa: UHTEerpaJibHble I'DaHUYIHbI€ yCJIOBUA, 0cobbIe yupaBJIeHHUd, 3a/a9a OIITUMAJIbHOTO YyIIpaB-
JIeHUd, CylIleCTBOBaHNE U €IMHCTBEHHOCTH PEIleHUd.

References

1 Benchohra, M., Nieto, J.J., & Ouahab, A. (2011). Second-order boundary value problem with
integral boundary conditions. Boundary Value Problems, Article ID 260309, 1-11.

2 Ahmad, B., & Nieto, J.J. (2009). Existence results for nonlinear boundary value problems
of fractional integro-differential equations with integral boundary conditions. Boundary Value
Problems, Article ID 708576, 1-11.

3 Boucherif, A. (2009). Second order boundary value problems with integral boundary conditions.
Nonlinear Analysis, 70(1), 368-379.

4 Khan, R.A. (2005). Existence and approximation of solutions of nonlinear problems with integral
boundary conditions. Dynamic Systems and Applications, 1/, 281-296.

Mathematics series. Ne 1(109)/2023 121



M.J. Mardanov, Y.A. Sharifov

5

10

11

12

13

14

15

16

17

18

19

20

21

22

122

Belarbi, A., Benchohra, M., & Ouahab, A. (2008). Multiple positive solutions for nonlinear
boundary value problems with integral boundary conditions. Archivum Mathematicum, 44 (1),
1-7.

Vasil’ev, F.P. (2002). Optimization methods. Moscow: Factorial Press.

Vasiliev, O.V. (1996). Optimization methods. Advanced Series in Mathematical Science and Engi-
neering, Vol. 5. Georgia: World Federation Publishers Company.

Krener, A.J. (1077). The high order maximal principle and its application to singular extremals.
SIAM J. Control Optim., 15(2), 256-293.

Kelley, H.J., Kopp R.E., & Moyer H.G. (1967). Singular extremals. Topic in Optimization (G. Leit-
mann, ed.). New York: Academic Press, 63-101.

Fraser-Andrews, G. (1989). Finding candidate singular optimal controls: a state of the art survey.
J. Optim. Theory and Appl, 60(2), 173-190.

Mardanov, M.J., Sharifov, Y.A., Sardarova, R.A., & Aliyev, H.N. (2020). Existence and Uniqueness
of Solutions for Nonlinear Impulsive Differential Equations with Three-Point and Integral Boundary
Conditions. Azerbaijan Journal of Mathematics, 10(1), 110-126.

Mardanov, M.J., Sharifov, Y.A., Gasimov, Y.S., & Cattani, C. (2021). Non- Linear First-Order
Differential Boundary Problems with Multipoint and Integral Conditions. Fractal Fract., 5, 15.
https://doi.org/ 10.3390/fractalfract5010015

Mardanov, M.J., & Sharifov, Y.A. (2015). Pontryagin’s Maximum Principle for the Optimal
Control Problems with Multipoint Boundary Conditions. Abstract and Applied Analysis, Article
ID 428042, 6 pages.

Mardanov, M.J., Sharifov, Y.A., & Ismayilova, K.E. (2020). Existence and uniqueness of solutions
for the system of integro-differential equations with three-point and nonlinear integral boundary
conditions. Bulletin of the Karaganda University-Matematics, 3(99), 26-37.

Mardanov, M.J., Mammadov, R.S, Gasimov, S.Yu., &. Sharifov, Y.A. (2021). Existence and
uniqueness results for the first-order non-linear impulsive integro-differential equations with two-
point boundary conditions. Bulletin of the Karaganda University-Matematics, 2(102), 74-83.
Vasilieva, 0.0., & Mizukami, K. (2000). Dinamicheskie protsessy, opisyvaemye kraevoi zadachei:
neobkhodimye usloviia optimalnosti i metody resheniia |[Dynamical processes described by a
boundary value problem: necessary optimality conditions and solution methods|. Izvestiia RAN.
Teoriia i sistemy upravleniia — News of the Russian Academy of Sciences. Theory and control
systems, 1, 95-100 [in Russian].

Vasilieva, O., & Mizukami, K. (1997). Optimality criterion for singular controllers: linear boundary
conditions. J. of Mathematical Analysis and Applications, 213, Article No. AY975565, 620-641.
Ashyralyev, A., & Sharifov, Y.A. (2013). Optimal control problems for impulsive systems with
integral boundary conditions. Electronic Journal Differential Equations, 2013(80), 1-11.
Mekhtiyev, M.F., Djabrailov, Sh.I., & Sharifov, Y.A. (2010). Necessary optimality conditions
of second order in classical sense in optimal control problems of three-point conditions. J. of
Automation and Information Sciences, 42(3), 47-57.

Sharifov, Y.A., & Mamedova, N.B. (2012). On second-order necessary optimality conditions in
the classical sense for systems with nonlocal conditions. Differential Equations, 48(4), 614-617.
Sharifov, Ya. (2013). Optimal control problems for impulsive systems under nonlocal boundary
conditions. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences,
4(33), 34-45. https://doi.org/10.14498 /vsgtull34

Sharifov, Y.A. (2012). Optimality conditions in problems over systems of impulsive differential
equations with nonlocal boundary conditions. Ukrainian Mathematical Journal, 64(6), 958-970.

Bulletin of the Karaganda University



An optimal control problem ...

23 Abdullayev, V.M. (2018). Numerical solution to optimal control problems with multipoint and
integral conditions. Proceedings of the Institute of Mathematics and Mechanics, National Academy
of Sciences of Azerbaijan, 44(2), 171-186.

24 Aida-zade, K.R. (2018). An approach for solving nonlinearly loaded problems for linear ordinary
differential equations. Proceedings of the Institute of Mathematics and Mechanics, National Aca-
demy of Sciences of Azerbaijan, 44(2), 338-350.

Mathematics series. Ne 1(109)/2023 123





