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Introduction

It is well-known that the representation varieties are important in many branches of mathematics
and physics. For instance, let 3 be a compact Riemann surface of genus at least 2, Teichmiiller space
Teich(X) of X is the space of deformation classes of complex structures on it. By the uniformization
Theorem, it is the space of hyperbolic metrics, namely Riemannian metrics on 3 with Gaussian
curvature constant (—1). Furthermore, Teichmiiller space of ¥ can be interpreted as discrete faithful
representations of the fundamental group 7 (X) of the surface to PSL(2, R). It is well-known that some
certain geometric structures on 3 can also be identified as certain surface group variety [1-6] and the
references therein.

Representation varieties have a large number of applications in many branches of mathematics and
physics such as in 3—manifold topology (in Bass-Culler-Shalen theory [7, 8], in A-polynomial [9], in
hyperbolic geometry [10], in Casson invariant theory [11]), in Yang-Mills and Chern-Simons quantum
field theories [12,13], in skein theory of quantum invariants of 3-manifolds [14,15|, in the moduli spaces
of flat connections, holomorphic bundles, and Higgs bundles [16].

Reidemeister torsion(R-torsion) is a topological invariant and was introduced by K. Reidemeister
[17]. Using this invariant, he classified 3—dimensional lens spaces. W. Franz extended the R-torsion and
classified the higher dimensional lens spaces [18]. R-torsion has many applications in several branches
of mathematics and theoretical physics such as topology [19], differential geometry [20], representation
spaces [21] dynamical systems [22], 3-dimensional Seiberg-Witten theory [23], algebraic K-theory [24],
Chern-Simon theory [13], knot theory [24], theoretical physics and quantum field theory [13]. See Refs.
[25] and [26] and the references therein for further information.

Real symplectic chain complex is a algebraic topological instrument and was introduced by E.
Witten [21]. Combining this and R-torsion, he evaluated the volume of several moduli space of
Rep(X, G), which is the set of all conjugacy classes of homomorphisms from the fundamental group
m1(2) of a Riemann surface ¥ to the compact gauge group G € {SU(2),SO(3)}.

In paper [27], we considered the set Rep(X, G) of G—valued representations from the fundamental
group 71 (X) of the surface ¥ to the exceptional groups Go, Fy, and Eg. We proved the well-definiteness
of R-torsion of such representations. We also established a formula for computing R-torsion of such
representations in terms of the well known symplectic structure on Rep(X, G), namely, Atiyah-Bott-
Goldman symplectic form for the Lie group G. Then, we applied to G—valued Hitchin representations.
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In paper [28], we investigated G —valued representations of free or surface group with genus > 1 for G €
{GL(n,C),SL(n,C)}. We also established a formula for computing R-torsion of such representations
in terms of Atiyah-Bott-Goldman symplectic form for GG. Moreover, we applied the obtained results to
hyperbolic 3—manifolds.

In the present paper, we prove a formula of R-torsion for Schottky representations. The theoretical
results are applied to 3—manifolds with boundary consisting orientable surfaces with genus at least 2.

1 Preliminaries

In this section, we provide the necessary definition and basic facts about the topological invariant R-
torsion and the symplectic chain complex. For further information the reader is referred to [21,25,26,29]
and the references therein.

Let C, = (0 — C,, % Chog— - —>Cy g Cy — 0) be a chain complex of finite dimensional vector
spaces over the field C of complex numbers. For p = 0,...,n, we denote the kernel of J,, the image of
Op+1, and the pth homology group of the chain complex C, by Z,(C), B,(C), and Hy(Cy), respectively.
From the definition of Z,(C,), B,(Cy), and H,(C,) it follows

0 — Z,(Cy) = Cp - Bp_1(Cx) — 0

and
0 — By(Cy) = Z,(Cy) - Hp(Cy) — 0.

For p = 0,...,n, if ¢y, by, and h, are bases of C)p, B,(Cy), and Hy,(C,), respectively and if
by, + Hy(Cy) = Zp(Cy), sp + Bp—1(Cyx) — Cp are sections of Z,(Cy) — H,(Cy), Cp, — Bp_1(Cs),
respectively, then with the help of above short-exact sequences we have the basis b, U ¢, (hy,) Usy,(by—1)
of Cy. Here, L denotes the disjoint union.

Let c,, by, hy, £, and s, be as above. Then, R-torsion of the chain complex C, with respect to
bases {c,})_o, {hp}y_o is defined by

n n e _1\(p+1)
T (C*, {Cp}o v{hp}o) = H [by U £y (hy) U sp(by-1), Cp]( D )
p=0

where [e, f,] denotes determinant of the change-base-matrix from basis f, to e, of C,.

R-torsion does not depend on the bases b, and sections sy, £, [24].

Let c;), h; be also bases of C), Hp(C,), respectively. Then, the following change-base-formula is
valid [24]:

n ¢ c (=P
T (Cu{eyly b)) = H (H) T (Cu. {ep)g - {hp}g) -

Let .
0— A, — B, 5 D, — 0 (1)

be a short-exact sequence of chain complexes, and let cpA, cf , ch , h;‘, hf , and hpD are bases of A,

By, Dy, Hy(Ay), Hy(By), and Hp(D,), respectively. Let us consider the corresponding Mayer-Vietoris
long-exact sequence of vector spaces

O oo Hy(A) 75 Hy(B,) 2% Hy(D) 2% Hy y(A) — -+

associated to short-exact sequence (1). Note that Cs, = Hp(Dx), Cspr1 = Hp(Ax), and Cspyo0 = Hp(By)
then we can consider the bases hpD , hpA, and h{f for Csp, C3p41, and Csp40, respectively.
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Theorem 1. [24] Suppose c;‘, cg, ch, hﬁ, hf, and h]lg) are as above. Suppose also [cf, c;;‘ D cé)} =

+1, where j ((’:;5> = CE. Then, it follows

T (B {ef )y {02 }y) = T (A {c}) {np}y)
< T (De{ef Yy (0710) T (O femh™ 10K™)

Theorem 1 yields the sum-lemma.

Lemma 1. Assume Ay, D, are chain complexes of vector spaces and c]‘;‘,

of A,, Dp, Hy(A,), and H,(D,), respectively. Then, the following equality

D A D
¢, , by, and h)’ are bases

T(A. © Dy, {c; Ue )5, {hy U }E) = T(As, {e) )5, {hy }6)T(Dx, {e)}5, {1y }5)

is valid.

The proof of Lemma 1 can also be found in [30].
(Cy, Ox, {wig—«1}) is said to be C—symplectic chain complex of length g, if

0,
1C:0=5Cp=3Cypq — - — Cop— = Ch i\ Cy — 0 is a chain complex of length ¢, where
g =2 (mod 4),

2 forp=20,...,q, wpg—p : Cp x C4—p, — C is a 0—compatible non-degenerate anti-symmetric
bilinear form. Namely,

Wp,q—p (Opt+1a,b) = (_1)p+1wp+1,q*(p+1) (a; Og—pb)

and

wp,q—p(a,b) = (_1)p(q7p)wq—p,p(ba a).

From the fact that ¢ = 2 (mod 4) we have wy 4—p(a,b) is (—1)Pwg—p p(b, a). From d—compatibility
of wy q—p We obtain the non-degenerate pairing [wy q—p| : Hp (Cy) x Hy—p (Cy) — C.

For the rest of the paper, if the C—symplectic chain complex (Ck,Ox,{wsq—+}) is clear, then
A (hy, h,_p) is the determinant of the matrix of the non-degenerate pairing

[wp,g—pl + Hp (Cx) x Hyg—p (Cx) = C

in the bases h;,, h,_,.
Assume C, is a C—symplectic chain complex of length ¢ and c,, c,—, are bases of Cp,, Cy—p,
respectively. We say w—compatible, if the matrix of w, 4, in ¢p, c4—p is equal to the k£ x k identity

matrix Idgyx when p # ¢/2 and ( (;gl I(()im ) when p = ¢/2, where k = dim C), = dim C;_,, and
—1Urx] Ixl
2[ = dlqu/2

For computing R-torsion in terms of intersections pairings, we have the following result suggests a
formula. Namely,

Theorem 2. [31] If (Ck, Ox, {ws,g—+}) is @ C—symplectic chain complex with the w—compatible bases
cp, p=0,...,q and if h,, is a basis of H, (Cy),p=0,...,q, then the following formula holds:

(a/2)-1 (—1)4/2

‘T (C*,{Cp}g7{hp}g)‘ = H ’A(hmhqu”(_l)p \/|A (hq/2vhq/2)‘ : (2)
p=0
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In case h;, = h,_, = 0, the convention 0 = 1.0 is used and hence A(hy,h,_,) = 1. Let us also note
that equation (2) can be improved as:

(g/2)-1 uyp (—1)4/2
(C*v{cp}ov{hp}o H A hpahq p) A(hq/2vhq/2) : (3)

p=0

For details of (3), we refer the reader to [28; Remark 2.4|. See 27,28, 30|, for further applications of
Theorem 2.

2 Main results

Let X be a closed orientable surface of genus at least 2 with the universal covering 3. Let G be the
Lie group PSL(2,C) and G be the Lie algebra of G with the non-degenerate symmetric bilinear form
B. Here, B is the Killing form.

Assume p : m1(2) — G is a homomorphism from the fundamental group 71(X) of ¥ to G. Let E, =
5 x G/ ~ be the corresponding adjoint bundle over . Here, (21,1) ~ (22, t2), if (z2,t2) = (y-21,7-t1)
for some v € 7 (X), the action of v in the first component by deck transformation (- x; = 7y (z1))
and in the second component by the adjoint action (v -1 = Ad,y)(t1) = o (7) t10 ().

Let K be a cell-decomposition of ¥ for which the adjoint bundle F, is trivial over each cell and K be
the lift of K to the 3. Denote by Z [r1 ()] the integral group ring. Let C, (K;Gag,) = Cx (IN(, Z) ®G/ ~,
where for all v € m1(X), o®t ~ vy-0®~-t, the action of v by the first component is by deck transformation

and in the second is by adjoint action. We have the following chain complex:

81 ®id

0 — Co (K;Gaa,) 2 €1 (K;Gaa,) 22 €y (K;Gaa,) — 0. (4)

Here, 0, denotes the usual boundary operator. Denote by H. (K ;GAd Q) and H* (K G Adg) the homologies
and cohomologies of the chain complex (4), respectively, where C* (K :g Ad,_,) denotes the set of Z[m1(X)]-

module homomorphisms from Ci (IN( ; Z) to G. See [25] for details and unexplained subjects.
Clearly, for conjugate o,0' : 7 (X) — G ie. o () = Ap(.)A™! for some A € G, we have
isomorphic C, (K G Adg) and C, <K 0 g Adg,). Similarly, the corresponding cochains C* ( K;G Adg) and

c* (K ;g Adg/) are isomorphic.

Consider chain complex (4). Assume {e?}fnp is a basis of C}, (K;Z). For j = 1,...,m,, fix a

m. ~
lift € of €. Then, ¢, = {6?} 4 pl of Cp (K;Z) is a Z[r(X)]—basis. Assume A = {ap}{MY is a

B—orthonormal basis of the Lie algebra G. Namely, the matrix of the form B equals to the 1dent1ty
matrix of size dim G. Hence, we obtain a C—basis ¢, = ¢, ®, A of C), (K; gAdg) . We call such a basis
a geometric basis for C, (K; gAdg) .

If ¢, = ¢, ®, A and hy are respectively the geometric basis of C), (K ; Q’Adg) and a basis of

H, (Z; gAdg) , then T (C* (K; QAdQ) Aep @ A}ZZO , {hp}129:0> is said to be the R-torsion of the triple
K, Ady, and {hy}>_,

Theorem 3. |28; Theorem 3.1] If ¥, K, o, ¢, = ¢, ®, A, and h,, p = 0,1,2, are as above, then
T (C’* (K;Gaq,) » {cp ®, "4};:0 , {hp}izo) does not depend on the basis A, lifts €7, conjugacy class of
0, and the cell-decomposition K.

From Theorem 3, we have the well-definiteness of R-torsion of such representations, and hence we
write T (X, {hp};:o) rather than T (C* (K:Gaq,) » {cp ®, .A}Z:O , {hp};%:o)'
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Assume 3, K, G, G, 0, ¢, = ¢, ®,.A are as above. Let us consider the dual cell-decomposition K’ of

. corresponding to the cell-decomposition K. Consider the lifts K and K’ of K and K’ , respectively.
For ¢ = 0,1, 2, we have the intersection form

('7 ')z‘,2—i : Ci (K§ gAdg) X Cg_i (K/; gAdg) — C (5)

defined by (01 ® t1,00 ® t2)z’,2—z’ = Zyem(z) o1.(yeo2) B(t1,yety).Here, “.” denotes the intersection
number pairing, the action of v on g9 by deck transformation and on ¢, is by the adjoint action.
Using the anti-symmetric, d—compatible (-, -); 2—;, we have the non-degenerate anti-symmetric form

[, ']i,27i : H; (E; gAdg) X Hoy_; (E; QAdQ) — C. (6)

Note that if D; = C; (K; gAdg) @ C; (K’;gAdg) , and if we consider the bilinear form w;2—; : D; X
Dy_; — C defined by extending the intersection form (5) zero on C; (K; gAdg) x Cy_; (K; gAdQ) and
C; (K’; gAdQ) x Co_; (K/; gAdg) , then D, becomes a C—symplectic chain complex. Note also that the

bases ¢; of C; (I? ; Z) and ¢, of C; (1?7 ; Z) corresponding to ¢; result an w—compatible basis for D,.

Kronecker pairing (-,-) : C* (K;Gaa,) X Ci (K;Gaq,) — C is defined by (0,0®,t) = B(t,0(c)). It
has natural extended to (-,-) : H (E; gAdg) x H; (Z; gAdg) — C.

Recall the cup product U : C* (K; gAdg) xCJ (K; gAdg) — Ot (i, (C) is defined by (0; U 0;) (0i45) =
B (0; ((7i45)tront) » 05 (i) paci)) - Here, oiqj is in C’iﬂ(IN{;Z) and K denotes the lift of K to %
0; : C; (I?, Z) — G, 0;:Cj (I?, Z) — G are Z[m(X)]-module homomorphisms. This yields the cup

product 4 ' o
—p: C"' (K;Gaq,) x C7 (K;Gaq,) — C"7 (K;C)

with natural extension
—pt H (%;Gaq,) x H (2;Gaa,) — H™ (5;0),

where [01] ~B [9]] = [«9@ ~B 0]] .
Using the isomorphisms by (6) and the Kronecker pairing, we get the Poincare duality isomorphisms

PD: H; (%;Gaa,) & Ho—i (2;Gaa,)” = H* ™" (5;Gaq,) -
For ¢ =0,1,2 we have the

H?>7H(%;Gaq,) % H'(%6aa,) —2 H2(3;0)
TPD TPD O T
Hi (%:0a0,) x Hai(3:Gaq,) 25 C
Here, C — H?(3;C) sends 1 € C to the fundamental class of H?(X;C) and the inverse of this is

integration over X.
Clearly, we have the following pairing

Qi,2—z‘ . I{Z (E, gAdg) X H2_i (Z, gAdg) 3 H2 (E, C) é) C. (7)
;1 is called Atiyah-Bott-Goldman symplectic form for G on the representation variety Rep(X, G).

In [28], we established a formula for computing Reidemeister torsion of representations in terms of
Q1,1 Atiyah-Bott-Goldman symplectic form for the Lie group G. More precisely,

Mathematics series. Ne 1(109)/2023 85



F. Hezenci, Y. Sozen

Theorem 4. [28; Theorem 3.2] Let ¥, K, K', ¢ be as above. Let ¢, and ¢, be the corresponding
geometric bases of C), (K;QAdg) and C) (K’;gAdg), respectively, p = 0,1,2. If h, is a basis of
H, (E; QAdQ) , p=0,1,2, then the following formulas are valid

A (hg, hy)
VA (hy,hy)’

) 2\ _ 0 /FRLET)
11. T (2, {hp}p=0> = 1€e2 W

Here, A (hy, hy_,) is the determinant of the matrix of (6) in h, and hy_,, A (hg, ha) = |A (hg, hy)| €%,

where i =y/—land — 1< <7. ¢ (h2_p, hp) is the determinant of the matrix of (7) in h” and h2~?,

and h” denotes the Poincare dual basis of H?(X;Gaq,) corresponding to hy, of H,(¥;Gaq,), p=0,1,2.

Note that in case Hj (Z; gAdg) and thus Hy (E; gAdQ) are zero, by Theorem 4 we get

T (5, (b} = ie?

T(5,{0,h1,0}) =i v/A (by, hy) =i /3 (], h0).
3 Applications

Schottky representation and Thurston symplectic form

Before stating our application, let us recall Thurston symplectic form. For more information and
unexplained subjects, we refer [32] and the references therein.

Let Xy, g > 2, be a closed orientable surface. We say that A\ C ¥, is a geodesic lamination, if it is
closed and also consists of disjoint complete geodesics without any self-intersection points, called leaves
of A (see Figure 1 (a)). We say that the geodesic lamination X is mazimal, if the complement 3, — A
consists of finitely many ideal triangles, that is, triangles with vertices at infinity (see Figure 1 (b)).

2

(a)

Figure 1. (a) Geodesic lamination with 3 closed leaves (b) Maximal geodesic lamination with 3 closed
leaves and 6 infinite leaves spiraling towards closed leaves.

Let A C X, be a geodesic lamination and G' be an abelian group. A G—valued transverse cocycle o
for A is a function from the set of all transverse arcs to the leaves of A to G so that ¢ is finitely additive
and invariant under the homotopy of arcs transverse to A. To be more precise, o(k) = o(k1) + o(k2),
when the arc k transverse to leaves of A is decomposed into two subarcs ki, ko with disjoint interiors,
and o(k) = o(k’) when the transverse arc k is deformed to arc &’ through arcs transverse to the leaves
of the geodesic lamination A (Fig. 2). Let us denote the group of G—valued transverse cocycles for A
by H (A;G). In the case A is a maximal geodesic lamination and G = R, C, or R/27Z, H(X\; G) is
isomorphic to G976 [33]. For example, by using a (fattened) train-track ® C 3, carrying the lamination
A, one gets the isomorphism H(\;R) = R69-6,
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k K

—_ ko -
AN

L ko -

Figure 2. The arcs k and k" are transverse to the leaves of lamination . The arc k is deformed to &’
through arcs transverse to the leaves of the geodesic lamination. Moreover, k is splitted into two
transverse subarcs ki, ko with disjoint interiors.

Recall that a train-track ® C ¥, is composed of finitely many “long” rectangles e, ..., ey, called
edges of @, foliated by arcs parallel to the “short” sides and meeting only along arcs (possibly reduced
to a point) lying in their short sides. Furthermore, each point of the “short” side of a rectangle is also
contained in another rectangle, each component of the union of the short sides of all rectangles is an
arc, as opposed to a closed curve, and finally since the closure ¥, — ® of the complement ¥, — ® has
a certain number of “spikes”, corresponding to the points where at least 3 rectangles meet, it is also
required that no component of ¥; — ® be a disc with 0,1 or 2 spikes or an annulus with no spike.

Note that foliating the edges of the train-track ® by using the short sides, we get a foliation of ®,
and the leaves are called the ties of ®. The finitely many ties where several edges meet are said to be
the switches of ®. If a tie is not a switch, then it is called a generic tie. If A lies entirely in the interior
of ® and if, moreover, the leaves of A are transverse to the ties of ®, then A is said to be carried by ®
(Fig. 3). We refer [34] for constructions of a train-track.

Figure 3. Locally a train-track carries a geodesic lamination.

Suppose ® C ¥, is a train-track. A real-valued function from the set of edges of ® is called an edge
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weight system for @, if it satisfies the switch relation. Namely, for each switch s of ®, let eq,..., e, be
the edges adjacent to one side of s and let e,41,...,¢ep4q be the edges adjacent to the other side, we
have >0, a(e;) = Z? +§ 1@ (ej) . Let us denote the real vector space of all edge weight systems for ®
by W (®;R).

Let A C Y, be a geodesic lamination carried by the train-track ®. Consider the injective map
associating each transverse cocycle o € H(A;R) to the edge weight system a, € W (®;R) defined by
a, (e) = o (ke) . Here, ke is a tie of e. In the case of maximal lamination A, the map is an isomorphism
H(NR) =W (P;R) [33].

One can arrange the train-track ® so that at each switch s of ®, there are one incoming edge e
touching the switch s on one side and two outgoing edges eleft, right touching s on the other side,
where as seen from the incoming edge ™ and for the orientation of the surface 3, e branches out to
the left and e?ght branches out to the right. Thurston symplectic form on W(®) is the anti-symmetric
bilinear form wrpyrston : W(®;R) x W(®,R) — R defined by
ety g ( etight

ht ;
left) b ( el

a
wThurston a, b Zdet

where the summation is over all switches of ®.

By using the isomorphism H(\;R) = W(®;R), we have the Thurston symplectic form wrhurston :
HAR) x H(AMR) — R As is well known that wrpyston 18 an algebraic intersection number and is
independent of ® [32,34].

Recall that Teichmiiller space Teich (£,) of the surface X is the space of isotopy classes of complex
structures on 3,. By The Uniformization Theorem, it is the space of isotopy classes of Riemannian
metrics with constant Gaussian curvature (—1), that is, hyperbolic metrics on ¥4. One can also identify
it with the space of conjugacy classes of all discrete faithful homomorphisms from the fundamental
group m1(3,) to PSL(2,R). With the help of a maximal geodesic lamination A C ¥, and sending to
each hyperbolic metric m € Teich(X,) the corresponding shearing cocycle o,, € H(A;R), F. Bonahon
embedded Teich(X,) as an open cone C(A) C H(A;R) [32]. If k is an arc transverse to A, the shearing
cocycle o, (k) measures the “shift to the left” between the two ideal triangles in H?/g,, (71 ()
corresponding to the components of ¥, — A containing the endpoints of k. Here, o, : m (£4) —
PSL(2,R) is the discrete faithful representation associated to m.

Recall that for a homorphism ¢ : m; (£,) — PSL(2, C), there is the following commutative diagram

H' (2351(2,0)pg,) % H'(Zis1(2.0)ag,) —3 H?(55C)
pD pD O I (8)

Hy (Sgis1(2,C)pg,) % Hi (Sgisl(2,C),g,) e ¢

Here, C — H? (3,;C) is the isomorphism sending 1 € C to the fundamental class of H? (X,;C).
Recall also that

V J
wpsta) B (Sgisl(2,C)pg, ) % H' (Tg381(2.0)pg, ) =F H2(S4:C) ¥ C

is called Atiyah-Bott-Goldman symplectic form for PSL(2, C) [35]. It is known that wpgy,2,c) is related
with the Goldman symplectic form on Teich(3,)

- J;
Woldman | H (EQ;EI(Q,R)AdQ) x H! <Zg;5[(2,R)AdQ> I H2(S,:R) F R
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Here, Bg is the Killing form of the set sl (2,R), which is 2 x 2 trace zero matrices over R.
In [31], considering the isomorphism T,Teich (¥,) = H(A;R), which is obtained by the real-
analytical parameterization of F. Bonahon [32] and complexfying wrhurston, it was proved that

WPSL(2,C) = 2wT- (9)

Here,

wr: H (N C) x H(\C) = C (10)

is the complexfied Thurston symplectic form.

For more information and unexplained subjects, we refer the reader to [31] and the references
therein.

For a fixed g > 2, let us consider the free group Fy with generators X = {z1,...,24}. The set
Hom (F,, PSL(2,C)) of all homomorphisms from Fg to PSL(2, C) can be identified with PSL(2, C)? by
considering the map ¢ — (0 (x1),...,0(zyg))-

Let x (Fg, PSL(2,C)) be the quotient Hom (Fy, G) //G. As is well known that x (Fg, PSL(2,C))
naturally has the structure of an algebraic variety and it differs from the set theoretical quotient
Hom (F4, PSL (2,C)) /PSL (2,C) only at reducible points, namely, representations whose images fix
a point on C [36]. Let D (Fg,PSL(2,C)) and &£ (Fg, PSL(2,C)) denote respectively the set of all
discrete, faithful representations and those of representations with dense image in PSL(2,C). It is
well known & (Fg, PSL (2, C)) is not empty and open, D (Fg, PSL (2, C)) is closed and outside of these
representations in x (Fg, PSL (2, C)) has measure zero [37| and the references therein.

Let A;,B;, i = 1,...,g, be 2g disjoint closed (topological) disks in OH? and let ~1,...,7, €
PSL(2,C) be the Mébiiis transformations of the Riemann sphere C so that +; (A;) is the closure of
the complement of B;. The set {v1,...,7,} generate a free discrete group of rank g, called a Schottky
group. The representation g obtained by x; — ~; is in D (Fg, PSL(2,C)). Let S (Fq,PSL(2,C)) be
the set of Schottky representations. As is well known that S (Fg, PSL(2,C)) lies in the interior of
D (F,, PSL (2, C)) [38].

In [39], Y. Minsky proved the existence of an open set M (Fq, PSL(2,C)) of x (Fg, PSL(2,C))
which is strictly larger than S (Fg, PSL (2, C)) and on which Out (F,) acts properly discontinuously.
We have

Theorem 5. Let Fy denote the fundamental group m (Hy) of handle body Hg of genus g >
2 with boundary ¥4, and let M denote the double of Hg. Suppose A C 3, is a fixed maximal

geodesic lamination and ¢ € M (Fy, PSL(2,C)) is such that g o r € Teich(X,). Let hfg be bases
for H; (Fg;sl(Q,C)Adg), i = 0,1,2,3. Then, there exist basis h;vl and h?" of H; (M;s[(Q,C)AdQ)
and Hy, (Ey?s[(27C)AdQOT> ,j=0,1,2,3, k= 0,1, 2, respectively so that Reidemeister torsion of the

corresponding Mayer-Vietoris long exact sequence H, in these bases is 1. In addition, the following
formula holds:

3 — (2g551(2,0))
T <Fg’ {hfg}o> = eg(_ﬁo—i—ﬁ_gl) D I w— vV Qr.

Here, iy = dim Hy (M;s1(2,C) 4y, ) , b, is a basis of Hy (Sg;s0(2,C) 4y, ) © Hy (Sgi81(2,C) 4., )

oor
such that T (C. (3;81(2,C) 5y, ) @ Cs (Tgis1(2,C) gy, ), {091 }) is equal to 1, [, by* @ by |
= Hh?’l,hlzg ® hlzg} eV=101 Here, (Xg:81(2,C)) is x (X4) dimc sl (2,C), Qr is determinant of the

matrix of the symplectic form (10) in the basis h @ /—1 b, b is the basis of H();R) associated with
the isomorphism obtained by the embedding Teich (X,) < H(A;R)[32], and h! is the Poincare dual
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basis of H! (Zg;sl (2, C)Adgor) corresponding to hlzg. Here, 7 : 1 (£4) = m1 (F) is the homomorphism
obtained by the embedding >, — F,.

The proof of Theorem 5 is based on combining Theorem 4 and [28; Theorem 4.2], and the above
results, using the commutative diagram (8), Eq. (9), and the definition of wpgy,2,c)-

Let us now apply [28; Theorem 4.3|. As is well known that for a compact orientable 3—manifold
H, the holonomy representation of the complete hyperbolic structure Hol : my(H) — IsomtH? =
PSL(2,C) can be lifted to a representation Hol : m (H) — SL(2,C) [40]. It is also well known that
there is a one-to-one correspondence between the lifts and spin structures on H. Considering one of the
lifts and composing one of a finite dimensional representation V' of SL(2,C), we get a representation
o :m1(H) — SL(V). Recall that for every positive integer n there is a unique irreducible representation
V,, of SL(2,C) of dimension n, namely, (n — 1)-th symmetric power of the standard representation
Vo = C2. Considering V;, and all above, we get g, : 71 (H) — SL(n, C).

Let H be a compact orientable non-elementary hyperbolic 3—manifold with a boundary consisting
of £ surfaces X4, ..., %, of genus at least 2, and n > 2. Recall that H is non-elementary if its holonomy
is an irreducible representation in PSL(2, C).

In [40; Theorem 0.1], P. Menal-Ferrer and J. Porti prove that the inclusion OH C H induces

an injection, H' (F;s1(n,C) 5, ) = H' (0Hssl(n,C) 4y, ) with dim H' (H:sl (n,C) 4y, ) = (1/2)
dim H*! (8H;5[(n, C)Adgn) , and an isomorphism H? (H;s[ (n, C)Adgn) ~ [? (8H;5[(n, C)Ad9n> )

Theorem 6. Assume X4, H, M, G, G, o, hI,;I, hi/[, and hjzgi are as above. Then, the following formula
is valid:

= Sy L -
T (Hv {hII;I}i) = eg(_’80+£ﬂ_2521 0, ) HA (hlzgi’hlzgz) 1/4

=1
= T (A TT s (e i)
=1

DI
Here, [h(l)zlzgi,hlzgi ® hlzg’} = ’ [h(l)zlzg",hlzgi ® hlzgll VI (Xg,) — mi(H) denotes the
homomorphism obtained by the embedding ¥, — H, 8y = dim Hj (M; g Adg) and hgfgi is a basis of
0,3,
H; (Egi;gAdgori) @ H; (Egié gAdQOTZ_) so that T (C* (ZgﬁgAdgori) @ C, (Egi;gAdeJ ’{hl,l 91}) =1,

h7 is the Poincare dual basis of H’ (Egi; gAngri) corresponding to the basis h?g" of Hj (X4,5G 44 .

oor;

The proof of Theorem 6 is based on considering the short-exact sequence
l
0~ & C. (243 Gader, ) = Cv (HiGag,) & C (H Gag,) = Cu (M; Gag,) = 0
i=

and combining [28; Theorem 4.1] and [28; Theorem 4.3].
Combining these and Theorem 6, we have

Theorem 7. Considering n = 2 and for ¢ = 1,..., ¢, fixing a maximal geodesic lamination \; C ¥,
if g9 : m (H) — SL(2,C) is such that g9 o r; € Teich (Zgi) ,i=1,...,¢, applying (ii) of Theorem 5,
and using the notation there, we get

14

o (1, ) e T gl [
b 0 s .
=1
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Here, Q; is the matrix of the complex Thurston symplectic form wr : H (A;; C) x H (A;;C) — Cin
the basis h* ® +/—1 h?, and h?? is the Poincare dual basis of H7 (Zgi;sl (2, (C)Ad@w) corresponding to
h?gi, and b’ is the basis of H()\;; R) associated with the isomorphism obtained by the real analytical

embedding Teich (3y,) — H (A\i; R) [32]. Here, r; : w1 (3g,) — 71 (H) is the homomorphism obtained
by the embedding ¥, — H.
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®. Xezermxnu', 51. Cozen?

! Mosooice yrnusepcumemi, Jozdoce, Typrusa;
2 Xadorcemmene yrnusepcumemi, Awxapa, Typrus

IHTorTku kepcetisimi meH PeiiameiicTep OypaJybl KallbIHIa €CKEPTY

Maxkamnana [TlorTku kepceriiimi yiria Peitameiicrepain 6ypasty opMyaachkl aHbIKTAJIFaH. Te0pUsIIbIK HOTH-
JKeJiep 2-7IeH KeM eMeC TeKTi barapjaHfraH OeTTep/leH TYPaThIH KUEKTI 3—KenbeiiHeepre KOIJaHbLIa b

Kiam cesdep: lorrku kepcerismimi, Peiinmeiicrep Gypasiysl, kepcerisiMuing Kenbeitnenepi, Arbu-Borra-
Tonaman cummekTuka bk popmacel, TepCTOHHBIH CUMILIEKTHKAJIBIK, (DOPMACHL.

®. Xesemxu', 1. Cozen?

! Viueepcumem Jiosdorce, Joadorce, Typuus;
2 Vuueepcumem Xadocemmene, Ankapa, Typuus

3ameuanue o npeacrapiaeHnax lllortkm n kpy4denun Peitngemeiictepa

B craTtbe ycranosnena dpopmyna kpydenus Peitnmemeiicrepa st mpeacrasiennit [Ilortku. Teopernyaeckne
Pe3yJIbTaThl IPUMEHEHBI K 3—MHOroo0pasusM C KPaeM, COCTOSIIIUM U3 OPHEHTUPYEMBIX IIOBEPXHOCTEN pO/Ia
He MeHee 2.

Kmouesvie crosa: mpencrasienns [1lortku, kpyuenne Peitnemeiictepa, MHOrooOpa3ue mpeacTaBIeHU, CHM-
mwiekTuvyeckass popma Areu-bBorra-longmana, cumiuiektudeckas dpopma Tepcrona.
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