DOI 10.31489/2023M1/81-93 UDC 515.1

F. Hezenci^{1,*}, Y. Sozen²

¹Duzce University, Duzce, Turkey; ²Hacettepe University, Ankara, Turkey (E-mail: fatihezenci@gmail.com, ysozen@hacettepe.edu.tr)

A remark on Schottky representations and Reidemeister torsion

The present paper establishes a formula of Reidemeister torsion for Schottky representations. The theoretical results are applied to 3-manifolds with boundary consisting orientable surfaces with genus at least 2.

Keywords: Schottky representations, Reidemeister torsion, representation varieties, Atiyah-Bott-Goldman symplectic form, Thurston symplectic form.

Introduction

It is well-known that the representation varieties are important in many branches of mathematics and physics. For instance, let Σ be a compact Riemann surface of genus at least 2, Teichmüller space Teich(Σ) of Σ is the space of deformation classes of complex structures on it. By the uniformization Theorem, it is the space of hyperbolic metrics, namely Riemannian metrics on Σ with Gaussian curvature constant (-1). Furthermore, Teichmüller space of Σ can be interpreted as discrete faithful representations of the fundamental group $\pi_1(\Sigma)$ of the surface to PSL(2, \mathbb{R}). It is well-known that some certain geometric structures on Σ can also be identified as certain surface group variety [1–6] and the references therein.

Representation varieties have a large number of applications in many branches of mathematics and physics such as in 3-manifold topology (in Bass-Culler-Shalen theory [7,8], in A-polynomial [9], in hyperbolic geometry [10], in Casson invariant theory [11]), in Yang-Mills and Chern-Simons quantum field theories [12,13], in skein theory of quantum invariants of 3-manifolds [14,15], in the moduli spaces of flat connections, holomorphic bundles, and Higgs bundles [16].

Reidemeister torsion(R-torsion) is a topological invariant and was introduced by K. Reidemeister [17]. Using this invariant, he classified 3-dimensional lens spaces. W. Franz extended the R-torsion and classified the higher dimensional lens spaces [18]. R-torsion has many applications in several branches of mathematics and theoretical physics such as topology [19], differential geometry [20], representation spaces [21] dynamical systems [22], 3-dimensional Seiberg-Witten theory [23], algebraic K-theory [24], Chern-Simon theory [13], knot theory [24], theoretical physics and quantum field theory [13]. See Refs. [25] and [26] and the references therein for further information.

Real symplectic chain complex is a algebraic topological instrument and was introduced by E. Witten [21]. Combining this and R-torsion, he evaluated the volume of several moduli space of $\operatorname{Rep}(\Sigma, G)$, which is the set of all conjugacy classes of homomorphisms from the fundamental group $\pi_1(\Sigma)$ of a Riemann surface Σ to the compact gauge group $G \in \{\operatorname{SU}(2), \operatorname{SO}(3)\}$.

In paper [27], we considered the set $\operatorname{Rep}(\Sigma, G)$ of G-valued representations from the fundamental group $\pi_1(\Sigma)$ of the surface Σ to the exceptional groups G_2, F_4 , and E_6 . We proved the well-definiteness of R-torsion of such representations. We also established a formula for computing R-torsion of such representations in terms of the well known symplectic structure on $\operatorname{Rep}(\Sigma, G)$, namely, Atiyah-Bott-Goldman symplectic form for the Lie group G. Then, we applied to G-valued Hitchin representations.

^{*}Corresponding author.

 $E\text{-}mail:\ fat ihe zenci @gmail.com$

In paper [28], we investigated G-valued representations of free or surface group with genus > 1 for $G \in \{\operatorname{GL}(n, \mathbb{C}), \operatorname{SL}(n, \mathbb{C})\}$. We also established a formula for computing R-torsion of such representations in terms of Atiyah-Bott-Goldman symplectic form for G. Moreover, we applied the obtained results to hyperbolic 3-manifolds.

In the present paper, we prove a formula of R-torsion for Schottky representations. The theoretical results are applied to 3-manifolds with boundary consisting orientable surfaces with genus at least 2.

1 Preliminaries

In this section, we provide the necessary definition and basic facts about the topological invariant Rtorsion and the symplectic chain complex. For further information the reader is referred to [21,25,26,29] and the references therein.

Let $C_* = \left(0 \to C_n \xrightarrow{\partial_n} C_{n-1} \to \cdots \to C_1 \xrightarrow{\partial_1} C_0 \to 0\right)$ be a chain complex of finite dimensional vector spaces over the field \mathbb{C} of complex numbers. For $p = 0, \ldots, n$, we denote the kernel of ∂_p , the image of ∂_{p+1} , and the *p*th homology group of the chain complex C_* by $Z_p(C_*)$, $B_p(C_*)$, and $H_p(C_*)$, respectively. From the definition of $Z_p(C_*)$, $B_p(C_*)$, and $H_p(C_*)$ it follows

$$0 \longrightarrow Z_p(C_*) \hookrightarrow C_p \twoheadrightarrow B_{p-1}(C_*) \longrightarrow 0$$

and

$$0 \longrightarrow B_p(C_*) \hookrightarrow Z_p(C_*) \twoheadrightarrow H_p(C_*) \longrightarrow 0.$$

For p = 0, ..., n, if \mathbf{c}_p , \mathbf{b}_p , and \mathbf{h}_p are bases of C_p , $B_p(C_*)$, and $H_p(C_*)$, respectively and if $\ell_p : H_p(C_*) \to Z_p(C_*)$, $s_p : B_{p-1}(C_*) \to C_p$ are sections of $Z_p(C_*) \to H_p(C_*)$, $C_p \to B_{p-1}(C_*)$, respectively, then with the help of above short-exact sequences we have the basis $\mathbf{b}_p \sqcup \ell_p(\mathbf{h}_p) \sqcup s_p(\mathbf{b}_{p-1})$ of C_p . Here, \sqcup denotes the disjoint union.

Let \mathbf{c}_p , \mathbf{b}_p , \mathbf{h}_p , ℓ_p , and s_p be as above. Then, *R*-torsion of the chain complex C_* with respect to bases $\{\mathbf{c}_p\}_{p=0}^n$, $\{\mathbf{h}_p\}_{p=0}^n$ is defined by

$$\mathbb{T}\left(C_{*}, \{\mathbf{c}_{p}\}_{0}^{n}, \{\mathbf{h}_{p}\}_{0}^{n}\right) = \prod_{p=0}^{n} \left[\mathbf{b}_{p} \sqcup \ell_{p}(\mathbf{h}_{p}) \sqcup s_{p}(\mathbf{b}_{p-1}), \mathbf{c}_{p}\right]^{(-1)^{(p+1)}},$$

where $[\mathbf{e}_p, \mathbf{f}_p]$ denotes determinant of the change-base-matrix from basis \mathbf{f}_p to \mathbf{e}_p of C_p .

R-torsion does not depend on the bases \mathbf{b}_p and sections s_p, ℓ_p [24].

Let \mathbf{c}'_p , \mathbf{h}'_p be also bases of C_p , $H_p(C_*)$, respectively. Then, the following change-base-formula is valid [24]:

$$\mathbb{T}\left(C_{*}, \left\{\mathbf{c}_{p}^{\prime}\right\}_{0}^{n}, \left\{\mathbf{h}_{p}^{\prime}\right\}_{0}^{n}\right) = \prod_{p=0}^{n} \left(\frac{\left[\mathbf{c}_{p}^{\prime}, \mathbf{c}_{p}\right]}{\left[\mathbf{h}_{p}^{\prime}, \mathbf{h}_{p}\right]}\right)^{\left(-1\right)^{p}} \mathbb{T}\left(C_{*}, \left\{\mathbf{c}_{p}\right\}_{0}^{n}, \left\{\mathbf{h}_{p}\right\}_{0}^{n}\right).$$

$$(1)$$

Let

$$0 \longrightarrow A_* \xrightarrow{i} B_* \xrightarrow{j} D_* \longrightarrow 0 \tag{1}$$

be a short-exact sequence of chain complexes, and let \mathbf{c}_p^A , \mathbf{c}_p^B , \mathbf{c}_p^D , \mathbf{h}_p^A , \mathbf{h}_p^B , and \mathbf{h}_p^D are bases of A_p , B_p , D_p , $H_p(A_*)$, $H_p(B_*)$, and $H_p(D_*)$, respectively. Let us consider the corresponding Mayer-Vietoris long-exact sequence of vector spaces

$$C_*: \dots \longrightarrow H_p(A_*) \xrightarrow{\imath_p} H_p(B_*) \xrightarrow{j_p} H_p(D_*) \xrightarrow{\delta_p} H_{p-1}(A_*) \longrightarrow \dots$$

associated to short-exact sequence (1). Note that $C_{3p} = H_p(D_*)$, $C_{3p+1} = H_p(A_*)$, and $C_{3p+2} = H_p(B_*)$ then we can consider the bases \mathbf{h}_p^D , \mathbf{h}_p^A , and \mathbf{h}_p^B for C_{3p} , C_{3p+1} , and C_{3p+2} , respectively. Theorem 1. [24] Suppose \mathbf{c}_p^A , \mathbf{c}_p^B , \mathbf{c}_p^D , \mathbf{h}_p^A , \mathbf{h}_p^B , and \mathbf{h}_p^D are as above. Suppose also $\left[\mathbf{c}_p^B, \mathbf{c}_p^A \oplus \widetilde{\mathbf{c}_p^D}\right] = \pm 1$, where $j\left(\widetilde{\mathbf{c}_p^D}\right) = \mathbf{c}_p^D$. Then, it follows

$$\mathbb{T}\left(B_{*}, \left\{\mathbf{c}_{p}^{B}\right\}_{0}^{n}, \left\{\mathbf{h}_{p}^{B}\right\}_{0}^{n}\right) = \mathbb{T}\left(A_{*}, \left\{\mathbf{c}_{p}^{A}\right\}_{0}^{n}, \left\{\mathbf{h}_{p}^{A}\right\}_{0}^{n}\right) \\ \times \quad \mathbb{T}\left(D_{*}, \left\{\mathbf{c}_{p}^{D}\right\}_{p=0}^{n}, \left\{\mathbf{h}_{p}^{D}\right\}_{0}^{n}\right) \mathbb{T}\left(C_{*}, \left\{\mathbf{c}_{3p}\right\}_{0}^{3n+2}, \left\{0\right\}_{0}^{3n+2}\right).$$

Theorem 1 yields the sum-lemma.

Lemma 1. Assume A_* , D_* are chain complexes of vector spaces and \mathbf{c}_p^A , \mathbf{c}_p^D , \mathbf{h}_p^A , and \mathbf{h}_p^D are bases of A_p , D_p , $H_p(A_*)$, and $H_p(D_*)$, respectively. Then, the following equality

$$\mathbb{T}(A_* \oplus D_*, \{\mathbf{c}_p^A \sqcup \mathbf{c}_p^D\}_0^n, \{\mathbf{h}_p^A \sqcup \mathbf{h}_p^D\}_0^n) = \mathbb{T}(A_*, \{\mathbf{c}_p^A\}_0^n, \{\mathbf{h}_p^A\}_0^n) \mathbb{T}(D_*, \{\mathbf{c}_p^D\}_0^n, \{\mathbf{h}_p^D\}_0^n)$$

is valid.

The proof of Lemma 1 can also be found in [30].

 $(C_*, \partial_*, \{\omega_{*,q-*}\})$ is said to be \mathbb{C} -symplectic chain complex of length q, if

- 1 $C_*: 0 \to C_q \xrightarrow{\partial_q} C_{q-1} \to \cdots \to C_{q/2} \to \cdots \to C_1 \xrightarrow{\partial_1} C_0 \to 0$ is a chain complex of length q, where $q \equiv 2 \pmod{4}$,
- 2 for $p = 0, \ldots, q$, $\omega_{p,q-p} : C_p \times C_{q-p} \to \mathbb{C}$ is a ∂ -compatible non-degenerate anti-symmetric bilinear form. Namely,

$$\omega_{p,q-p} \left(\partial_{p+1} a, b \right) = (-1)^{p+1} \omega_{p+1,q-(p+1)} \left(a, \partial_{q-p} b \right)$$

and

$$\omega_{p,q-p}(a,b) = (-1)^{p(q-p)} \omega_{q-p,p}(b,a).$$

From the fact that $q \equiv 2 \pmod{4}$ we have $\omega_{p,q-p}(a,b)$ is $(-1)^p \omega_{q-p,p}(b,a)$. From ∂ -compatibility of $\omega_{p,q-p}$ we obtain the non-degenerate pairing $[\omega_{p,q-p}]: H_p(C_*) \times H_{q-p}(C_*) \to \mathbb{C}$.

For the rest of the paper, if the \mathbb{C} -symplectic chain complex $(C_*, \partial_*, \{\omega_{*,q-*}\})$ is clear, then $\Delta(\mathbf{h}_p, \mathbf{h}_{q-p})$ is the determinant of the matrix of the non-degenerate pairing

$$\left[\omega_{p,q-p}\right]:H_p\left(C_*\right)\times H_{q-p}\left(C_*\right)\to\mathbb{C}$$

in the bases \mathbf{h}_p , \mathbf{h}_{q-p} .

Assume C_* is a \mathbb{C} -symplectic chain complex of length q and \mathbf{c}_p , \mathbf{c}_{q-p} are bases of C_p , C_{q-p} , respectively. We say ω -compatible, if the matrix of $\omega_{p,q-p}$ in \mathbf{c}_p , \mathbf{c}_{q-p} is equal to the $k \times k$ identity matrix $\mathrm{Id}_{k \times k}$ when $p \neq q/2$ and $\begin{pmatrix} 0_{l \times l} & \mathrm{Id}_{l \times l} \\ -\mathrm{Id}_{l \times l} & 0_{l \times l} \end{pmatrix}$ when p = q/2, where $k = \dim C_p = \dim C_{q-p}$ and $2l = \dim C_{q/2}$.

For computing R-torsion in terms of intersections pairings, we have the following result suggests a formula. Namely,

Theorem 2. [31] If $(C_*, \partial_*, \{\omega_{*,q-*}\})$ is a \mathbb{C} -symplectic chain complex with the ω -compatible bases $\mathbf{c}_p, p = 0, \ldots, q$ and if \mathbf{h}_p is a basis of $H_p(C_*), p = 0, \ldots, q$, then the following formula holds:

$$\left|\mathbb{T}\left(C_{*}, \{\mathbf{c}_{p}\}_{0}^{q}, \{\mathbf{h}_{p}\}_{0}^{q}\right)\right| = \prod_{p=0}^{(q/2)-1} \left|\Delta(\mathbf{h}_{p}, \mathbf{h}_{q-p})\right|^{(-1)^{p}} \sqrt{\left|\Delta\left(\mathbf{h}_{q/2}, \mathbf{h}_{q/2}\right)\right|^{(-1)^{q/2}}}.$$
(2)

Mathematics series. $N^{\circ} 1(109)/2023$

In case $\mathbf{h}_p = \mathbf{h}_{q-p} = 0$, the convention 0 = 1.0 is used and hence $\Delta(\mathbf{h}_p, \mathbf{h}_{q-p}) = 1$. Let us also note that equation (2) can be improved as:

$$\mathbb{T}\left(C_{*}, \{\mathbf{c}_{p}\}_{0}^{q}, \{\mathbf{h}_{p}\}_{0}^{q}\right) = \prod_{p=0}^{(q/2)-1} \Delta(\mathbf{h}_{p}, \mathbf{h}_{q-p})^{(-1)^{p}} \sqrt{\Delta\left(\mathbf{h}_{q/2}, \mathbf{h}_{q/2}\right)^{(-1)^{q/2}}}.$$
(3)

For details of (3), we refer the reader to [28; Remark 2.4]. See [27, 28, 30], for further applications of Theorem 2.

2 Main results

Let Σ be a closed orientable surface of genus at least 2 with the universal covering $\tilde{\Sigma}$. Let G be the Lie group $PSL(2, \mathbb{C})$ and \mathcal{G} be the Lie algebra of G with the non-degenerate symmetric bilinear form B. Here, B is the Killing form.

Assume $\rho: \pi_1(\Sigma) \to G$ is a homomorphism from the fundamental group $\pi_1(\Sigma)$ of Σ to G. Let $E_{\rho} = \widetilde{\Sigma} \times \mathcal{G} / \sim$ be the corresponding adjoint bundle over Σ . Here, $(x_1, t_1) \sim (x_2, t_2)$, if $(x_2, t_2) = (\gamma \cdot x_1, \gamma \cdot t_1)$ for some $\gamma \in \pi_1(\Sigma)$, the action of γ in the first component by deck transformation $(\gamma \cdot x_1 = \gamma (x_1))$ and in the second component by the adjoint action $(\gamma \cdot t_1 = \operatorname{Ad}_{\rho(\gamma)}(t_1) = \rho(\gamma) t_1 \rho(\gamma)^{-1})$.

Let K be a cell-decomposition of Σ for which the adjoint bundle E_{ϱ} is trivial over each cell and \widetilde{K} be the lift of K to the $\widetilde{\Sigma}$. Denote by $\mathbb{Z}[\pi_1(\Sigma)]$ the integral group ring. Let $C_*(K; \mathcal{G}_{\mathrm{Ad}_{\varrho}}) = C_*(\widetilde{K}; \mathbb{Z}) \otimes \mathcal{G}/\sim$, where for all $\gamma \in \pi_1(\Sigma), \sigma \otimes t \sim \gamma \cdot \sigma \otimes \gamma \cdot t$, the action of γ by the first component is by deck transformation and in the second is by adjoint action. We have the following chain complex:

$$0 \longrightarrow C_2\left(K; \mathcal{G}_{\mathrm{Ad}_{\varrho}}\right) \xrightarrow{\partial_2 \otimes \mathrm{id}} C_1\left(K; \mathcal{G}_{\mathrm{Ad}_{\varrho}}\right) \xrightarrow{\partial_1 \otimes \mathrm{id}} C_0\left(K; \mathcal{G}_{\mathrm{Ad}_{\varrho}}\right) \longrightarrow 0.$$
(4)

Here, ∂_p denotes the usual boundary operator. Denote by $H_*(K; \mathcal{G}_{\mathrm{Ad}_\varrho})$ and $H^*(K; \mathcal{G}_{\mathrm{Ad}_\varrho})$ the homologies and cohomologies of the chain complex (4), respectively, where $C^*(K; \mathcal{G}_{\mathrm{Ad}_\varrho})$ denotes the set of $\mathbb{Z}[\pi_1(\Sigma)]$ module homomorphisms from $C_*(\widetilde{K}; \mathbb{Z})$ to \mathcal{G} . See [25] for details and unexplained subjects.

Clearly, for conjugate $\varrho, \varrho' : \pi_1(\Sigma)' \to G$ i.e. $\varrho'(.) = A\varrho(.)A^{-1}$ for some $A \in G$, we have isomorphic $C_*(K; \mathcal{G}_{\mathrm{Ad}_{\varrho}})$ and $C_*(K; \mathcal{G}_{\mathrm{Ad}_{\varrho'}})$. Similarly, the corresponding cochains $C^*(K; \mathcal{G}_{\mathrm{Ad}_{\varrho}})$ and $C^*(K; \mathcal{G}_{\mathrm{Ad}_{\varrho'}})$ are isomorphic.

Consider chain complex (4). Assume $\left\{e_j^p\right\}_{j=1}^{m_p}$ is a basis of $C_p(K;\mathbb{Z})$. For $j = 1, \ldots, m_p$, fix a lift \tilde{e}_j^p of e_j^p . Then, $c_p = \left\{\tilde{e}_j^p\right\}_{j=1}^{m_p}$ of $C_p\left(\tilde{K};\mathbb{Z}\right)$ is a $\mathbb{Z}[\pi_1(\Sigma)]$ -basis. Assume $\mathcal{A} = \{a_k\}_{k=1}^{\dim \mathcal{G}}$ is a B-orthonormal basis of the Lie algebra \mathcal{G} . Namely, the matrix of the form B equals to the identity matrix of size dim \mathcal{G} . Hence, we obtain a \mathbb{C} -basis $\mathbf{c}_p = c_p \otimes_{\varrho} \mathcal{A}$ of $C_p\left(K;\mathcal{G}_{\mathrm{Ad}_{\varrho}}\right)$. We call such a basis a geometric basis for $C_p\left(K;\mathcal{G}_{\mathrm{Ad}_{\varrho}}\right)$.

If $\mathbf{c}_p = c_p \otimes_{\varrho} \mathcal{A}$ and \mathbf{h}_p are respectively the geometric basis of $C_p(K; \mathcal{G}_{\mathrm{Ad}_{\varrho}})$ and a basis of $H_p(\Sigma; \mathcal{G}_{\mathrm{Ad}_{\varrho}})$, then $\mathbb{T}\left(C_*(K; \mathcal{G}_{\mathrm{Ad}_{\varrho}}), \{c_p \otimes_{\varrho} \mathcal{A}\}_{p=0}^2, \{\mathbf{h}_p\}_{p=0}^2\right)$ is said to be the *R*-torsion of the triple K, Ad_{ϱ} , and $\{\mathbf{h}_p\}_{p=0}^2$.

Theorem 3. [28; Theorem 3.1] If Σ , K, ρ , $\mathbf{c}_p = c_p \otimes_{\rho} \mathcal{A}$, and \mathbf{h}_p , p = 0, 1, 2, are as above, then $\mathbb{T}\left(C_*\left(K; \mathcal{G}_{\mathrm{Ad}_{\rho}}\right), \{c_p \otimes_{\rho} \mathcal{A}\}_{p=0}^2, \{\mathbf{h}_p\}_{p=0}^2\right)$ does not depend on the basis \mathcal{A} , lifts \tilde{e}_j^p , conjugacy class of ρ , and the cell-decomposition K.

From Theorem 3, we have the well-definiteness of R-torsion of such representations, and hence we write $\mathbb{T}(\Sigma, \{\mathbf{h}_p\}_{p=0}^2)$ rather than $\mathbb{T}\left(C_*\left(K; \mathcal{G}_{\mathrm{Ad}_\varrho}\right), \{c_p \otimes_{\varrho} \mathcal{A}\}_{p=0}^2, \{\mathbf{h}_p\}_{p=0}^2\right)$.

Assume Σ , K, G, \mathcal{G} , ϱ , $\mathbf{c}_p = c_p \otimes_{\varrho} \mathcal{A}$ are as above. Let us consider the dual cell-decomposition K' of Σ corresponding to the cell-decomposition K. Consider the lifts \widetilde{K} and $\widetilde{K'}$ of K and K', respectively. For i = 0, 1, 2, we have the intersection form

$$(\cdot, \cdot)_{i,2-i} : C_i\left(K; \mathcal{G}_{\mathrm{Ad}_{\varrho}}\right) \times C_{2-i}\left(K'; \mathcal{G}_{\mathrm{Ad}_{\varrho}}\right) \longrightarrow \mathbb{C}$$
 (5)

defined by $(\sigma_1 \otimes t_1, \sigma_2 \otimes t_2)_{i,2-i} = \sum_{\gamma \in \pi_1(\Sigma)} \sigma_1. (\gamma \bullet \sigma_2) B(t_1, \gamma \bullet t_2)$. Here, "." denotes the intersection number pairing, the action of γ on σ_2 by deck transformation and on t_2 is by the adjoint action.

Using the anti-symmetric, ∂ -compatible $(\cdot, \cdot)_{i,2-i}$, we have the non-degenerate anti-symmetric form

$$\left[\cdot,\cdot\right]_{i,2-i}:H_{i}\left(\Sigma;\mathcal{G}_{\mathrm{Ad}_{\varrho}}\right)\times H_{2-i}\left(\Sigma;\mathcal{G}_{\mathrm{Ad}_{\varrho}}\right)\longrightarrow\mathbb{C}.$$
(6)

Note that if $D_i = C_i(K; \mathcal{G}_{\mathrm{Ad}_{\varrho}}) \oplus C_i(K'; \mathcal{G}_{\mathrm{Ad}_{\varrho}})$, and if we consider the bilinear form $\omega_{i,2-i} : D_i \times D_{2-i} \to \mathbb{C}$ defined by extending the intersection form (5) zero on $C_i(K; \mathcal{G}_{\mathrm{Ad}_{\varrho}}) \times C_{2-i}(K; \mathcal{G}_{\mathrm{Ad}_{\varrho}})$ and $C_i(K'; \mathcal{G}_{\mathrm{Ad}_{\varrho}}) \times C_{2-i}(K'; \mathcal{G}_{\mathrm{Ad}_{\varrho}})$, then D_* becomes a \mathbb{C} -symplectic chain complex. Note also that the bases c_i of $C_i(\widetilde{K}; \mathbb{Z})$ and c'_i of $C_i(\widetilde{K'}; \mathbb{Z})$ corresponding to c_i result an ω -compatible basis for D_* .

Kronecker pairing $\langle \cdot, \cdot \rangle : C^i(K; \mathcal{G}_{\mathrm{Ad}_{\varrho}}) \times C_i(K; \mathcal{G}_{\mathrm{Ad}_{\varrho}}) \to \mathbb{C}$ is defined by $\langle \theta, \sigma \otimes_{\varrho} t \rangle = B(t, \theta(\sigma))$. It has natural extended to $\langle \cdot, \cdot \rangle : H^i(\Sigma; \mathcal{G}_{\mathrm{Ad}_{\varrho}}) \times H_i(\Sigma; \mathcal{G}_{\mathrm{Ad}_{\varrho}}) \to \mathbb{C}$.

Recall the cup product $\cup : C^i(K; \mathcal{G}_{\mathrm{Ad}_{\varrho}}) \times C^j(K; \mathcal{G}_{\mathrm{Ad}_{\varrho}}) \to C^{i+j}(\widetilde{\Sigma}; \mathbb{C})$ is defined by $(\theta_i \cup \theta_j)(\sigma_{i+j}) = B\left(\theta_i\left((\sigma_{i+j})_{\mathrm{front}}\right), \theta_j\left((\sigma_{i+j})_{\mathrm{back}}\right)\right)$. Here, σ_{i+j} is in $C_{i+j}(\widetilde{K}; \mathbb{Z})$ and \widetilde{K} denotes the lift of K to $\widetilde{\Sigma}$ $\theta_i : C_i(\widetilde{K}; \mathbb{Z}) \to \mathcal{G}, \ \theta_j : C_j(\widetilde{K}; \mathbb{Z}) \to \mathcal{G}$ are $\mathbb{Z}[\pi_1(\Sigma)]$ -module homomorphisms. This yields the cup product

$$-_{B}: C^{i}\left(K; \mathcal{G}_{\mathrm{Ad}_{\varrho}}\right) \times C^{j}\left(K; \mathcal{G}_{\mathrm{Ad}_{\varrho}}\right) \longrightarrow C^{i+j}\left(K; \mathbb{C}\right)$$

with natural extension

$$\smile_B: H^i\left(\Sigma; \mathcal{G}_{\mathrm{Ad}_{\varrho}}\right) \times H^j\left(\Sigma; \mathcal{G}_{\mathrm{Ad}_{\varrho}}\right) \longrightarrow H^{i+j}\left(\Sigma; \mathbb{C}\right),$$

where $[\theta_i] \smile_B [\theta_j] = [\theta_i \smile_B \theta_j]$.

Using the isomorphisms by (6) and the Kronecker pairing, we get the Poincare duality isomorphisms

$$\mathrm{PD}: H_i\left(\Sigma; \mathcal{G}_{\mathrm{Ad}_{\varrho}}\right) \cong H_{2-i}\left(\Sigma; \mathcal{G}_{\mathrm{Ad}_{\varrho}}\right)^* \cong H^{2-i}\left(\Sigma; \mathcal{G}_{\mathrm{Ad}_{\varrho}}\right).$$

For i = 0, 1, 2 we have the

$$\begin{array}{ccc} H^{2-i}\left(\Sigma;\mathcal{G}_{\mathrm{Ad}_{\varrho}}\right) & \times & H^{i}\left(\Sigma;\mathcal{G}_{\mathrm{Ad}_{\varrho}}\right) & \stackrel{\smile_{B}}{\longrightarrow} & H^{2}\left(\Sigma;\mathbb{C}\right) \\ \uparrow^{\mathrm{PD}} & \uparrow^{\mathrm{PD}} & \circlearrowright & \uparrow \\ H_{i}\left(\Sigma;\mathcal{G}_{\mathrm{Ad}_{\varrho}}\right) & \times & H_{2-i}\left(\Sigma;\mathcal{G}_{\mathrm{Ad}_{\varrho}}\right) & \stackrel{[\cdot,\cdot]_{i,2-i}}{\longrightarrow} & \mathbb{C}. \end{array}$$

Here, $\mathbb{C} \to H^2(\Sigma; \mathbb{C})$ sends $1 \in \mathbb{C}$ to the fundamental class of $H^2(\Sigma; \mathbb{C})$ and the inverse of this is integration over Σ .

Clearly, we have the following pairing

$$\Omega_{i,2-i}: H^{i}\left(\Sigma; \mathcal{G}_{\mathrm{Ad}_{\varrho}}\right) \times H^{2-i}\left(\Sigma; \mathcal{G}_{\mathrm{Ad}_{\varrho}}\right) \xrightarrow{\smile_{B}} H^{2}\left(\Sigma; \mathbb{C}\right) \xrightarrow{\int_{\Sigma}} \mathbb{C}.$$
(7)

 $\Omega_{1,1}$ is called Atiyah-Bott-Goldman symplectic form for G on the representation variety $\operatorname{Rep}(\Sigma, G)$.

In [28], we established a formula for computing Reidemeister torsion of representations in terms of $\Omega_{1,1}$ Atiyah-Bott-Goldman symplectic form for the Lie group G. More precisely,

Mathematics series. $N_{\rm P} 1(109)/2023$

Theorem 4. [28; Theorem 3.2] Let Σ , K, K', ρ be as above. Let \mathbf{c}_p and \mathbf{c}'_p be the corresponding geometric bases of $C_p(K; \mathcal{G}_{\mathrm{Ad}_{\varrho}})$ and $C_p(K'; \mathcal{G}_{\mathrm{Ad}_{\varrho}})$, respectively, p = 0, 1, 2. If \mathbf{h}_p is a basis of $H_p(\Sigma; \mathcal{G}_{\mathrm{Ad}_{\varrho}})$, p = 0, 1, 2, then the following formulas are valid

i.
$$\mathbb{T}\left(\Sigma, {\{\mathbf{h}_p\}}_{p=0}^2\right) = ie^{\frac{i\theta}{2}} \frac{\Delta(\mathbf{h}_0, \mathbf{h}_2)}{\sqrt{\Delta(\mathbf{h}_1, \mathbf{h}_1)}},$$

ii. $\mathbb{T}\left(\Sigma, {\{\mathbf{h}_p\}}_{p=0}^2\right) = ie^{\frac{i\theta}{2}} \frac{\sqrt{\delta(\mathbf{h}^1, \mathbf{h}^1)}}{\delta(\mathbf{h}^2, \mathbf{h}^0)}.$

Here, $\Delta(\mathbf{h}_p, \mathbf{h}_{2-p})$ is the determinant of the matrix of (6) in \mathbf{h}_p and \mathbf{h}_{2-p} , $\Delta(\mathbf{h}_0, \mathbf{h}_2) = |\Delta(\mathbf{h}_0, \mathbf{h}_2)| e^{i\theta}$, where $i = \sqrt{-1}$ and $-\pi < \theta \le \pi$. $\delta(\mathbf{h}^{2-p}, \mathbf{h}^p)$ is the determinant of the matrix of (7) in \mathbf{h}^p and \mathbf{h}^{2-p} , and \mathbf{h}^p denotes the Poincare dual basis of $H^p(\Sigma; \mathcal{G}_{Ad_o})$ corresponding to \mathbf{h}_p of $H_p(\Sigma; \mathcal{G}_{Ad_o})$, p = 0, 1, 2.

Note that in case $H_0(\Sigma; \mathcal{G}_{\mathrm{Ad}_{\rho}})$ and thus $H_2(\Sigma; \mathcal{G}_{\mathrm{Ad}_{\rho}})$ are zero, by Theorem 4 we get

$$\mathbb{T}\left(\Sigma, \{0, \mathbf{h}_1, 0\}\right) = i \sqrt{\Delta\left(\mathbf{h}_1, \mathbf{h}_1\right)}^{(-1)} = i \sqrt{\delta\left(\mathbf{h}^1, \mathbf{h}^1\right)}.$$

3 Applications

Schottky representation and Thurston symplectic form

Before stating our application, let us recall Thurston symplectic form. For more information and unexplained subjects, we refer [32] and the references therein.

Let Σ_g , $g \ge 2$, be a closed orientable surface. We say that $\lambda \subset \Sigma_g$ is a geodesic lamination, if it is closed and also consists of disjoint complete geodesics without any self-intersection points, called *leaves* of λ (see Figure 1 (a)). We say that the geodesic lamination λ is maximal, if the complement $\Sigma_g - \lambda$ consists of finitely many ideal triangles, that is, triangles with vertices at infinity (see Figure 1 (b)).

Figure 1. (a) Geodesic lamination with 3 closed leaves (b) Maximal geodesic lamination with 3 closed leaves and 6 infinite leaves spiraling towards closed leaves.

Let $\lambda \subset \Sigma_g$ be a geodesic lamination and G be an abelian group. A G-valued transverse cocycle σ for λ is a function from the set of all transverse arcs to the leaves of λ to G so that σ is finitely additive and invariant under the homotopy of arcs transverse to λ . To be more precise, $\sigma(k) = \sigma(k_1) + \sigma(k_2)$, when the arc k transverse to leaves of λ is decomposed into two subarcs k_1 , k_2 with disjoint interiors, and $\sigma(k) = \sigma(k')$ when the transverse arc k is deformed to arc k' through arcs transverse to the leaves of the geodesic lamination λ (Fig. 2). Let us denote the group of G-valued transverse cocycles for λ by $\mathcal{H}(\lambda; G)$. In the case λ is a maximal geodesic lamination and $G = \mathbb{R}$, \mathbb{C} , or $\mathbb{R}/2\pi\mathbb{Z}$, $\mathcal{H}(\lambda; G)$ is isomorphic to G^{6g-6} [33]. For example, by using a (fattened) train-track $\Phi \subset \Sigma_g$ carrying the lamination λ , one gets the isomorphism $\mathcal{H}(\lambda; \mathbb{R}) \cong \mathbb{R}^{6g-6}$.

Figure 2. The arcs k and k' are transverse to the leaves of lamination λ . The arc k is deformed to k' through arcs transverse to the leaves of the geodesic lamination. Moreover, k is splitted into two transverse subarcs k_1 , k_2 with disjoint interiors.

Recall that a train-track $\Phi \subset \Sigma_g$ is composed of finitely many "long" rectangles e_1, \ldots, e_n , called edges of Φ , foliated by arcs parallel to the "short" sides and meeting only along arcs (possibly reduced to a point) lying in their short sides. Furthermore, each point of the "short" side of a rectangle is also contained in another rectangle, each component of the union of the short sides of all rectangles is an arc, as opposed to a closed curve, and finally since the closure $\overline{\Sigma_g - \Phi}$ of the complement $\Sigma_g - \Phi$ has a certain number of "spikes", corresponding to the points where at least 3 rectangles meet, it is also required that no component of $\overline{\Sigma_g - \Phi}$ be a disc with 0, 1 or 2 spikes or an annulus with no spike.

Note that foliating the edges of the train-track Φ by using the short sides, we get a foliation of Φ , and the leaves are called the *ties* of Φ . The finitely many ties where several edges meet are said to be the *switches* of Φ . If a tie is not a switch, then it is called a *generic* tie. If λ lies entirely in the interior of Φ and if, moreover, the leaves of λ are transverse to the ties of Φ , then λ is said to be *carried* by Φ (Fig. 3). We refer [34] for constructions of a train-track.

Figure 3. Locally a train-track carries a geodesic lamination.

Suppose $\Phi \subset \Sigma_q$ is a train-track. A real-valued function from the set of edges of Φ is called an *edge*

weight system for Φ , if it satisfies the switch relation. Namely, for each switch s of Φ , let e_1, \ldots, e_p be the edges adjacent to one side of s and let e_{p+1}, \ldots, e_{p+q} be the edges adjacent to the other side, we have $\sum_{i=1}^{p} a(e_i) = \sum_{j=p+1}^{p+q} a(e_j)$. Let us denote the real vector space of all edge weight systems for Φ by $\mathcal{W}(\Phi; \mathbb{R})$.

Let $\lambda \subset \Sigma_q$ be a geodesic lamination carried by the train-track Φ . Consider the injective map associating each transverse cocycle $\sigma \in \mathcal{H}(\lambda;\mathbb{R})$ to the edge weight system $a_{\sigma} \in \mathcal{W}(\Phi;\mathbb{R})$ defined by $a_{\sigma}(e) = \sigma(k_e)$. Here, k_e is a tie of e. In the case of maximal lamination λ , the map is an isomorphism $\mathcal{H}\left(\lambda;\mathbb{R}\right)\cong\mathcal{W}\left(\Phi;\mathbb{R}\right)\ [33].$

One can arrange the train-track Φ so that at each switch s of Φ , there are one incoming edge $e_s^{\rm in}$ touching the switch s on one side and two outgoing edges e_s^{left} , e_s^{right} touching s on the other side, where as seen from the incoming edge e_s^{in} and for the orientation of the surface Σ_g , e_s^{left} branches out to the left and e_s^{right} branches out to the right. Thurston symplectic form on $\mathcal{W}(\Phi)$ is the anti-symmetric bilinear form $\omega_{\text{Thurston}} : \mathcal{W}(\Phi; \mathbb{R}) \times \mathcal{W}(\Phi, \mathbb{R}) \to \mathbb{R}$ defined by

$$\omega_{\text{Thurston}}\left(a,b\right) = \frac{1}{2} \sum_{s} \det \begin{bmatrix} a\left(e_{s}^{\text{left}}\right) & a\left(e_{s}^{\text{right}}\right) \\ b\left(e_{s}^{\text{left}}\right) & b\left(e_{s}^{\text{right}}\right) \end{bmatrix},$$

where the summation is over all switches of Φ .

By using the isomorphism $\mathcal{H}(\lambda;\mathbb{R}) \cong \mathcal{W}(\Phi;\mathbb{R})$, we have the Thurston symplectic form ω_{Thurston} : $\mathcal{H}(\lambda;\mathbb{R}) \times \mathcal{H}(\lambda;\mathbb{R}) \to \mathbb{R}$. As is well known that ω_{Thurston} is an algebraic intersection number and is independent of Φ [32, 34].

Recall that Teichmüller space Teich (Σ_g) of the surface Σ_g is the space of isotopy classes of complex structures on Σ_q . By The Uniformization Theorem, it is the space of isotopy classes of Riemannian metrics with constant Gaussian curvature (-1), that is, hyperbolic metrics on Σ_q . One can also identify it with the space of conjugacy classes of all discrete faithful homomorphisms from the fundamental group $\pi_1(\Sigma_q)$ to $\mathrm{PSL}(2,\mathbb{R})$. With the help of a maximal geodesic lamination $\lambda \subset \Sigma_q$ and sending to each hyperbolic metric $m \in \text{Teich}(\Sigma_g)$ the corresponding shearing cocycle $\sigma_m \in \mathcal{H}(\lambda; \mathbb{R})$, F. Bonahon embedded Teich(Σ_g) as an open cone $\mathcal{C}(\lambda) \subset \mathcal{H}(\lambda; \mathbb{R})$ [32]. If k is an arc transverse to λ , the shearing cocycle $\sigma_m(k)$ measures the "shift to the left" between the two ideal triangles in $\mathbb{H}^2/\rho_m(\pi_1(\Sigma_g))$ corresponding to the components of $\Sigma_q - \lambda$ containing the endpoints of k. Here, $\varrho_m : \pi_1(\Sigma_q) \rightarrow \omega$ $PSL(2,\mathbb{R})$ is the discrete faithful representation associated to m.

Recall that for a homorphism $\rho: \pi_1(\Sigma_q) \to \mathrm{PSL}(2,\mathbb{C})$, there is the following commutative diagram

$$\begin{array}{rcl}
H^{1}\left(\Sigma_{g};\mathfrak{sl}\left(2,\mathbb{C}\right)_{\mathrm{Ad}_{\varrho}}\right) & \times & H^{1}\left(\Sigma_{g};\mathfrak{sl}\left(2,\mathbb{C}\right)_{\mathrm{Ad}_{\varrho}}\right) & \stackrel{\smile_{B}}{\longrightarrow} & H^{2}\left(\Sigma_{g};\mathbb{C}\right) \\
\uparrow^{\mathrm{PD}} & \uparrow^{\mathrm{PD}} & \circlearrowright & \uparrow \\
H_{1}\left(\Sigma_{g};\mathfrak{sl}\left(2,\mathbb{C}\right)_{\mathrm{Ad}_{\varrho}}\right) & \times & H_{1}\left(\Sigma_{g};\mathfrak{sl}\left(2,\mathbb{C}\right)_{\mathrm{Ad}_{\varrho}}\right) & \stackrel{[\cdot,\cdot]_{1,1}}{\longrightarrow} & \mathbb{C}.
\end{array} \tag{8}$$

Here, $\mathbb{C} \to H^2(\Sigma_q; \mathbb{C})$ is the isomorphism sending $1 \in \mathbb{C}$ to the fundamental class of $H^2(\Sigma_q; \mathbb{C})$. Recall also that

$$\omega_{\mathrm{PSL}(2,\mathbb{C})}: H^1\left(\Sigma_g; \mathfrak{sl}\left(2,\mathbb{C}\right)_{\mathrm{Ad}_{\varrho}}\right) \times H^1\left(\Sigma_g; \mathfrak{sl}\left(2,\mathbb{C}\right)_{\mathrm{Ad}_{\varrho}}\right) \stackrel{\smile_B}{\to} H^2\left(\Sigma_g;\mathbb{C}\right) \stackrel{\int_{\Sigma_g}}{\to} \mathbb{C}$$

is called Atiyah-Bott-Goldman symplectic form for $PSL(2, \mathbb{C})$ [35]. It is known that $\omega_{PSL(2,\mathbb{C})}$ is related with the Goldman symplectic form on $\operatorname{Teich}(\Sigma_q)$

$$\omega_{\text{Goldman}} : H^1\left(\Sigma_g; \mathfrak{sl}\left(2, \mathbb{R}\right)_{\text{Ad}_{\varrho}}\right) \times H^1\left(\Sigma_g; \mathfrak{sl}\left(2, \mathbb{R}\right)_{\text{Ad}_{\varrho}}\right) \stackrel{\smile_{B_{\mathbb{R}}}}{\to} H^2\left(\Sigma_g; \mathbb{R}\right) \stackrel{J_{\Sigma_g}}{\to} \mathbb{R}.$$

Bulletin of the Karaganda University

Here, $B_{\mathbb{R}}$ is the Killing form of the set $\mathfrak{sl}(2,\mathbb{R})$, which is 2×2 trace zero matrices over \mathbb{R} .

In [31], considering the isomorphism T_{ϱ} Teich $(\Sigma_g) \cong \mathcal{H}(\lambda; \mathbb{R})$, which is obtained by the realanalytical parameterization of F. Bonahon [32] and complexifying ω_{Thurston} , it was proved that

$$\omega_{\text{PSL}(2,\mathbb{C})} = 2\omega_{\text{T}}.$$
(9)

Here,

$$\omega_{\mathrm{T}}: \mathcal{H}\left(\lambda; \mathbb{C}\right) \times \mathcal{H}\left(\lambda; \mathbb{C}\right) \to \mathbb{C}$$

$$\tag{10}$$

is the complexifed Thurston symplectic form.

For more information and unexplained subjects, we refer the reader to [31] and the references therein.

For a fixed $g \geq 2$, let us consider the free group F_g with generators $X = \{x_1, \ldots, x_g\}$. The set Hom $(F_g, PSL(2, \mathbb{C}))$ of all homomorphisms from F_g to $PSL(2, \mathbb{C})$ can be identified with $PSL(2, \mathbb{C})^g$ by considering the map $\rho \mapsto (\rho(x_1), \ldots, \rho(x_g))$.

Let $\chi(F_g, PSL(2, \mathbb{C}))$ be the quotient Hom $(F_g, G) //G$. As is well known that $\chi(F_g, PSL(2, \mathbb{C}))$ naturally has the structure of an algebraic variety and it differs from the set theoretical quotient Hom $(F_g, PSL(2, \mathbb{C})) / PSL(2, \mathbb{C})$ only at reducible points, namely, representations whose images fix a point on $\widehat{\mathbb{C}}$ [36]. Let $\mathcal{D}(F_g, PSL(2, \mathbb{C}))$ and $\mathcal{E}(F_g, PSL(2, \mathbb{C}))$ denote respectively the set of all discrete, faithful representations and those of representations with dense image in PSL(2, $\mathbb{C})$. It is well known $\mathcal{E}(F_g, PSL(2, \mathbb{C}))$ is not empty and open, $\mathcal{D}(F_g, PSL(2, \mathbb{C}))$ is closed and outside of these representations in $\chi(F_g, PSL(2, \mathbb{C}))$ has measure zero [37] and the references therein.

Let $A_i, B_i, i = 1, ..., g$, be 2g disjoint closed (topological) disks in $\partial \mathbb{H}^3$ and let $\gamma_1, ..., \gamma_g \in PSL(2, \mathbb{C})$ be the Möbiüs transformations of the Riemann sphere $\widehat{\mathbb{C}}$ so that $\gamma_i(A_i)$ is the closure of the complement of B_i . The set $\{\gamma_1, ..., \gamma_g\}$ generate a free discrete group of rank g, called a *Schottky group*. The representation ϱ obtained by $x_i \mapsto \gamma_i$ is in $\mathcal{D}(F_g, PSL(2, \mathbb{C}))$. Let $\mathcal{S}(F_g, PSL(2, \mathbb{C}))$ be the set of Schottky representations. As is well known that $\mathcal{S}(F_g, PSL(2, \mathbb{C}))$ lies in the interior of $\mathcal{D}(F_g, PSL(2, \mathbb{C}))$ [38].

In [39], Y. Minsky proved the existence of an open set $\mathcal{M}(F_g, PSL(2, \mathbb{C}))$ of $\chi(F_g, PSL(2, \mathbb{C}))$ which is strictly larger than $\mathcal{S}(F_g, PSL(2, \mathbb{C}))$ and on which $Out(F_g)$ acts properly discontinuously. We have

Theorem 5. Let \mathbf{F}_{g} denote the fundamental group $\pi_{1}(H_{g})$ of handle body \mathbf{H}_{g} of genus $g \geq 2$ with boundary Σ_{g} , and let M denote the double of \mathbf{H}_{g} . Suppose $\lambda \subset \Sigma_{g}$ is a fixed maximal geodesic lamination and $\varrho \in \mathcal{M}(\mathbf{F}_{g}, \mathrm{PSL}(2, \mathbb{C}))$ is such that $\varrho \circ r \in \mathrm{Teich}(\Sigma_{g})$. Let $\mathbf{h}_{i}^{\mathbf{F}_{g}}$ be bases for $H_{i}\left(\mathbf{F}_{g}; \mathfrak{sl}(2, \mathbb{C})_{Ad_{\varrho}}\right)$, i = 0, 1, 2, 3. Then, there exist basis $\mathbf{h}_{j}^{\mathrm{M}}$ and $\mathbf{h}_{k}^{\Sigma_{g}}$ of $H_{j}\left(\mathbf{M}; \mathfrak{sl}(2, \mathbb{C})_{Ad_{\varrho}}\right)$ and $H_{k}\left(\Sigma_{g}; \mathfrak{sl}(2, \mathbb{C})_{Ad_{\varrho \circ r}}\right)$, j = 0, 1, 2, 3, k = 0, 1, 2, respectively so that Reidemeister torsion of the corresponding Mayer-Vietoris long exact sequence \mathcal{H}_{\star} in these bases is 1. In addition, the following formula holds:

$$\mathbb{T}\left(\mathbf{F}_{g}, \left\{\mathbf{h}_{i}^{\mathbf{F}_{g}}\right\}_{0}^{3}\right) = e^{\frac{\sqrt{-1}}{4}\left(-\beta_{0}+\pi-\theta_{1}\right)} 2^{\frac{\chi\left(\Sigma_{g};\mathfrak{sl}(2,\mathbb{C})\right)}{4}} \sqrt[4]{\Omega_{\mathrm{T}}}.$$

Here, $\beta_0 = \dim H_0\left(\mathcal{M}; \mathfrak{sl}(2, \mathbb{C})_{Ad_\varrho}\right)$, $\mathbf{h}_{1,1}^0$ is a basis of $H_1\left(\Sigma_g; \mathfrak{sl}(2, \mathbb{C})_{Ad_{\varrho}\circ r}\right) \oplus H_1\left(\Sigma_g; \mathfrak{sl}(2, \mathbb{C})_{Ad_{\varrho}\circ r}\right)$ such that $\mathbb{T}\left(C_*\left(\Sigma_g; \mathfrak{sl}(2, \mathbb{C})_{Ad_{\varrho}\circ r}\right) \oplus C_*\left(\Sigma_g; \mathfrak{sl}(2, \mathbb{C})_{Ad_{\varrho}\circ r}\right), \{\mathbf{h}_{1,1}^0\}\right)$ is equal to 1, $\left[\mathbf{h}_{1,1}^0, \mathbf{h}_1^{\Sigma_g} \oplus \mathbf{h}_1^{\Sigma_g}\right]$ $= \left|\left[\mathbf{h}_{1,1}^0, \mathbf{h}_1^{\Sigma_g} \oplus \mathbf{h}_1^{\Sigma_g}\right]\right| e^{\sqrt{-1}\theta_1}$. Here, $\chi(\Sigma_g; \mathfrak{sl}(2, \mathbb{C}))$ is $\chi(\Sigma_g) \dim_{\mathbb{C}} \mathfrak{sl}(2, \mathbb{C}), \Omega_{\mathrm{T}}$ is determinant of the matrix of the symplectic form (10) in the basis $\mathfrak{h} \oplus \sqrt{-1} \mathfrak{h}, \mathfrak{h}$ is the basis of $\mathcal{H}(\lambda; \mathbb{R})$ associated with the isomorphism obtained by the embedding Teich $(\Sigma_g) \hookrightarrow \mathcal{H}(\lambda; \mathbb{R})[32]$, and \mathbf{h}^1 is the Poincare dual

Mathematics series. $N_{\bullet} 1(109)/2023$

basis of $H^1\left(\Sigma_g; \mathfrak{sl}(2,\mathbb{C})_{Ad_{\varrho\circ r}}\right)$ corresponding to $\mathbf{h}_1^{\Sigma_g}$. Here, $r: \pi_1(\Sigma_g) \to \pi_1(\mathbf{F}_g)$ is the homomorphism obtained by the embedding $\Sigma_g \hookrightarrow \mathbf{F}_g$.

The proof of Theorem 5 is based on combining Theorem 4 and [28; Theorem 4.2], and the above results, using the commutative diagram (8), Eq. (9), and the definition of $\omega_{\text{PSL}(2,\mathbb{C})}$.

Let us now apply [28; Theorem 4.3]. As is well known that for a compact orientable 3-manifold H, the holonomy representation of the complete hyperbolic structure Hol : $\pi_1(H) \rightarrow \text{Isom}^+ \mathbb{H}^3 \cong \text{PSL}(2, \mathbb{C})$ can be lifted to a representation Hol : $\pi_1(H) \rightarrow \text{SL}(2, \mathbb{C})$ [40]. It is also well known that there is a one-to-one correspondence between the lifts and spin structures on H. Considering one of the lifts and composing one of a finite dimensional representation V of $\text{SL}(2, \mathbb{C})$, we get a representation $\varrho : \pi_1(H) \rightarrow \text{SL}(V)$. Recall that for every positive integer n there is a unique irreducible representation V_n of $\text{SL}(2, \mathbb{C})$ of dimension n, namely, (n-1)-th symmetric power of the standard representation $V_2 = \mathbb{C}^2$. Considering V_n and all above, we get $\varrho_n : \pi_1(H) \rightarrow \text{SL}(n, \mathbb{C})$.

Let H be a compact orientable non-elementary hyperbolic 3-manifold with a boundary consisting of ℓ surfaces $\Sigma_{g_1}, \ldots, \Sigma_{g_\ell}$ of genus at least 2, and $n \geq 2$. Recall that H is non-elementary if its holonomy is an irreducible representation in PSL(2, \mathbb{C}).

In [40; Theorem 0.1], P. Menal-Ferrer and J. Porti prove that the inclusion $\partial \mathbf{H} \subset \mathbf{H}$ induces an injection, $H^1\left(\mathbf{H};\mathfrak{sl}(n,\mathbb{C})_{Ad_{\varrho_n}}\right) \hookrightarrow H^1\left(\partial \mathbf{H};\mathfrak{sl}(n,\mathbb{C})_{Ad_{\varrho_n}}\right)$ with $\dim H^1\left(\mathbf{H};\mathfrak{sl}(n,\mathbb{C})_{Ad_{\varrho_n}}\right) = (1/2)$ $\dim H^1\left(\partial \mathbf{H};\mathfrak{sl}(n,\mathbb{C})_{Ad_{\varrho_n}}\right)$, and an isomorphism $H^2\left(\mathbf{H};\mathfrak{sl}(n,\mathbb{C})_{Ad_{\varrho_n}}\right) \cong H^2\left(\partial \mathbf{H};\mathfrak{sl}(n,\mathbb{C})_{Ad_{\varrho_n}}\right)$.

Theorem 6. Assume Σ_{g_i} , H, M, G, \mathcal{G} , ρ , $\mathbf{h}_k^{\mathrm{H}}$, $\mathbf{h}_k^{\mathrm{M}}$, and $\mathbf{h}_j^{\Sigma_{g_i}}$ are as above. Then, the following formula is valid:

$$\begin{aligned} \mathbb{T}\left(\mathbf{H}, \left\{\mathbf{h}_{k}^{\mathbf{H}}\right\}_{0}^{3}\right) &= e^{\frac{\sqrt{-1}}{4}\left(-\beta_{0}+\ell\pi-\sum_{i=1}^{\ell}\theta_{1}^{\Sigma_{g_{i}}}\right)} \prod_{i=1}^{\ell}\Delta\left(\mathbf{h}_{1}^{\Sigma_{g_{i}}}, \mathbf{h}_{1}^{\Sigma_{g_{i}}}\right)^{-1/4} \\ &= e^{\frac{\sqrt{-1}}{4}\left(-\beta_{0}+\ell\pi-\sum_{i=1}^{\ell}\theta_{1}^{\Sigma_{g_{i}}}\right)} \prod_{i=1}^{\ell}\sqrt[\ell]{\delta\left(\mathbf{h}^{1,i}, \mathbf{h}^{1,i}\right)}. \end{aligned}$$

Here, $\left[\mathbf{h}_{1,1}^{0,\Sigma_{g_{i}}},\mathbf{h}_{1}^{\Sigma_{g_{i}}}\oplus\mathbf{h}_{1}^{\Sigma_{g_{i}}}\right] = \left|\left[\mathbf{h}_{1,1}^{0,\Sigma_{g_{i}}},\mathbf{h}_{1}^{\Sigma_{g_{i}}}\oplus\mathbf{h}_{1}^{\Sigma_{g_{i}}}\right]\right|e^{\sqrt{-1}\theta_{1}^{\Sigma_{g_{i}}}}, r_{i}:\pi_{1}(\Sigma_{g_{i}})\to\pi_{1}(\mathbf{H}) \text{ denotes the homomorphism obtained by the embedding }\Sigma_{g_{i}}\hookrightarrow\mathbf{H}, \beta_{0} = \dim H_{0}\left(\mathbf{M};\mathcal{G}_{Ad_{\varrho}}\right) \text{ and }\mathbf{h}_{1,1}^{0,\Sigma_{g_{i}}} \text{ is a basis of }H_{1}\left(\Sigma_{g_{i}};\mathcal{G}_{Ad_{\varrho\circ r_{i}}}\right)\oplus H_{1}\left(\Sigma_{g_{i}};\mathcal{G}_{Ad_{\varrho\circ r_{i}}}\right) \text{ so that }\mathbb{T}\left(C_{*}\left(\Sigma_{g_{i}};\mathcal{G}_{Ad_{\varrho\circ r_{i}}}\right)\oplus C_{*}\left(\Sigma_{g_{i}};\mathcal{G}_{Ad_{\varrho\circ r_{i}}}\right),\left\{\mathbf{h}_{1,1}^{0,\Sigma_{g_{i}}}\right\}\right)=1,$ $\mathbf{h}^{j,i}$ is the Poincare dual basis of $H^{j}\left(\Sigma_{g_{i}};\mathcal{G}_{Ad_{\varrho\circ r_{i}}}\right)$ corresponding to the basis $\mathbf{h}_{j}^{\Sigma_{g_{i}}}$ of $H_{j}\left(\Sigma_{g_{i}};\mathcal{G}_{Ad_{\varrho\circ r_{i}}}\right)$.

The proof of Theorem 6 is based on considering the short-exact sequence

$$0 \to \bigoplus_{i=1}^{\ell} C_* \left(\Sigma_{g_i}; \mathcal{G}_{Ad_{\varrho \circ r_i}} \right) \to C_* \left(\mathrm{H}; \mathcal{G}_{Ad_{\varrho}} \right) \oplus C_* \left(\mathrm{H}; \mathcal{G}_{Ad_{\varrho}} \right) \to C_* \left(\mathrm{H}; \mathcal{G}_{Ad_{\varrho}} \right) \to 0$$

and combining [28; Theorem 4.1] and [28; Theorem 4.3].

Combining these and Theorem 6, we have

Theorem 7. Considering n = 2 and for $i = 1, ..., \ell$, fixing a maximal geodesic lamination $\lambda_i \subset \Sigma_{g_i}$, if $\rho_2 : \pi_1(\mathbf{H}) \to \mathrm{SL}(2, \mathbb{C})$ is such that $\rho_2 \circ r_i \in \mathrm{Teich}(\Sigma_{g_i})$, $i = 1, ..., \ell$, applying (ii) of Theorem 5, and using the notation there, we get

$$\mathbb{T}\left(\mathbf{H}, \left\{\mathbf{h}_{k}^{\mathbf{H}}\right\}_{0}^{3}\right) = e^{\frac{\sqrt{-1}}{4}\left(-\beta_{0}+\ell\pi-\sum_{i=1}^{\ell}\theta_{1}^{\Sigma_{g_{i}}}\right)} 2^{\frac{1}{4}\sum_{i=1}^{\ell}\chi\left(\Sigma_{g_{i}};\mathfrak{sl}(2,\mathbb{C})\right)} \prod_{i=1}^{\ell} \sqrt[4]{\Omega_{\mathbf{T},i}}.$$

Bulletin of the Karaganda University

Here, $\Omega_{\mathrm{T},i}$ is the matrix of the complex Thurston symplectic form $\omega_{\mathrm{T}} : \mathcal{H}(\lambda_i; \mathbb{C}) \times \mathcal{H}(\lambda_i; \mathbb{C}) \to \mathbb{C}$ in the basis $\mathfrak{h}^i \oplus \sqrt{-1} \mathfrak{h}^i$, and $\mathbf{h}^{j,i}$ is the Poincare dual basis of $H^j\left(\Sigma_{g_i}; \mathfrak{sl}(2,\mathbb{C})_{Ad_{\varrho_2\circ r_i}}\right)$ corresponding to $\mathbf{h}_j^{\Sigma_{g_i}}$, and \mathfrak{h}^i is the basis of $\mathcal{H}(\lambda_i; \mathbb{R})$ associated with the isomorphism obtained by the real analytical embedding Teich $(\Sigma_{g_i}) \hookrightarrow \mathcal{H}(\lambda_i; \mathbb{R})$ [32]. Here, $r_i : \pi_1(\Sigma_{g_i}) \to \pi_1(\mathrm{H})$ is the homomorphism obtained by the embedding $\Sigma_{g_i} \hookrightarrow \mathrm{H}$.

References

- Burger, M., Iozzi, A., & Wienhard, A. (2010). Surface group representations with maximal Toledo invariant. Annals of Mathematics, 172, 517–566.
- 2 Goldman, W.M. (1988). Geometric structures on manifolds and varieties of representations. The Geometry of Group Representations. *Contemporary Mathematics*, 169–198.
- 3 Choi, S, & Goldman, W.M. (1993). Convex real projective structures on closed surfaces are closed. Proceedings of the American Mathematical Society, 118, 657–661.
- 4 Guichard, O., & Wienhard, A. (2010). Topological Invariants of Anosov Representations. Journal of Topology, 3, 578–642.
- 5 Hitchin, N. (1992). Lie groups and Teichmuller spaces. Topology, 31, 449–473.
- 6 Labourie, F. (2006). Anasov flows, surface groups and curves in projective space. Inventiones Mathematicae, 165, 51–114.
- 7 Culler, M., & Shalen, P.B. (1983). Varieties of group representations and splittings of 3-manifolds. Annals of Mathematics, 117, 109–146.
- 8 Morgan, J.W., & Shalen, P.B. (1984). Valuations, trees, and degenerations of hyperbolic structures, I. Annals of Mathematics, 120, 401–476.
- 9 Le, T.Q. (2006). The colored Jones polynomial and the A-polynomial of knots. Advances in Mathematics, 207, 782–804.
- 10 Heusener, M., & Porti, J. (2005). Deformations of reducible representations of 3-manifold groups into PSL(2,C). Algebraic & Geometric Topology, 5, 965–997.
- 11 Boden, H.U., & Curtis, C.L. (2008). Splicing and the SL2(C) Casson invariant. Proceedings of the American Mathematical Society, 136, 2615–2623.
- 12 Gukov, S. (2005). Three-dimensional quantum gravity, Chern-Simons theory, and the A-polynomial. Communications in Mathematical Physics, 255, 577–627.
- 13 Witten, E. (1989). Quantum field theory and the Jones polynomial. Bulletin of Communications in Mathematical Physics, 12, 351–399.
- 14 Frohman, C., & Gelca, R. (2000). Skein modules and the noncommutative torus. *Transactions* of the American Mathematical Society, 352, 4877–4888.
- 15 Sikora, A.S. (2005). Skein theory for SU(n)-quantum invariants. Algebraic & Geometric Topology, 5, 865–897.
- 16 Garcia-Prada, O., & Gothen, P.B. (2013). Mundet i Riera I. Higgs bundles and surface group representations in the real symplectic group. *Journal of Topology*, 6, 64–118.
- 17 Reidemeister, K. (1935). Homotopieringe und linsenraume. AAbhandlungen aus dem Mathematischen Seminar der Universitat Hamburg, 11, 102–109.
- 18 Franz, W. (1935). Uber die Torsion einer Uberdeckung. Journal fur die Reine und Angewandte Mathematik, 173, 245–254.
- 19 Milnor, J. (1962). A duality theorem for Reidemeister torsion. Annals of Mathematics, 76, 137– 147.

- 20 Cheeger, J. (1979). Analytic torsion and the heat equation. Annals of Mathematics, 109, 259–321.
- 21 Witten, E. (1991). On quantum gauge theories in two dimensions. Bulletin of Communications in Mathematical Physics, 141, 153–209.
- 22 Hutchings, M., & Lee, Y. (1999). Circle valued Morse theory and Reidemeister torsion. Geometry & Topology, 3, 369–396.
- 23 Meng, G. & Taubes C.H. (1996). SW = Milnor torsion. Mathematical Research Letters, 3, 661– 674.
- 24 Milnor, J. (1966). Whitehead torsion. American Mathematical Society, 72, 358–426.
- 25 Porti, J. (1997). Torsion de Reidemeister pour les Varietes Hyperboliques. Amer Mathematical Society.
- 26 Turaev, V. (2002). Torsions of 3-Dimensional Manifolds. Basel: Birkhauser.
- 27 Hezenci, F., & Sozen, Y. (2018). A note on exceptional groups and Reidemeister torsion. Journal of Mathematical Physics, 59, 081704.
- 28 Hezenci, F., & Sozen, Y. (2022). Representation variety of free or surface groups and Reidemeister torsion. Turkish Journal of Mathematics, 46(4). https://doi.org/ 10.55730/1300-0098.3169
- 29 Sozen, Y. (2008). On Reidemeister torsion of a symplectic complex. Osaka Journal of Mathematics, 45, 1–39.
- 30 Sozen, Y. (2012). Symplectic chain complex and Reidemeister torsion of compact manifolds. Mathematica Scandinavica, 111, 65–91.
- 31 Sozen, Y. (2014). A note on Reidemeister torsion and pleated surfaces. Journal of Knot Theory and its Ramifications, 23, 1–32.
- 32 Bonahon, F. (1996). Shearing hyperbolic surfaces, bending pleated surfaces and Thurston's symplectic form. Ann. Fac. Sci. Toulouse Math, 5, 233–297.
- 33 Bonahon, F. (1997). Transverse Holder distributions for geodesic laminations, Topology, 36, 103– 122.
- 34 Penner, R.C., & Harer, J.L. (1992). Combinatorics of Train Tracks, Princeton University Press.
- 35 Goldman, W.M. (1984). The symplectic nature of fundamental groups of surfaces. Advances in Mathematics, 54, 200–225.
- 36 Morgan, J.W., & Shalen, P.B. (1984). Valuations, trees, and degenerations of structures, I. Ann. of Math., 120, 401–476.
- 37 Breuillard, E., & Gelander, T. (2003). On dense free subgroups of Lie groups. J. Algebra, 261, 448–467.
- 38 Sullivan, D. (1981). On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions. Riemann Surfaces and Related Topics. In Proceedings of the 1978 Stony Brook Conference, Princeton University Press.
- 39 Minsky, Y. (2013). On dynamics of Out(Fn) on PSL(2,C) characters. Israel J. Math., 193, 47–70.
- 40 Menal-Ferrer, P.,& Porti, J. (2012). Twisted cohomology for hyperbolic three manifolds. Osaka J. Math., 49, 741–769.

Ф. Хезенжи¹, Я. Созен²

¹Дюздже университеті, Дюздже, Түркия; ²Хаджеттепе университеті, Анкара, Түркия

Шоттки көрсетілімі мен Рейдмейстер бұралуы жайында ескерту

Мақалада Шоттки көрсетілімі үшін Рейдмейстердің бұралу формуласы анықталған. Теориялық нәтижелер 2-ден кем емес текті бағдарланған беттерден тұратын жиекті 3–көпбейнелерге қолданылады.

Кілт сөздер: Шоттки көрсетілімі, Рейдмейстер бұралуы, көрсетілімнің көпбейнелері, Атьи-Ботта-Голдман симплектикалық формасы, Терстонның симплектикалық формасы.

Ф. Хезенжи¹, Я. Созен²

¹Университет Дюздже, Дюздже, Турция; ²Университет Хаджеттепе, Анкара, Турция

Замечание о представлениях Шоттки и кручении Рейдемейстера

В статье установлена формула кручения Рейдемейстера для представлений Шоттки. Теоретические результаты применены к 3-многообразиям с краем, состоящим из ориентируемых поверхностей рода не менее 2.

Ключевые слова: представления Шоттки, кручение Рейдемейстера, многообразие представлений, симплектическая форма Атьи-Ботта-Голдмана, симплектическая форма Терстона.