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An optimal control problem for the systems
with integral boundary conditions

In this paper, we consider an optimal control problem with a «pure», integral boundary condition. The
Green’s function is constructed. Using contracting Banach mappings, a sufficient condition for the existence
and uniqueness of a solution to one class of integral boundary value problems for fixed admissible controls
is established. Using the functional increment method, the Pontryagin‘s maximum principle is proved.
The first and second variations of the functional are calculated. Further, various necessary conditions for
optimality of the second order are obtained by using variations of controls.
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Introduction

Boundary value problems with integral conditions last few decades became one of the intensively
studied classes of the problems of mathematical physics. These problems included different problems
with two-, three-, multiple and non-local boundary value problems [1–3]. One of the reasons that make
these problems so actual is that they have a strong relation with various fields of applications (see, for
example [4, 5] and references therein).

There exist many works devoted to investigation of the systems with local conditions and finding
necessary optimality conditions of first and second orders [6–10]. For such problems with integral
conditions we refer to [11–15].

Various type optimal control problems for the systems with boundary conditions are considered in
[16–22] and with integral boundary condition in [16, 17], where the first order necessary conditions are
obtained. In some cases, when the first order optimality conditions are “degenerated”, i.e. are fulfilled
trivially one has to try to obtain second order conditions.

Another direction in investigation of the optimal control problems with multipoint and integral
boundary conditions is developing the numerical methods. For the first-order ordinary differential
equations such problems are studied in [23, 24].

In this paper, optimal control problem is investigated, when the state of the system is described
by differential equations with integral boundary conditions. The existence and uniqueness of solutions
to the boundary value problem is investigated. The first and second variations of the corresponding
functional are calculated. Optimality conditions of first and second order are obtained applying the
method of variations of the controls.

∗Corresponding author.
E-mail: sharifov22@rambler.ru

110 Bulletin of the Karaganda University



An optimal control problem ...

Problem Statement

Consider the following system of differential equations with an integral boundary condition

dx

dt
= f(t, x, u (t)), 0 ≤ t ≤ T, (1)∫ T

0
m (t)x (t) dt = C, (2)

u (t) ∈ U, t ∈ [0, T ] , (3)

where x(t) ∈ Rn; f(t, x, u) is n-dimensional continuous function; C ∈ Rn is a given constant vector
and m (t) ∈ Rn×n is n× n matrix function; u is a control parameter; U ∈ Rr is bounded set.

The problem is: to minimize the functional

J (u) = ϕ (x (0) , x (T )) +

∫ T

0
F (t, x, u) dt (4)

on the solutions of problem (1)–(3).
The following assumption is accepted: the scalar functions ϕ (x, y) and F (t, x, u) are continuous

with respect to their own arguments and have continuous and bounded first order partial derivatives
with respect to x, y. As a solution of problem (1)-(3) corresponding to the fixed control u (t) we consider
absolutely continuous on [0, T ] function x(t) : [0, T ] → Rn. The space of such functions is denoted as
AC ([0, T ] , Rn). C ([0, T ] , Rn) stands for the space of continuous functions on [0, T ] which gets values
from Rn. It is obvious that this is a Banach with the norm ‖x‖C[0,T ] = max

[0,T ]
|x(t)| , where |·| is the

norm in space Rn.
As admissible controls we consider the functions from the class of bounded measurable functions

with the values from the set U ⊂ Rr. We call the pair consisting of admissible control and the
corresponding solution of (1), (2) an admissible process.

Thus the admissible process {u (t) , x (t, u)} that is a solution to (1)-(4), subject to (1)-(3), is said
to be an optimal process, and u (t) – an optimal control.

The existence of an optimal control in problem (1)–(4) is also assumed.

Existence of solutions of boundary value problem (1)–(3)

Let’s set the following conditions.
H1) Let detB 6= 0, where B =

∫ T
0 m (t) dt.

H2) f : [0, T ]×Rn ×Rr → Rn is a continuous function and there exists the constant K ≥ 0

|f(t, x, u)− f(t, y, u)| ≤ K |x− y| , t ∈ [0, T ], x, y ∈ Rn, u ∈ U.

H3) L = KTM < 1,

where M = max
0≤t,s≤T

‖M (t, s)‖, M (t, s) =

{
B−1

∫ s
0 m (τ) dτ, 0 ≤ t ≤ s

−B−1
∫ T
s m (τ) dτ, s ≤ t ≤ T.

Theorem 1. Under the condition H1) the function x(·) ∈ AC ([0, T ], Rn) is an absolutely continuous
solution to problem (1)-(3) iff

x(t) = B−1C +

∫ T

0
M(t, τ)f(τ, x(τ), u (τ))dτ. (5)

Here M (t, s) =

{
B−1

∫ s
0 m (τ) dτ, 0 ≤ t ≤ s,

−B−1
∫ T
s m (τ) dτ, s < t ≤ T.
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Proof. It is obvious that if x = x(·) is a solution to (1), then

x(t) = x(0) +

∫ t

0
f(s, x(s), u (s))ds, (6)

for t ∈ (0, T ), where x (0) is an arbitrary constant. To determine x (0) we suppose that the function
given by (6) satisfy (2), i.e.

Bx(0) = C −
∫ T

0
m (t)

∫ t

0
f(τ, x(τ), u (τ))dτdt.

Since detB 6= 0 we have

x(0) = B−1C −B−1
∫ T

0
m (t)

∫ t

0
f(τ, x(τ), u (τ))dτdt. (7)

Considering in (6) the value of x (0) determined by equality (7) we get

x (t) = B−1C +

∫ T

0
M(t, τ)f(τ, x(τ), u (τ))dτ.

By this way we reduced boundary value problem (1)–(3) to the integral equation (5). It is easy to check
that the solution of integral equation (5) also satisfies (1)–(3). Theorem 1 is proved.

Introduce the operator P : C ([0, T ], Rn)→ C ([0, T ], Rn) as

(Px)(t) = B−1C +

∫ T

0
M(t, τ)f(τ, x(τ), u (τ))dτ. (8)

Theorem 2. Within the conditions H1)-H3) for any C ∈ Rn and for each fixed admissible control,
problem (1)–(3) has a unique solution that satisfies the following relation

x(t) = B−1C +

∫ T

0
M(t, τ)f(τ, x(τ), u (τ))dτ. (9)

Proof. Let C ∈ Rn and u (·) ∈ U be fixed. Consider the mapping P : C ([0, T ], Rn)→ C ([0, T ], Rn)
defined by (8). It is obvious that the fixed points of the operator (Px)(t) are the solutions of (1)–(2).
To prove that the mapping P has a fixed point we apply the Banach contraction principle. For any
v, w ∈ C ([0, T ], Rn) we have

|(Pv)(t)− (Pw)(t)| ≤
∫ T

0
|M(t, s)| · |f(s, v(s), u (s))− f(s, w(s), u (s))| ds ≤

≤ KTN ‖v(·)− w(·)‖C[0,T ] , t ∈ [0, T ],

or
‖Pv − Pw‖C[0,T ] ≤ L ‖v − w‖C[0,T ] .

The last relation shows that P is the contraction in the space C ([0, T ], Rn). Thus, based on the principle
of contraction operators one can state that P has a unique fixed point at C ([0, T ], Rn). It means that
integral equation (9) or boundary value problem (1)–(3) has a unique solution.

Theorem 2 is proved.
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Derivation of Pontryagin’s maximum principle

Here we assume that U is closed set in Rr. To obtain the necessary conditions for optimality one
should analyze the variation of the objective functional caused by some control impulse [7] i.e. one must
calculate the increment formula that obtained from Taylor’s series expansion. It is important to give
a definition of the conjugate system that allows one to determine the dominant term that leads to the
necessary condition for optimality. For the sake of simplicity, it is expedient to construct a linearized
model of system (8), (9) in some small neighborhood.

Let {u, x = x (t, u)} and {ũ = u+ ∆u, x̃ = x+ ∆x = x (t, ũ)} be two admissible processes. Introduce
the boundary value problem for problem (1)–(3):

∆ẋ = ∆f (t, x, u) , t ∈ [0, T ] ,∫ T

0
m (t) ∆x (t) dt = 0,

where ∆f (t, x, u) = f (t, x̃, ũ) − f (t, x, u) stands for the total increment of the function f (t, x, u).
Then we can represent the increment of the functional as

∆J (u) = J (ũ)− J (u) = ∆ϕ (x (0) , x (T )) +

∫ T

0
∆F (x, u, t) dt.

Consider the non-trivial vector-function ψ (t) , ψ (t) ∈ Rn, and numerical vector λ ∈ Rn. Then the
increment of the functional (4) can be written as

∆J (u) = J (ũ)− J (u) = ∆ϕ (x (0) , x (T )) +

∫ T

0
∆F (x, u, t) dt+

+

∫ T

0
〈ψ (t) ,∆ẋ (t)−∆f (t, x, u)〉 dt+

〈
λ,

∫ T

0
m (t) ∆x (t) dt

〉
.

Making standard operations for the increment of the functional we obtain the formula

∆J (u) = −
∫ T

0
∆ũH (t, ψ, x, u) dt−

∫ T

0

〈
∆ũ

∂H (t, ψ, x, u)

∂x
,∆x (t)

〉
dt+

+
∫ T
0

〈
∂H(t,ψ,x,u)

∂x +m′ (t)λ+ ψ̇ (t) ,∆x (t)
〉
dt+

〈[
∂ϕ
∂x(0) − ψ (0)

]
,∆x (0)

〉
+

+
〈[

∂ϕ
∂x(T ) + ψ (T )

]
,∆x (T )

〉
+ ηu,

(10)

where
H (t, ψ, x, u) = 〈ψ, f (t, x, u)〉 − F (t, x, u) ,

ηũ = −
∫ T

0
oH (‖∆x (t)‖) dt+ oϕ (‖∆x (t0)‖ , ‖∆x (t1)‖) .

Let the vector function ψ (t) ∈ Rn and vector λ ∈ Rn be a solution of the following conjugate
problem 

ψ̇ (t) = −∂H(t,ψ,x,u)
∂x −m′ (t)λ, t ∈ [0, T ] ,

∂ϕ
∂x(0) − ψ (0) = 0, ∂ϕ

∂x(T ) + ψ (T ) = 0.

(11)
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Then, formula (10) takes the form

∆J (u) = −
∫ T

0
∆ũH (t, ψ, x, u) dt−

∫ T

0

〈
∆ũ

∂H (t, ψ, x, u)

∂x
,∆x (t)

〉
dt+ ηũ. (12)

Taking as parameters the point τ ∈ (0, T ], number ε ∈ (0, τ ], vector v ∈ U and variation interval
(τ − ε, τ) from [0, T ] we consider needle-shaped variation of the admissible control. Then needle-shaped
variation of the control u = u (t) may be given by the relation

ũ = uε (t) =

{
v ∈ U, t ∈ (τ − ε, τ ] ⊂ [0, T ] , ε > 0,

u (t) , t /∈ (τ − ε, τ ].
(13)

To obtain the necessary optimality condition from the increment formula (12) one have to show that
on the needle-shaped variation ũ (t) = uε (t) the state increment ∆εx (t) has the order ε.
Since,

∆x (t) =

∫ T

0
M (t, s) [f (s, x (s) + ∆x (s) , ũ (s))− f (s, x (s) , ũ (s))] ds+

+

∫ T

0
M (t, s) ∆↔

u
f (s, x (s) , u (s)) ds.

The last implies that

‖∆x (t)‖ ≤ (1− L)−1
∫ T

0
‖∆ũf (t, x (t) , u (t))‖ dt,

which proves the hypothesis on response of the state increment caused by the needle-shaped variation
given by (13)

‖∆εx (t)‖ ≤ L̃ε, t ∈ [0, T ] , L̃ = const > 0.

This also implies that for ũ (t) = uε (t) the relation∫ τ

τ−ε

〈
∆v

∂H (t, ψ, x, u)

∂x
,∆εx (t)

〉
dt+ ηuε (‖∆εx (t)‖) = o (ε)

holds true, where
∆εx (t) = x (t, uε)− x (t, u) ∼ ε.

It means that according to (12) the variation of the functional caused by the needle-shaped variation
(13) can be written

∆εJ (u) = J (uε)− J (u) = −∆vH (s, ψ, x, u) .ε+ o (ε) , v ∈ U, s ∈ [0, T ] . (14)

Note that in the last expression, the mean value theorem was used.
Formula (14) with respect to the estimate for ‖∆εx‖ implies the necessary optimality condition in the
form of the maximum principle for the needle-shaped variation of optimal process {u0, x0 = x

(
t, u0

)}
.

Theorem 3. (Pontryagin‘s maximum principle). Assume that the admissible process {u0, x0 =
x
(
t, u0

)
is optimal for problem (1)–(4) and ψ0 (t) is a solution to problem (11) calculated on the

optimal process. Then, inequality

∆vH
(
s, ψ0, x0, u0

)
≤ 0, for every v ∈ U, (15)

is valid for all s ∈ [0, T ] .
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Remark. If the function f is linear with respect to (x, u) and the functions, F,ϕ are convex with
respect to x (0), x (T ), and x (t), respectively, then maximum principle (15) is both necessary and
sufficient optimality condition. This fact can be easily obtained from the formula

∆J (u) = −
∫ T

0
∆ũH (t, ψ, x, u) dt+ oϕ (‖∆x (0)‖ , ‖∆x (T )‖) +

∫ T

0
oF (‖x (t)‖) dt,

where oϕ ≥ 0, oF ≥ 0.

The second order formula for the increment of the functional and variation of the functional

Let us suppose that the scalar functions ϕ (x, y) and F (t, x, u) are continuous over their own
arguments and have continuous and bounded partial derivatives with respect to x, y and u up to second
order, inclusively. Let U be an open set inRr and {u, x = x (t, u)}, {ũ = u+ ∆u, x̃ = x+ ∆x = x (t, ũ)}
be two admissible processes.

Under the above assumptions increment formula (12) turns to

∆J (u) = −
∫ T
0

〈
∂H(t,ψ,x,u)

∂u ,∆u (t)
〉
dt− 1

2

∫ T
0

〈
∆u (t)

′ ∂2H(t,ψ,x,u)
∂u2

,∆u (t)
〉
dt−

−
∫ T
0

〈
∆u (t)

′ ∂H2(t,ψ,x,u)
∂x∂u + 1

2∆x′ (t) ∂
2H(t,ψ,x,u)

∂x2
,∆x (t)

〉
dt+

+1
2

〈
∆x (0)

′ ∂2ϕ

∂x(0)2
+ ∆x (T )

′ ∂2ϕ
∂x(0)∂x(T ) ,∆x (0)

〉
+

+1
2

〈
∆x (0)

′ ∂2ϕ
∂x(T )∂x(0) + ∆x (T )

′ ∂2ϕ

∂x(T )2
,∆x (T )

〉
+ ηũ.

(16)

Take ∆u (t) = εδu (t), where ε > 0 is small enough number, δu (t) is some piecewise continuous
function. Then the expression ∆J (u) = J (ũ) − J (u) for the fixed functions u (t) , ∆u (t) will be a
function of the parameter ε. If the representation

∆J (u) = εδJ (u) +
1

2
ε2δ2J (u) + o

(
ε2
)

(17)

holds true, then δJ (u) is called the first, δ2J (u) the second variation of the functional. To get an
obvious expression for the first and second variations we have to select in ∆x (t) the principal term
with respect to ε.

Let
∆x (t) = εδx (t) + o (ε, t) , (18)

where δx (t) is the variation of the trajectory. Obviously, such a representation exists and for the
function δx (t) one can obtain an equation in variations. Using the definition of ∆x (t) we get

∆x(t) =

∫ T

0
M(t, τ)∆f(τ, x(τ), u (τ))dτ.

Using the Taylor formula, we get:

εδx (t) + o (ε, t) =

∫ T

0
M (t, τ)

{
∂f(τ, x, u)

∂x
[εδx(τ) + o(ε, τ)] + ε

∂f(τ, x, u)

∂u
δu+ o1(ε, τ)

}
dτ.

If to consider that the last formula is true for any ε we have

δx(t) =

∫ T

0
M (t, τ)

{
∂f(τ, x, u)

∂x
δx(τ) +

∂f(τ, x, u)

∂u
δu (t)

}
dτ. (19)
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Equation (19) is called the equation in variations. Obviously, (19) is equivalent to the following nonlocal
boundary value problem

δẋ (t) =
∂f (t, x, u)

∂x
δx (t) +

∂f (t, x, u)

∂u
δu (t) , (20)

∫ T

0
m (t) δx (t) dt = 0. (21)

Any solution of (20) may be written in the form

δx (t) = Φ (t) δx (0) + Φ (t)

∫ t

0
Φ−1 (τ)

∂f (τ, x, u)

∂u
δu (τ) dτ, (22)

where Φ (t) is a solution of the equation

dΦ (t)

dt
=
∂f (t, x, u)

∂x
Φ (t) ,

Φ (0) = E.

Let the solution of (20) determined by equality (22) satisfiy (21). Then for the solutions of problem
(20), (21) we obtain the explicit formula

δx (t) =

∫ T

0
G (t, τ)

∂f (τ, x, u)

∂u
δ (τ) dτ, (23)

where

G (t, s) =

{
Φ (t)B1

−1 ∫ s
0 m (τ) Φ (τ) dτΦ−1 (τ) , 0 ≤ s ≤ t

−Φ (t)B1
−1 ∫ T

s m (τ) Φ (τ) dτΦ−1 (τ) , t ≤ s ≤ T
,

B1 =

∫ T

0
m (t) Φ (t) dt.

Considering (18) in (16), we obtain

∆J(u) = −ε
T∫
0

〈
∂H(t,ψ,x,u)

∂u , δu(t)
〉
dt− ε2

2

{
T∫
0

[〈
δx′(t)∂

2H(t,ψ,x,u)
∂x2

, δx(t)
〉

+

+2
〈
δu′(t)∂

2H(t,ψ,x,u)
∂x∂u , δx(t)

〉
+
〈
δu′(t)∂

2H(t,ψ,x,u)
∂u2

, δu(t)
〉]
dt−

−
〈
δx′(0) ∂2ϕ

∂x(0)2
+ ∆x′(T ) ∂2ϕ

∂x(0)∂x(T ) , δx(0)
〉
−

−
〈
δx′(0) ∂2ϕ

∂x(T )∂x(0) + δx′(T ) ∂2ϕ
∂x(T )2

, δx(T )
〉}

+ o(ε2).

Using (17) from the last we get

δJ(u) = −
∫ T

0

〈
∂H(t, ψ, x, u)

∂u
, δu(t)

〉
dt
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δ2J(u) = −
∫ T
0

[〈
δx′(t)∂

2H(t,ψ,x,u)
∂x2

, δx(t)
〉

+

+2
〈
δu′(t)∂

2H(t,ψ,x,u)
∂x∂u , δx(t)

〉
+
〈
δu′(t)∂

2H(t,ψ,x,u)
∂u2

, δu(t)
〉]
dt+

+
〈
δx′(0) ∂2ϕ

∂x(0)2
+ ∆x′(T ) ∂2ϕ

∂x(0)∂x(T ) , δx(0)
〉

+

+
〈
δx′(0) ∂2ϕ

∂x(T )∂x(0) + δx′(T ) ∂2ϕ
∂x(T )2

, δx(T )
〉
.

Derivation of Legendre-Klebsh conditions

It follows from (17) that the conditions

δJ(u0) = 0, δ2J(u0) ≥ 0 (24)

are fulfilled on the optimal control u0 (t).
From (24) it follows that ∫ T

0

〈
∂H(t, ψ0, x0, u0)

∂u
, δu(t)

〉
dt = 0.

Hence the validity of the equality

∂H(t, ψ0, x0, u0)

∂u
= 0, t ∈ [0, T ] (25)

can be proved along the optimal control that indeed is the Euler equation. From (24) we obtain the
validity of the following inequality along the optimal control

δ2J(u) = −
∫ T
0

[〈
δx′(t)∂

2H(t,ψ,x,u)
∂x2

, δx(t)
〉

+

+2
〈
δu′(t)∂

2H(t,ψ,x,u)
∂x∂u , δx(t)

〉
+
〈
δu′(t)∂

2H(t,ψ,x,u)
∂u2

, δu(t)
〉]
dt+

+
〈
δx′(0) ∂2ϕ

∂x(0)2
+ ∆x′(T ) ∂2ϕ

∂x(0)∂x(T ) , δx(0)
〉

+

+
〈
δx′(0) ∂2ϕ

∂x(T )∂x(0) + δx′(T ) ∂2ϕ
∂x(T )2

, δx(T )
〉
≥ 0.

(26)

Inequality (26) is an implicit necessary optimality condition of first order. Since the verification of
the last conditions require heavy calculations their application meets difficulties.

To obtain more effective optimality conditions of the second order, we use (23) in (26) and introduce
the matrix function

R (τ, s) = −G′ (0, τ) ∂2ϕ

∂x(0)2
G (0, s)−G′ (T, τ) ∂2ϕ

∂x(T )∂x(0)G (0, s)−

−G′ (0, τ) ∂2ϕ
∂x(0)∂x(T )G (T, s)−G′ (T, τ) ∂2ϕ

∂x(T )2
G (T, s) +

∫ T
0 G′ (t, τ) ∂

2H
∂x2

G (t, s) dt.

It allows us to obtain the following terminal formula for the second variation of the functional

δ2J(u) = −
{∫ T

0

∫ T
0

〈
δ′u(τ)∂

′f(τ,x,u)
∂u R(τ, s)∂f(s,x,u)∂u , δu(s)

〉
dtds

+
∫ T
0

〈
δ′u(t)∂

2H(t,ψ, x,u)
∂u2

, δu(t)
〉
dt

+ 2
∫ T
0

∫ T
0

〈
δu′(t)∂

2H(t,ψ,x,u)
∂x∂u G (t, s) ∂f(s,x,u)∂u , δu(s)

〉
dtds

}
.
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Theorem 4. Let the admissible control u (t) satisfy condition (25). Then in order to this function
be optimal in problem (1)-(4), the inequality

δ2J(u) = −
{∫ T

0

∫ T
0

〈
δ′u(τ)∂

′f(τ,x,u)
∂u R(τ, s)∂f(s,x,u)∂u , δu(s)

〉
dτds

+
∫ T
0

〈
δ′u(τ)∂

2H(t,ψ, x,u)
∂u2

, δu(t)
〉
dt+

+2
∫ T
0

∫ T
0

〈
δu′(t)∂

2H(t,ψ,x,u)
∂x∂u G (t, s) ∂f(s,x,u)∂u , δu(s)

〉
dtds

}
≥ 0

(27)

should be fulfilled for all δu(t) ∈ L∞[0, T ].
The analogy of the Legandre-Klebsh condition for the considered problem follows from condition

(28).
Theorem 5. The inequality holds true

ν ′
∂2H(θ, ψ(θ), x(θ), u(θ))

∂u2
v ≤ 0 (28)

over the optimal process (u(t), x(t)) for all ν ∈ Rr and θ ∈ [0, T ].
Proof. To prove the theorem, we calculate the variation of the control

δu(t) =

{
v t ∈ [θ, θ + ε)
0 t /∈ [θ, θ + ε)

, (29)

where ε > 0, v is some r-dimensional vector.
By virtue of (23) the variation of the corresponding trajectory is

δx(t) = a(t)ε+ o(ε, t), t ∈ [0, T ], (30)

where a (t) is a continuous bounded function.
Substituting variation (29) into (27) and selecting the principal term with respect to ε we obtain

δ2J(u) = −
θ+ε∫
θ

v′ ∂
2H(t,ψ(t),x(t),u(t))

∂u2
vdt+ o(ε) =

= −εv′ ∂
2H(θ,ψ(θ),x(θ),u(θ))

∂u2
v + o1(ε).

From this using condition of (24) the Legandre-Klebsh criterion (28) is obtained.
Condition (30) is the second order optimality condition. It is obvious that when the right hand

side of system (1) is linear with respect to control parameters, condition (28) also degenerates, i.e. is
fulfilled trivially.

If for all θ ∈ (0, T ), v ∈ Rr the relations

∂H(θ, ψ(θ), x(θ), u(θ))

∂u
= 0, v′

∂2H(θ, ψ(θ), x(θ), u(θ))

∂u2
v = 0,

hold true then the admissible control u (t) is said be a singular control in the classic sense.
Theorem 6. Assume that the control u (t) is the singular in the classic sense. Then for optimality

of u (t)

ν ′
{∫ T

0

∫ T
0

〈
∂f(t,x,u)

∂u R(t, s), ∂f(s,x,u)∂u

〉
dtds +

+ 2
∫ T
0

∫ T
0

〈
∂2H(t,ψ, x,u)

∂x∂u G (t, s) , ∂f(s,x,u)∂u

〉
dtds

}
v ≤ 0

(31)
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should be fulfilled for all v ∈ Rn.
Condition (31) is an integral necessary condition of optimality of the controls singular in the classic

sense. One can obtain various type necessary optimality conditions by taking the special variation of
various forms in formula (30).

Conclusion

In this paper, the optimal control problem is considered when the considered system is described
by the differential equations with integral boundary conditions. The existence and uniqueness of
the solution is proved for the corresponding boundary value problem. The first and second order
increment formulas of the functional are obtained. Various necessary conditions of optimality of the
first and second order are obtained. Of course, such type existence and uniqueness results and necessary
conditions of optimality hold under the same sufficient conditions on nonlinear terms of the system of
nonlinear differential equations (1), subject to multi-point nonlocal and integral boundary conditions
type of ∫ T

0
m (t)x (t) dt+

J∑
j=1

Bjx (tj) = C,

where Bj ∈ Rn×n are given matrices and

det

B +
J∑
j=1

Bj

 6= 0,

here, 0 < t1 < t2 < ... < tJ ≤ T for controls singular in the classic sense. Selecting special variation in
different way in formula (30) we can get various necessary optimality conditions.
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M.Дж. Марданов, Я.А. Шарифов,

Әзiрбайжан Ұлттық ғылым академиясының Математика және механика институты, Баку, Әзiрбайжан;
Баку мемлекеттiк университетi, Баку, Әзiрбайжан

Интегралды шекаралық шарттары бар жүйелер үшiн тиiмдi
басқару есебi

Мақалада «таза» интегралды шекаралық шартпен тиiмдi басқару есебi қарастырылған. Грин функци-
ясы құрылған. Банахтың қысып бейнелеу принципiн қолдана отырып, бекiтiлген рұқсат етiлген басқа-
ру кезiнде интегралды шеттiк есептердiң бiр класының шешiмнiң бар болуының жеткiлiктi шарты
мен жалғыздығы анықталды. Функционалдың ауытқуы әдiсiмен Понтрягиннiң максимум принципi
дәлелдендi. Функционалдың бiрiншi және екiншi вариациялары есептелген. Басқарудың вариацияла-
рының көмегiмен екiншi реттi тиiмдiлiктiң әртүрлi қажеттi шарттары алынды.

Kiлт сөздер: интегралды шекаралық шарттар, ерекше басқару, тиiмдi басқару есебi, шешiмнiң бар
және жалғыз болуы.

M.Дж. Марданов, Я.А. Шарифов

Институт математики и механики Национальной академии наук Азербайджана, Баку, Азербайджан;
Бакинский государственный университет, Баку, Азербайджан

Задача оптимального управления для систем с интегральными
граничными условиями

В статье рассмотрена задача оптимального управления с «чистым» интегральным граничным услови-
ем. Построена функция Грина. С помощью принципа сжимающих отображений Банаха установлено
достаточное условие существования и единственности решения одного класса интегральных краевых
задач при фиксированных допустимых управлениях. Методом приращений функционала доказан
принцип максимума Понтрягина. Вычислены первая и вторая вариации функционала. С помощью
вариаций управлений получены различные необходимые условия оптимальности второго порядка.

Ключевые слова: интегральные граничные условия, особые управления, задача оптимального управ-
ления, существование и единственность решения.
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