F. Hezenci ${ }^{1, *}$, Y. Sozen ${ }^{2}$<br>${ }^{1}$ Duzce University, Duzce, Turkey;<br>${ }^{2}$ Hacettepe University, Ankara, Turkey<br>(E-mail: fatihezenci@gmail.com, ysozen@hacettepe.edu.tr)

## A remark on Schottky representations and Reidemeister torsion

# The present paper establishes a formula of Reidemeister torsion for Schottky representations. The theoretical results are applied to 3 -manifolds with boundary consisting orientable surfaces with genus at least 2 . 

Keywords: Schottky representations, Reidemeister torsion, representation varieties, Atiyah-Bott-Goldman symplectic form, Thurston symplectic form.

## Introduction

It is well-known that the representation varieties are important in many branches of mathematics and physics. For instance, let $\Sigma$ be a compact Riemann surface of genus at least 2, Teichmüller space Teich $(\Sigma)$ of $\Sigma$ is the space of deformation classes of complex structures on it. By the uniformization Theorem, it is the space of hyperbolic metrics, namely Riemannian metrics on $\Sigma$ with Gaussian curvature constant $(-1)$. Furthermore, Teichmüller space of $\Sigma$ can be interpreted as discrete faithful representations of the fundamental group $\pi_{1}(\Sigma)$ of the surface to $\operatorname{PSL}(2, \mathbb{R})$. It is well-known that some certain geometric structures on $\Sigma$ can also be identified as certain surface group variety [1-6] and the references therein.

Representation varieties have a large number of applications in many branches of mathematics and physics such as in 3 -manifold topology (in Bass-Culler-Shalen theory [7, 8], in A-polynomial [9], in hyperbolic geometry [10], in Casson invariant theory [11]), in Yang-Mills and Chern-Simons quantum field theories [12,13], in skein theory of quantum invariants of 3-manifolds [14, 15], in the moduli spaces of flat connections, holomorphic bundles, and Higgs bundles [16].

Reidemeister torsion(R-torsion) is a topological invariant and was introduced by K. Reidemeister [17]. Using this invariant, he classified 3-dimensional lens spaces. W. Franz extended the R-torsion and classified the higher dimensional lens spaces [18]. R-torsion has many applications in several branches of mathematics and theoretical physics such as topology [19], differential geometry [20], representation spaces [21] dynamical systems [22], 3-dimensional Seiberg-Witten theory [23], algebraic K-theory [24], Chern-Simon theory [13], knot theory [24], theoretical physics and quantum field theory [13]. See Refs. [25] and [26] and the references therein for further information.

Real symplectic chain complex is a algebraic topological instrument and was introduced by E. Witten [21]. Combining this and R-torsion, he evaluated the volume of several moduli space of $\operatorname{Rep}(\Sigma, G)$, which is the set of all conjugacy classes of homomorphisms from the fundamental group $\pi_{1}(\Sigma)$ of a Riemann surface $\Sigma$ to the compact gauge group $G \in\{\mathrm{SU}(2), \mathrm{SO}(3)\}$.

In paper [27], we considered the set $\operatorname{Rep}(\Sigma, G)$ of $G$-valued representations from the fundamental group $\pi_{1}(\Sigma)$ of the surface $\Sigma$ to the exceptional groups $G_{2}, F_{4}$, and $E_{6}$. We proved the well-definiteness of R-torsion of such representations. We also established a formula for computing R-torsion of such representations in terms of the well known symplectic structure on $\operatorname{Rep}(\Sigma, G)$, namely, Atiyah-BottGoldman symplectic form for the Lie group $G$. Then, we applied to $G$-valued Hitchin representations.

[^0]In paper [28], we investigated $G$-valued representations of free or surface group with genus $>1$ for $G \in$ $\{\mathrm{GL}(n, \mathbb{C}), \mathrm{SL}(n, \mathbb{C})\}$. We also established a formula for computing R-torsion of such representations in terms of Atiyah-Bott-Goldman symplectic form for $G$. Moreover, we applied the obtained results to hyperbolic 3-manifolds.

In the present paper, we prove a formula of R-torsion for Schottky representations. The theoretical results are applied to 3 -manifolds with boundary consisting orientable surfaces with genus at least 2 .

## 1 Preliminaries

In this section, we provide the necessary definition and basic facts about the topological invariant Rtorsion and the symplectic chain complex. For further information the reader is referred to $[21,25,26,29]$ and the references therein.

Let $C_{*}=\left(0 \rightarrow C_{n} \xrightarrow{\partial_{n}} C_{n-1} \rightarrow \cdots \rightarrow C_{1} \xrightarrow{\partial_{1}} C_{0} \rightarrow 0\right)$ be a chain complex of finite dimensional vector spaces over the field $\mathbb{C}$ of complex numbers. For $p=0, \ldots, n$, we denote the kernel of $\partial_{p}$, the image of $\partial_{p+1}$, and the $p$ th homology group of the chain complex $C_{*}$ by $Z_{p}\left(C_{*}\right), B_{p}\left(C_{*}\right)$, and $H_{p}\left(C_{*}\right)$, respectively. From the definition of $Z_{p}\left(C_{*}\right), B_{p}\left(C_{*}\right)$, and $H_{p}\left(C_{*}\right)$ it follows

$$
0 \longrightarrow Z_{p}\left(C_{*}\right) \hookrightarrow C_{p} \rightarrow B_{p-1}\left(C_{*}\right) \longrightarrow 0
$$

and

$$
0 \longrightarrow B_{p}\left(C_{*}\right) \hookrightarrow Z_{p}\left(C_{*}\right) \rightarrow H_{p}\left(C_{*}\right) \longrightarrow 0
$$

For $p=0, \ldots, n$, if $\mathbf{c}_{p}, \mathbf{b}_{p}$, and $\mathbf{h}_{p}$ are bases of $C_{p}, B_{p}\left(C_{*}\right)$, and $H_{p}\left(C_{*}\right)$, respectively and if $\ell_{p}: H_{p}\left(C_{*}\right) \rightarrow Z_{p}\left(C_{*}\right), s_{p}: B_{p-1}\left(C_{*}\right) \rightarrow C_{p}$ are sections of $Z_{p}\left(C_{*}\right) \rightarrow H_{p}\left(C_{*}\right), C_{p} \rightarrow B_{p-1}\left(C_{*}\right)$, respectively, then with the help of above short-exact sequences we have the basis $\mathbf{b}_{p} \sqcup \ell_{p}\left(\mathbf{h}_{p}\right) \sqcup s_{p}\left(\mathbf{b}_{p-1}\right)$ of $C_{p}$. Here, $\sqcup$ denotes the disjoint union.

Let $\mathbf{c}_{p}, \mathbf{b}_{p}, \mathbf{h}_{p}, \ell_{p}$, and $s_{p}$ be as above. Then, $R$-torsion of the chain complex $C_{*}$ with respect to bases $\left\{\mathbf{c}_{p}\right\}_{p=0}^{n},\left\{\mathbf{h}_{p}\right\}_{p=0}^{n}$ is defined by

$$
\mathbb{T}\left(C_{*},\left\{\mathbf{c}_{p}\right\}_{0}^{n},\left\{\mathbf{h}_{p}\right\}_{0}^{n}\right)=\prod_{p=0}^{n}\left[\mathbf{b}_{p} \sqcup \ell_{p}\left(\mathbf{h}_{p}\right) \sqcup s_{p}\left(\mathbf{b}_{p-1}\right), \mathbf{c}_{p}\right]^{(-1)^{(p+1)}}
$$

where $\left[\mathbf{e}_{p}, \mathbf{f}_{p}\right]$ denotes determinant of the change-base-matrix from basis $\mathbf{f}_{p}$ to $\mathbf{e}_{p}$ of $C_{p}$.
R-torsion does not depend on the bases $\mathbf{b}_{p}$ and sections $s_{p}, \ell_{p}$ [24].
Let $\mathbf{c}_{p}^{\prime}, \mathbf{h}_{p}^{\prime}$ be also bases of $C_{p}, H_{p}\left(C_{*}\right)$, respectively. Then, the following change-base-formula is valid [24]:

$$
\mathbb{T}\left(C_{*},\left\{\mathbf{c}_{p}^{\prime}\right\}_{0}^{n},\left\{\mathbf{h}_{p}^{\prime}\right\}_{0}^{n}\right)=\prod_{p=0}^{n}\left(\frac{\left[\mathbf{c}_{p}^{\prime}, \mathbf{c}_{p}\right]}{\left[\mathbf{h}_{p}^{\prime}, \mathbf{h}_{p}\right]}\right)^{(-1)^{p}} \mathbb{T}\left(C_{*},\left\{\mathbf{c}_{p}\right\}_{0}^{n},\left\{\mathbf{h}_{p}\right\}_{0}^{n}\right)
$$

Let

$$
\begin{equation*}
0 \longrightarrow A_{*} \xrightarrow{\imath} B_{*} \xrightarrow{j} D_{*} \longrightarrow 0 \tag{1}
\end{equation*}
$$

be a short-exact sequence of chain complexes, and let $\mathbf{c}_{p}^{A}, \mathbf{c}_{p}^{B}, \mathbf{c}_{p}^{D}, \mathbf{h}_{p}^{A}, \mathbf{h}_{p}^{B}$, and $\mathbf{h}_{p}^{D}$ are bases of $A_{p}$, $B_{p}, D_{p}, H_{p}\left(A_{*}\right), H_{p}\left(B_{*}\right)$, and $H_{p}\left(D_{*}\right)$, respectively. Let us consider the corresponding Mayer-Vietoris long-exact sequence of vector spaces

$$
C_{*}: \cdots \longrightarrow H_{p}\left(A_{*}\right) \xrightarrow{\imath_{p}} H_{p}\left(B_{*}\right) \xrightarrow{j_{p}} H_{p}\left(D_{*}\right) \xrightarrow{\delta_{p}} H_{p-1}\left(A_{*}\right) \longrightarrow \cdots
$$

associated to short-exact sequence (1). Note that $C_{3 p}=H_{p}\left(D_{*}\right), C_{3 p+1}=H_{p}\left(A_{*}\right)$, and $C_{3 p+2}=H_{p}\left(B_{*}\right)$ then we can consider the bases $\mathbf{h}_{p}^{D}, \mathbf{h}_{p}^{A}$, and $\mathbf{h}_{p}^{B}$ for $C_{3 p}, C_{3 p+1}$, and $C_{3 p+2}$, respectively.

Theorem 1. [24] Suppose $\mathbf{c}_{p}^{A}, \mathbf{c}_{p}^{B}, \mathbf{c}_{p}^{D}, \mathbf{h}_{p}^{A}, \mathbf{h}_{p}^{B}$, and $\mathbf{h}_{p}^{D}$ are as above. Suppose also $\left[\mathbf{c}_{p}^{B}, \mathbf{c}_{p}^{A} \oplus \widetilde{\mathbf{c}_{p}^{D}}\right]=$ $\pm 1$, where $j\left(\widetilde{\mathbf{c}_{p}^{D}}\right)=\mathbf{c}_{p}^{D}$. Then, it follows

$$
\begin{aligned}
& \mathbb{T}\left(B_{*},\left\{\mathbf{c}_{p}^{B}\right\}_{0}^{n},\left\{\mathbf{h}_{p}^{B}\right\}_{0}^{n}\right)=\mathbb{T}\left(A_{*},\left\{\mathbf{c}_{p}^{A}\right\}_{0}^{n},\left\{\mathbf{h}_{p}^{A}\right\}_{0}^{n}\right) \\
\times & \mathbb{T}\left(D_{*},\left\{\mathbf{c}_{p}^{D}\right\}_{p=0}^{n},\left\{\mathbf{h}_{p}^{D}\right\}_{0}^{n}\right) \mathbb{T}\left(C_{*},\left\{\mathbf{c}_{3 p}\right\}_{0}^{3 n+2},\{0\}_{0}^{3 n+2}\right)
\end{aligned}
$$

Theorem 1 yields the sum-lemma.
Lemma 1. Assume $A_{*}, D_{*}$ are chain complexes of vector spaces and $\mathbf{c}_{p}^{A}, \mathbf{c}_{p}^{D}, \mathbf{h}_{p}^{A}$, and $\mathbf{h}_{p}^{D}$ are bases of $A_{p}, D_{p}, H_{p}\left(A_{*}\right)$, and $H_{p}\left(D_{*}\right)$, respectively. Then, the following equality

$$
\mathbb{T}\left(A_{*} \oplus D_{*},\left\{\mathbf{c}_{p}^{A} \sqcup \mathbf{c}_{p}^{D}\right\}_{0}^{n},\left\{\mathbf{h}_{p}^{A} \sqcup \mathbf{h}_{p}^{D}\right\}_{0}^{n}\right)=\mathbb{T}\left(A_{*},\left\{\mathbf{c}_{p}^{A}\right\}_{0}^{n},\left\{\mathbf{h}_{p}^{A}\right\}_{0}^{n}\right) \mathbb{T}\left(D_{*},\left\{\mathbf{c}_{p}^{D}\right\}_{0}^{n},\left\{\mathbf{h}_{p}^{D}\right\}_{0}^{n}\right)
$$

is valid.
The proof of Lemma 1 can also be found in [30].
$\left(C_{*}, \partial_{*},\left\{\omega_{*, q-*}\right\}\right)$ is said to be $\mathbb{C}$-symplectic chain complex of length $q$, if
$1 C_{*}: 0 \rightarrow C_{q} \xrightarrow{\partial_{q}} C_{q-1} \rightarrow \cdots \rightarrow C_{q / 2} \rightarrow \cdots \rightarrow C_{1} \xrightarrow{\partial_{1}} C_{0} \rightarrow 0$ is a chain complex of length $q$, where $q \equiv 2(\bmod 4)$,

2 for $p=0, \ldots, q, \omega_{p, q-p}: C_{p} \times C_{q-p} \rightarrow \mathbb{C}$ is a $\partial$-compatible non-degenerate anti-symmetric bilinear form. Namely,

$$
\omega_{p, q-p}\left(\partial_{p+1} a, b\right)=(-1)^{p+1} \omega_{p+1, q-(p+1)}\left(a, \partial_{q-p} b\right)
$$

and

$$
\omega_{p, q-p}(a, b)=(-1)^{p(q-p)} \omega_{q-p, p}(b, a)
$$

From the fact that $q \equiv 2(\bmod 4)$ we have $\omega_{p, q-p}(a, b)$ is $(-1)^{p} \omega_{q-p, p}(b, a)$. From $\partial$-compatibility of $\omega_{p, q-p}$ we obtain the non-degenerate pairing $\left[\omega_{p, q-p}\right]: H_{p}\left(C_{*}\right) \times H_{q-p}\left(C_{*}\right) \rightarrow \mathbb{C}$.

For the rest of the paper, if the $\mathbb{C}$-symplectic chain complex $\left(C_{*}, \partial_{*},\left\{\omega_{*, q-*}\right\}\right)$ is clear, then $\Delta\left(\mathbf{h}_{p}, \mathbf{h}_{q-p}\right)$ is the determinant of the matrix of the non-degenerate pairing

$$
\left[\omega_{p, q-p}\right]: H_{p}\left(C_{*}\right) \times H_{q-p}\left(C_{*}\right) \rightarrow \mathbb{C}
$$

in the bases $\mathbf{h}_{p}, \mathbf{h}_{q-p}$.
Assume $C_{*}$ is a $\mathbb{C}$-symplectic chain complex of length $q$ and $\mathbf{c}_{p}, \mathbf{c}_{q-p}$ are bases of $C_{p}, C_{q-p}$, respectively. We say $\omega$-compatible, if the matrix of $\omega_{p, q-p}$ in $\mathbf{c}_{p}, \mathbf{c}_{q-p}$ is equal to the $k \times k$ identity matrix $\operatorname{Id}_{k \times k}$ when $p \neq q / 2$ and $\left(\begin{array}{cc}0_{l \times l} & \operatorname{Id}_{l \times l} \\ -\operatorname{Id}_{l \times l} & 0_{l \times l}\end{array}\right)$ when $p=q / 2$, where $k=\operatorname{dim} C_{p}=\operatorname{dim} C_{q-p}$ and $2 l=\operatorname{dim} C_{q / 2}$.

For computing R-torsion in terms of intersections pairings, we have the following result suggests a formula. Namely,

Theorem 2. [31] If $\left(C_{*}, \partial_{*},\left\{\omega_{*, q-*}\right\}\right)$ is a $\mathbb{C}$-symplectic chain complex with the $\omega$-compatible bases $\mathbf{c}_{p}, p=0, \ldots, q$ and if $\mathbf{h}_{p}$ is a basis of $H_{p}\left(C_{*}\right), p=0, \ldots, q$, then the following formula holds:

$$
\begin{equation*}
\left|\mathbb{T}\left(C_{*},\left\{\mathbf{c}_{p}\right\}_{0}^{q},\left\{\mathbf{h}_{p}\right\}_{0}^{q}\right)\right|=\prod_{p=0}^{(q / 2)-1}\left|\Delta\left(\mathbf{h}_{p}, \mathbf{h}_{q-p}\right)\right|^{(-1)^{p}} \sqrt{\left|\Delta\left(\mathbf{h}_{q / 2}, \mathbf{h}_{q / 2}\right)\right|^{(-1)^{q / 2}}} \tag{2}
\end{equation*}
$$

In case $\mathbf{h}_{p}=\mathbf{h}_{q-p}=0$, the convention $0=1.0$ is used and hence $\Delta\left(\mathbf{h}_{p}, \mathbf{h}_{q-p}\right)=1$. Let us also note that equation (2) can be improved as:

$$
\begin{equation*}
\mathbb{T}\left(C_{*},\left\{\mathbf{c}_{p}\right\}_{0}^{q},\left\{\mathbf{h}_{p}\right\}_{0}^{q}\right)=\prod_{p=0}^{(q / 2)-1} \Delta\left(\mathbf{h}_{p}, \mathbf{h}_{q-p}\right)^{(-1)^{p}} \sqrt{\Delta\left(\mathbf{h}_{q / 2}, \mathbf{h}_{q / 2}\right)}{ }^{(-1)^{q / 2}} \tag{3}
\end{equation*}
$$

For details of (3), we refer the reader to [28; Remark 2.4]. See [27, 28, 30], for further applications of Theorem 2.

## 2 Main results

Let $\Sigma$ be a closed orientable surface of genus at least 2 with the universal covering $\widetilde{\Sigma}$. Let $G$ be the Lie group $\operatorname{PSL}(2, \mathbb{C})$ and $\mathcal{G}$ be the Lie algebra of $G$ with the non-degenerate symmetric bilinear form $B$. Here, $B$ is the Killing form.

Assume $\varrho: \pi_{1}(\Sigma) \rightarrow G$ is a homomorphism from the fundamental group $\pi_{1}(\Sigma)$ of $\Sigma$ to $G$. Let $E_{\varrho}=$ $\widetilde{\Sigma} \times \mathcal{G} / \sim$ be the corresponding adjoint bundle over $\Sigma$. Here, $\left(x_{1}, t_{1}\right) \sim\left(x_{2}, t_{2}\right)$, if $\left(x_{2}, t_{2}\right)=\left(\gamma \cdot x_{1}, \gamma \cdot t_{1}\right)$ for some $\gamma \in \pi_{1}(\Sigma)$, the action of $\gamma$ in the first component by deck transformation $\left(\gamma \cdot x_{1}=\gamma\left(x_{1}\right)\right)$ and in the second component by the adjoint action $\left(\gamma \cdot t_{1}=\operatorname{Ad}_{\varrho(\gamma)}\left(t_{1}\right)=\varrho(\gamma) t_{1} \varrho(\gamma)^{-1}\right)$.

Let $K$ be a cell-decomposition of $\Sigma$ for which the adjoint bundle $E_{\varrho}$ is trivial over each cell and $\widetilde{K}$ be the lift of $K$ to the $\widetilde{\Sigma}$. Denote by $\mathbb{Z}\left[\pi_{1}(\Sigma)\right]$ the integral group ring. Let $C_{*}\left(K ; \mathcal{G}_{\operatorname{Ad}_{\varrho}}\right)=C_{*}(\widetilde{K} ; \mathbb{Z}) \otimes \mathcal{G} / \sim$, where for all $\gamma \in \pi_{1}(\Sigma), \sigma \otimes t \sim \gamma \cdot \sigma \otimes \gamma \cdot t$, the action of $\gamma$ by the first component is by deck transformation and in the second is by adjoint action. We have the following chain complex:

$$
\begin{equation*}
0 \longrightarrow C_{2}\left(K ; \mathcal{G}_{\mathrm{Ad}_{\varrho}}\right) \xrightarrow{\partial_{2} \otimes \mathrm{id}} C_{1}\left(K ; \mathcal{G}_{\operatorname{Ad}_{\varrho}}\right) \xrightarrow{\partial_{1} \otimes \mathrm{id}} C_{0}\left(K ; \mathcal{G}_{\mathrm{Ad}_{\varrho}}\right) \longrightarrow 0 \tag{4}
\end{equation*}
$$

Here, $\partial_{p}$ denotes the usual boundary operator. Denote by $H_{*}\left(K ; \mathcal{G}_{\mathrm{Ad}_{\varrho}}\right)$ and $H^{*}\left(K ; \mathcal{G}_{\mathrm{Ad}_{\varrho}}\right)$ the homologies and cohomologies of the chain complex (4), respectively, where $C^{*}\left(K ; \mathcal{G}_{\text {Ad }_{\varrho}}\right)$ denotes the set of $\mathbb{Z}\left[\pi_{1}(\Sigma)\right]$ module homomorphisms from $C_{*}(\widetilde{K} ; \mathbb{Z})$ to $\mathcal{G}$. See [25] for details and unexplained subjects.

Clearly, for conjugate $\varrho, \varrho^{\prime}: \pi_{1}(\Sigma) \rightarrow G$ i.e. $\varrho^{\prime}()=.A \varrho(.) A^{-1}$ for some $A \in G$, we have isomorphic $C_{*}\left(K ; \mathcal{G}_{\operatorname{Ad}_{\varrho}}\right)$ and $C_{*}\left(K ; \mathcal{G}_{\text {Ad }_{\varrho^{\prime}}}\right)$. Similarly, the corresponding cochains $C^{*}\left(K ; \mathcal{G}_{\operatorname{Ad}_{\varrho}}\right)$ and $C^{*}\left(K ; \mathcal{G}_{\mathrm{Ad}_{\varrho^{\prime}}}\right)$ are isomorphic.

Consider chain complex (4). Assume $\left\{e_{j}^{p}\right\}_{j=1}^{m_{p}}$ is a basis of $C_{p}(K ; \mathbb{Z})$. For $j=1, \ldots, m_{p}$, fix a lift $\widetilde{e}_{j}^{p}$ of $e_{j}^{p}$. Then, $c_{p}=\left\{\widetilde{e}_{j}^{p}\right\}_{j=1}^{m_{p}}$ of $C_{p}(\widetilde{K} ; \mathbb{Z})$ is a $\mathbb{Z}\left[\pi_{1}(\Sigma)\right]$-basis. Assume $\mathcal{A}=\left\{a_{k}\right\}_{k=1}^{\operatorname{dim}_{\mathcal{G}}}$ is a $B$-orthonormal basis of the Lie algebra $\mathcal{G}$. Namely, the matrix of the form $B$ equals to the identity matrix of size $\operatorname{dim} \mathcal{G}$. Hence, we obtain a $\mathbb{C}$-basis $\mathbf{c}_{p}=c_{p} \otimes_{\varrho} \mathcal{A}$ of $C_{p}\left(K ; \mathcal{G}_{\text {Ad }_{\varrho}}\right)$. We call such a basis a geometric basis for $C_{p}\left(K ; \mathcal{G}_{\mathrm{Ad}_{\varrho}}\right)$.

If $\mathbf{c}_{p}=c_{p} \otimes_{\varrho} \mathcal{A}$ and $\mathbf{h}_{\mathbf{p}}$ are respectively the geometric basis of $C_{p}\left(K ; \mathcal{G}_{\operatorname{Ad}_{\varrho}}\right)$ and a basis of $H_{p}\left(\Sigma ; \mathcal{G}_{\text {Ad }_{\varrho}}\right)$, then $\mathbb{T}\left(C_{*}\left(K ; \mathcal{G}_{\operatorname{Ad}_{\varrho}}\right),\left\{c_{p} \otimes_{\varrho} \mathcal{A}\right\}_{p=0}^{2},\left\{\mathbf{h}_{p}\right\}_{p=0}^{2}\right)$ is said to be the $R$-torsion of the triple $K, A d_{\varrho}$, and $\left\{\mathbf{h}_{p}\right\}_{p=0}^{2}$.

Theorem 3. [28; Theorem 3.1] If $\Sigma, K, \varrho, \mathbf{c}_{p}=c_{p} \otimes_{\varrho} \mathcal{A}$, and $\mathbf{h}_{p}, p=0,1,2$, are as above, then $\mathbb{T}\left(C_{*}\left(K ; \mathcal{G}_{\text {Ad }_{\varrho}}\right),\left\{c_{p} \otimes_{\varrho} \mathcal{A}\right\}_{p=0}^{2},\left\{\mathbf{h}_{p}\right\}_{p=0}^{2}\right)$ does not depend on the basis $\mathcal{A}$, lifts $\widetilde{e}_{j}^{p}$, conjugacy class of $\varrho$, and the cell-decomposition $K$.

From Theorem 3, we have the well-definiteness of R-torsion of such representations, and hence we write $\mathbb{T}\left(\Sigma,\left\{\mathbf{h}_{p}\right\}_{p=0}^{2}\right)$ rather than $\mathbb{T}\left(C_{*}\left(K ; \mathcal{G}_{\text {Ad }_{\varrho}}\right),\left\{c_{p} \otimes_{\varrho} \mathcal{A}\right\}_{p=0}^{2},\left\{\mathbf{h}_{p}\right\}_{p=0}^{2}\right)$.

Assume $\Sigma, K, G, \mathcal{G}, \varrho, \mathbf{c}_{p}=c_{p} \otimes_{\varrho} \mathcal{A}$ are as above. Let us consider the dual cell-decomposition $K^{\prime}$ of $\Sigma$ corresponding to the cell-decomposition $K$. Consider the lifts $\widetilde{K}$ and $\widetilde{K^{\prime}}$ of $K$ and $K^{\prime}$, respectively. For $i=0,1,2$, we have the intersection form

$$
\begin{equation*}
(\cdot, \cdot)_{i, 2-i}: C_{i}\left(K ; \mathcal{G}_{\operatorname{Ad}_{\varrho}}\right) \times C_{2-i}\left(K^{\prime} ; \mathcal{G}_{\operatorname{Ad}_{\varrho}}\right) \longrightarrow \mathbb{C} \tag{5}
\end{equation*}
$$

defined by $\left(\sigma_{1} \otimes t_{1}, \sigma_{2} \otimes t_{2}\right)_{i, 2-i}=\sum_{\gamma \in \pi_{1}(\Sigma)} \sigma_{1} \cdot\left(\gamma \bullet \sigma_{2}\right) B\left(t_{1}, \gamma \bullet t_{2}\right)$. Here, "." denotes the intersection number pairing, the action of $\gamma$ on $\sigma_{2}$ by deck transformation and on $t_{2}$ is by the adjoint action.

Using the anti-symmetric, $\partial-\operatorname{compatible}(\cdot, \cdot)_{i, 2-i}$, we have the non-degenerate anti-symmetric form

$$
\begin{equation*}
[\cdot, \cdot]_{i, 2-i}: H_{i}\left(\Sigma ; \mathcal{G}_{\operatorname{Ad}_{\varrho}}\right) \times H_{2-i}\left(\Sigma ; \mathcal{G}_{\operatorname{Ad}_{\varrho}}\right) \longrightarrow \mathbb{C} \tag{6}
\end{equation*}
$$

Note that if $D_{i}=C_{i}\left(K ; \mathcal{G}_{\operatorname{Ad}_{\varrho}}\right) \oplus C_{i}\left(K^{\prime} ; \mathcal{G}_{\text {Ad }_{\varrho}}\right)$, and if we consider the bilinear form $\omega_{i, 2-i}: D_{i} \times$ $D_{2-i} \rightarrow \mathbb{C}$ defined by extending the intersection form (5) zero on $C_{i}\left(K ; \mathcal{G}_{\text {Ad }_{\varrho}}\right) \times C_{2-i}\left(K ; \mathcal{G}_{\text {Ad }_{\varrho}}\right)$ and $C_{i}\left(K^{\prime} ; \mathcal{G}_{\mathrm{Ad}_{\varrho}}\right) \times C_{2-i}\left(K^{\prime} ; \mathcal{G}_{\mathrm{Ad}_{\varrho}}\right)$, then $D_{*}$ becomes a $\mathbb{C}$-symplectic chain complex. Note also that the bases $c_{i}$ of $C_{i}(\widetilde{K} ; \mathbb{Z})$ and $c_{i}^{\prime}$ of $C_{i}\left(\widetilde{K^{\prime}} ; \mathbb{Z}\right)$ corresponding to $c_{i}$ result an $\omega$-compatible basis for $D_{*}$.

Kronecker pairing $\langle\cdot, \cdot\rangle: C^{i}\left(K ; \mathcal{G}_{\mathrm{Ad}_{\varrho}}\right) \times C_{i}\left(K ; \mathcal{G}_{\mathrm{Ad}_{\varrho}}\right) \rightarrow \mathbb{C}$ is defined by $\left\langle\theta, \sigma \otimes_{\varrho} t\right\rangle=B(t, \theta(\sigma))$. It has natural extended to $\langle\cdot, \cdot\rangle: H^{i}\left(\Sigma ; \mathcal{G}_{\text {Ad }_{\varrho}}\right) \times H_{i}\left(\Sigma ; \mathcal{G}_{\mathrm{Ad}_{\varrho}}\right) \rightarrow \mathbb{C}$.

Recall the cup product $\cup: C^{i}\left(K ; \mathcal{G}_{\mathrm{Ad}_{\varrho}}\right) \times C^{j}\left(K ; \mathcal{G}_{\operatorname{Ad}_{\varrho}}\right) \rightarrow C^{i+j}(\widetilde{\Sigma} ; \mathbb{C})$ is defined by $\left(\theta_{i} \cup \theta_{j}\right)\left(\sigma_{i+j}\right)=$ $B\left(\theta_{i}\left(\left(\sigma_{i+j}\right)_{\text {front }}\right), \theta_{j}\left(\left(\sigma_{i+j}\right)_{\text {back }}\right)\right)$. Here, $\sigma_{i+j}$ is in $C_{i+j}(\widetilde{K} ; \mathbb{Z})$ and $\widetilde{K}$ denotes the lift of $K$ to $\widetilde{\Sigma}$ $\theta_{i}: C_{i}(\widetilde{K} ; \mathbb{Z}) \rightarrow \mathcal{G}, \theta_{j}: C_{j}(\widetilde{K} ; \mathbb{Z}) \rightarrow \mathcal{G}$ are $\mathbb{Z}\left[\pi_{1}(\Sigma)\right]$-module homomorphisms. This yields the cup product

$$
\smile_{B}: C^{i}\left(K ; \mathcal{G}_{\operatorname{Ad}_{\varrho}}\right) \times C^{j}\left(K ; \mathcal{G}_{\operatorname{Ad}_{\varrho}}\right) \longrightarrow C^{i+j}(K ; \mathbb{C})
$$

with natural extension

$$
\smile_{B}: H^{i}\left(\Sigma ; \mathcal{G}_{\operatorname{Ad}_{\varrho}}\right) \times H^{j}\left(\Sigma ; \mathcal{G}_{\operatorname{Ad}_{\varrho}}\right) \longrightarrow H^{i+j}(\Sigma ; \mathbb{C})
$$

where $\left[\theta_{i}\right] \smile_{B}\left[\theta_{j}\right]=\left[\theta_{i} \smile_{B} \theta_{j}\right]$.
Using the isomorphisms by (6) and the Kronecker pairing, we get the Poincare duality isomorphisms

$$
\mathrm{PD}: H_{i}\left(\Sigma ; \mathcal{G}_{\mathrm{Ad}_{\varrho}}\right) \cong H_{2-i}\left(\Sigma ; \mathcal{G}_{\operatorname{Ad}_{\varrho}}\right)^{*} \cong H^{2-i}\left(\Sigma ; \mathcal{G}_{\operatorname{Ad}_{\varrho}}\right)
$$

For $i=0,1,2$ we have the

$$
\begin{array}{ccccc}
H^{2-i}\left(\begin{array}{l}
\left(\Sigma ; \mathcal{G}_{\operatorname{Ad}_{\varrho}}\right)
\end{array}\right. & \times & H^{i}\left(\Sigma ; \mathcal{G}_{\operatorname{Ad}_{\varrho}}\right) & \xrightarrow{\uparrow} & \xrightarrow{\smile_{B}}
\end{array} H^{2}(\Sigma ; \mathbb{C})
$$

Here, $\mathbb{C} \rightarrow H^{2}(\Sigma ; \mathbb{C})$ sends $1 \in \mathbb{C}$ to the fundamental class of $H^{2}(\Sigma ; \mathbb{C})$ and the inverse of this is integration over $\Sigma$.

Clearly, we have the following pairing

$$
\begin{equation*}
\Omega_{i, 2-i}: H^{i}\left(\Sigma ; \mathcal{G}_{\operatorname{Ad}_{\varrho}}\right) \times H^{2-i}\left(\Sigma ; \mathcal{G}_{\operatorname{Ad}_{\varrho}}\right) \xrightarrow{\smile_{B}} H^{2}(\Sigma ; \mathbb{C}) \xrightarrow{\int_{\Sigma}} \mathbb{C} . \tag{7}
\end{equation*}
$$

$\Omega_{1,1}$ is called Atiyah-Bott-Goldman symplectic form for $G$ on the representation variety $\operatorname{Rep}(\Sigma, G)$.
In [28], we established a formula for computing Reidemeister torsion of representations in terms of $\Omega_{1,1}$ Atiyah-Bott-Goldman symplectic form for the Lie group $G$. More precisely,

Theorem 4. [28; Theorem 3.2] Let $\Sigma, K, K^{\prime}, \varrho$ be as above. Let $\mathbf{c}_{p}$ and $\mathbf{c}_{p}^{\prime}$ be the corresponding geometric bases of $C_{p}\left(K ; \mathcal{G}_{\mathrm{Ad}_{\varrho}}\right)$ and $C_{p}\left(K^{\prime} ; \mathcal{G}_{\mathrm{Ad}_{\varrho}}\right)$, respectively, $p=0,1,2$. If $\mathbf{h}_{p}$ is a basis of $H_{p}\left(\Sigma ; \mathcal{G}_{\operatorname{Ad}_{\varrho}}\right), p=0,1,2$, then the following formulas are valid
i. $\mathbb{T}\left(\Sigma,\left\{\mathbf{h}_{p}\right\}_{p=0}^{2}\right)=i e^{\frac{i \theta}{2}} \frac{\Delta\left(\mathbf{h}_{0}, \mathbf{h}_{2}\right)}{\sqrt{\Delta\left(\mathbf{h}_{1}, \mathbf{h}_{1}\right)}}$,
ii. $\mathbb{T}\left(\Sigma,\left\{\mathbf{h}_{p}\right\}_{p=0}^{2}\right)=i e^{\frac{i \theta}{2}} \frac{\sqrt{\delta\left(\mathbf{h}^{1}, \mathbf{h}^{1}\right)}}{\delta\left(\mathbf{h}^{2}, \mathbf{h}^{0}\right)}$.

Here, $\Delta\left(\mathbf{h}_{p}, \mathbf{h}_{2-p}\right)$ is the determinant of the matrix of (6) in $\mathbf{h}_{p}$ and $\mathbf{h}_{2-p}, \Delta\left(\mathbf{h}_{0}, \mathbf{h}_{2}\right)=\left|\Delta\left(\mathbf{h}_{0}, \mathbf{h}_{2}\right)\right| e^{i \theta}$, where $i=\sqrt{-1}$ and $-\pi<\theta \leq \pi . \delta\left(\mathbf{h}^{2-p}, \mathbf{h}^{p}\right)$ is the determinant of the matrix of (7) in $\mathbf{h}^{p}$ and $\mathbf{h}^{2-p}$, and $\mathbf{h}^{p}$ denotes the Poincare dual basis of $H^{p}\left(\Sigma ; \mathcal{G}_{\mathrm{Ad}_{\varrho}}\right)$ corresponding to $\mathbf{h}_{p}$ of $H_{p}\left(\Sigma ; \mathcal{G}_{\mathrm{Ad}_{\varrho}}\right), p=0,1,2$.

Note that in case $H_{0}\left(\Sigma ; \mathcal{G}_{\text {Ad }_{\varrho}}\right)$ and thus $H_{2}\left(\Sigma ; \mathcal{G}_{\text {Ad }_{\varrho}}\right)$ are zero, by Theorem 4 we get

$$
\mathbb{T}\left(\Sigma,\left\{0, \mathbf{h}_{1}, 0\right\}\right)=i{\sqrt{\Delta\left(\mathbf{h}_{1}, \mathbf{h}_{1}\right)}}^{(-1)}=i \sqrt{\delta\left(\mathbf{h}^{1}, \mathbf{h}^{1}\right)} .
$$

## 3 Applications

## Schottky representation and Thurston symplectic form

Before stating our application, let us recall Thurston symplectic form. For more information and unexplained subjects, we refer [32] and the references therein.

Let $\Sigma_{g}, g \geq 2$, be a closed orientable surface. We say that $\lambda \subset \Sigma_{g}$ is a geodesic lamination, if it is closed and also consists of disjoint complete geodesics without any self-intersection points, called leaves of $\lambda$ (see Figure 1 (a)). We say that the geodesic lamination $\lambda$ is maximal, if the complement $\Sigma_{g}-\lambda$ consists of finitely many ideal triangles, that is, triangles with vertices at infinity (see Figure 1 (b)).


Figure 1. (a) Geodesic lamination with 3 closed leaves (b) Maximal geodesic lamination with 3 closed leaves and 6 infinite leaves spiraling towards closed leaves.

Let $\lambda \subset \Sigma_{g}$ be a geodesic lamination and $G$ be an abelian group. A $G$-valued transverse cocycle $\sigma$ for $\lambda$ is a function from the set of all transverse arcs to the leaves of $\lambda$ to $G$ so that $\sigma$ is finitely additive and invariant under the homotopy of arcs transverse to $\lambda$. To be more precise, $\sigma(k)=\sigma\left(k_{1}\right)+\sigma\left(k_{2}\right)$, when the arc $k$ transverse to leaves of $\lambda$ is decomposed into two subarcs $k_{1}, k_{2}$ with disjoint interiors, and $\sigma(k)=\sigma\left(k^{\prime}\right)$ when the transverse arc $k$ is deformed to arc $k^{\prime}$ through arcs transverse to the leaves of the geodesic lamination $\lambda$ (Fig. 2). Let us denote the group of $G$-valued transverse cocycles for $\lambda$ by $\mathcal{H}(\lambda ; G)$. In the case $\lambda$ is a maximal geodesic lamination and $G=\mathbb{R}, \mathbb{C}$, or $\mathbb{R} / 2 \pi \mathbb{Z}, \mathcal{H}(\lambda ; G)$ is isomorphic to $G^{6 g-6}[33]$. For example, by using a (fattened) train-track $\Phi \subset \Sigma_{g}$ carrying the lamination $\lambda$, one gets the isomorphism $\mathcal{H}(\lambda ; \mathbb{R}) \cong \mathbb{R}^{6 g-6}$.


Figure 2. The arcs $k$ and $k^{\prime}$ are transverse to the leaves of lamination $\lambda$. The arc $k$ is deformed to $k^{\prime}$ through arcs transverse to the leaves of the geodesic lamination. Moreover, $k$ is splitted into two transverse subarcs $k_{1}, k_{2}$ with disjoint interiors.

Recall that a train-track $\Phi \subset \Sigma_{g}$ is composed of finitely many "long" rectangles $e_{1}, \ldots, e_{n}$, called edges of $\Phi$, foliated by arcs parallel to the "short" sides and meeting only along arcs (possibly reduced to a point) lying in their short sides. Furthermore, each point of the "short" side of a rectangle is also contained in another rectangle, each component of the union of the short sides of all rectangles is an arc, as opposed to a closed curve, and finally since the closure $\overline{\Sigma_{g}-\Phi}$ of the complement $\Sigma_{g}-\Phi$ has a certain number of "spikes", corresponding to the points where at least 3 rectangles meet, it is also required that no component of $\overline{\Sigma_{g}-\Phi}$ be a disc with 0,1 or 2 spikes or an annulus with no spike.

Note that foliating the edges of the train-track $\Phi$ by using the short sides, we get a foliation of $\Phi$, and the leaves are called the ties of $\Phi$. The finitely many ties where several edges meet are said to be the switches of $\Phi$. If a tie is not a switch, then it is called a generic tie. If $\lambda$ lies entirely in the interior of $\Phi$ and if, moreover, the leaves of $\lambda$ are transverse to the ties of $\Phi$, then $\lambda$ is said to be carried by $\Phi$ (Fig. 3). We refer [34] for constructions of a train-track.


Figure 3. Locally a train-track carries a geodesic lamination.

Suppose $\Phi \subset \Sigma_{g}$ is a train-track. A real-valued function from the set of edges of $\Phi$ is called an edge
weight system for $\Phi$, if it satisfies the switch relation. Namely, for each switch $s$ of $\Phi$, let $e_{1}, \ldots, e_{p}$ be the edges adjacent to one side of $s$ and let $e_{p+1}, \ldots, e_{p+q}$ be the edges adjacent to the other side, we have $\sum_{i=1}^{p} a\left(e_{i}\right)=\sum_{j=p+1}^{p+q} a\left(e_{j}\right)$. Let us denote the real vector space of all edge weight systems for $\Phi$ by $\mathcal{W}(\Phi ; \mathbb{R})$.

Let $\lambda \subset \Sigma_{g}$ be a geodesic lamination carried by the train-track $\Phi$. Consider the injective map associating each transverse cocycle $\sigma \in \mathcal{H}(\lambda ; \mathbb{R})$ to the edge weight system $a_{\sigma} \in \mathcal{W}(\Phi ; \mathbb{R})$ defined by $a_{\sigma}(e)=\sigma\left(k_{e}\right)$. Here, $k_{e}$ is a tie of $e$. In the case of maximal lamination $\lambda$, the map is an isomorphism $\mathcal{H}(\lambda ; \mathbb{R}) \cong \mathcal{W}(\Phi ; \mathbb{R})[33]$.

One can arrange the train-track $\Phi$ so that at each switch $s$ of $\Phi$, there are one incoming edge $e_{s}^{\text {in }}$ touching the switch $s$ on one side and two outgoing edges $e_{s}^{\text {left }}, e_{s}^{\text {right }}$ touching $s$ on the other side, where as seen from the incoming edge $e_{s}^{\text {in }}$ and for the orientation of the surface $\Sigma_{g}, e_{s}^{\text {left }}$ branches out to the left and $e_{s}^{\text {right }}$ branches out to the right. Thurston symplectic form on $\mathcal{W}(\Phi)$ is the anti-symmetric bilinear form $\omega_{\text {Thurston }}: \mathcal{W}(\Phi ; \mathbb{R}) \times \mathcal{W}(\Phi, \mathbb{R}) \rightarrow \mathbb{R}$ defined by

$$
\omega_{\text {Thurston }}(a, b)=\frac{1}{2} \sum_{s} \operatorname{det}\left[\begin{array}{ll}
a\left(e_{s}^{\mathrm{left}}\right) & a\left(e_{s}^{\mathrm{right}}\right) \\
b\left(e_{s}^{\mathrm{left}}\right) & b\left(e_{s}^{\mathrm{right}}\right)
\end{array}\right]
$$

where the summation is over all switches of $\Phi$.
By using the isomorphism $\mathcal{H}(\lambda ; \mathbb{R}) \cong \mathcal{W}(\Phi ; \mathbb{R})$, we have the Thurston symplectic form $\omega_{\text {Thurston }}$ : $\mathcal{H}(\lambda ; \mathbb{R}) \times \mathcal{H}(\lambda ; \mathbb{R}) \rightarrow \mathbb{R}$. As is well known that $\omega_{\text {Thurston }}$ is an algebraic intersection number and is independent of $\Phi[32,34]$.

Recall that Teichmüller space Teich $\left(\Sigma_{g}\right)$ of the surface $\Sigma_{g}$ is the space of isotopy classes of complex structures on $\Sigma_{g}$. By The Uniformization Theorem, it is the space of isotopy classes of Riemannian metrics with constant Gaussian curvature $(-1)$, that is, hyperbolic metrics on $\Sigma_{g}$. One can also identify it with the space of conjugacy classes of all discrete faithful homomorphisms from the fundamental group $\pi_{1}\left(\Sigma_{g}\right)$ to $\operatorname{PSL}(2, \mathbb{R})$. With the help of a maximal geodesic lamination $\lambda \subset \Sigma_{g}$ and sending to each hyperbolic metric $m \in \operatorname{Teich}\left(\Sigma_{g}\right)$ the corresponding shearing cocycle $\sigma_{m} \in \mathcal{H}(\lambda ; \mathbb{R})$, F. Bonahon embedded Teich $\left(\Sigma_{g}\right)$ as an open cone $\mathcal{C}(\lambda) \subset \mathcal{H}(\lambda ; \mathbb{R})[32]$. If $k$ is an arc transverse to $\lambda$, the shearing cocycle $\sigma_{m}(k)$ measures the "shift to the left" between the two ideal triangles in $\mathbb{H}^{2} / \varrho_{m}\left(\pi_{1}\left(\Sigma_{g}\right)\right)$ corresponding to the components of $\Sigma_{g}-\lambda$ containing the endpoints of $k$. Here, $\varrho_{m}: \pi_{1}\left(\Sigma_{g}\right) \rightarrow$ $\operatorname{PSL}(2, \mathbb{R})$ is the discrete faithful representation associated to $m$.

Recall that for a homorphism $\varrho: \pi_{1}\left(\Sigma_{g}\right) \rightarrow \operatorname{PSL}(2, \mathbb{C})$, there is the following commutative diagram

$$
\begin{array}{cccc}
H^{1}\left(\Sigma_{g} ; \mathfrak{s l}(2, \mathbb{C})_{\operatorname{Ad}_{\varrho}}\right) & \times & H^{1}\left(\Sigma_{g} ; \mathfrak{s l}(2, \mathbb{C})_{\operatorname{Ad}_{\varrho}}\right) & \xrightarrow{\smile_{B}} \\
\uparrow \mathrm{PD} & H^{2}\left(\Sigma_{g} ; \mathbb{C}\right)  \tag{8}\\
H_{1}\left(\Sigma_{g} ; \mathfrak{s l}(2, \mathbb{C})_{\operatorname{Ad}_{\varrho}}\right) & \times & H_{1}\left(\Sigma_{g} ; \mathfrak{s l}(2, \mathbb{C})_{\operatorname{Ad}_{\varrho}}\right) & \stackrel{[\cdot,]_{1,1}}{\longrightarrow}
\end{array}
$$

Here, $\mathbb{C} \rightarrow H^{2}\left(\Sigma_{g} ; \mathbb{C}\right)$ is the isomorphism sending $1 \in \mathbb{C}$ to the fundamental class of $H^{2}\left(\Sigma_{g} ; \mathbb{C}\right)$.
Recall also that

$$
\omega_{\mathrm{PSL}(2, \mathbb{C})}: H^{1}\left(\Sigma_{g} ; \mathfrak{s l}(2, \mathbb{C})_{\mathrm{Ad}_{\varrho}}\right) \times H^{1}\left(\Sigma_{g} ; \mathfrak{s l}(2, \mathbb{C})_{\mathrm{Ad}_{\varrho}}\right) \xrightarrow{\smile_{B}} H^{2}\left(\Sigma_{g} ; \mathbb{C}\right) \xrightarrow{\int_{\Sigma_{g}}} \mathbb{C}
$$

is called Atiyah-Bott-Goldman symplectic form for $\operatorname{PSL}(2, \mathbb{C})$ [35]. It is known that $\omega_{\mathrm{PSL}(2, \mathbb{C})}$ is related with the Goldman symplectic form on $\operatorname{Teich}\left(\Sigma_{g}\right)$

$$
\omega_{\text {Goldman }}: H^{1}\left(\Sigma_{g} ; \mathfrak{s l}(2, \mathbb{R})_{\operatorname{Ad}_{\varrho}}\right) \times H^{1}\left(\Sigma_{g} ; \mathfrak{s l}(2, \mathbb{R})_{\operatorname{Ad}_{\varrho}}\right) \xrightarrow{\smile_{\mathbb{R}}} H^{2}\left(\Sigma_{g} ; \mathbb{R}\right) \xrightarrow{\int_{\Sigma_{g}}} \mathbb{R}
$$

Here, $B_{\mathbb{R}}$ is the Killing form of the set $\mathfrak{s l}(2, \mathbb{R})$, which is $2 \times 2$ trace zero matrices over $\mathbb{R}$.
In [31], considering the isomorphism $T_{\varrho} \operatorname{Teich}\left(\Sigma_{g}\right) \cong \mathcal{H}(\lambda ; \mathbb{R})$, which is obtained by the realanalytical parameterization of F. Bonahon [32] and complexfying $\omega_{\text {Thurston }}$, it was proved that

$$
\begin{equation*}
\omega_{\mathrm{PSL}(2, \mathbb{C})}=2 \omega_{\mathrm{T}} \tag{9}
\end{equation*}
$$

Here,

$$
\begin{equation*}
\omega_{\mathrm{T}}: \mathcal{H}(\lambda ; \mathbb{C}) \times \mathcal{H}(\lambda ; \mathbb{C}) \rightarrow \mathbb{C} \tag{10}
\end{equation*}
$$

is the complexfied Thurston symplectic form.
For more information and unexplained subjects, we refer the reader to [31] and the references therein.

For a fixed $g \geq 2$, let us consider the free group $\mathrm{F}_{\mathrm{g}}$ with generators $X=\left\{x_{1}, \ldots, x_{g}\right\}$. The set $\operatorname{Hom}\left(\mathrm{F}_{\mathrm{g}}, \operatorname{PSL}(2, \mathbb{C})\right)$ of all homomorphisms from $\mathrm{F}_{\mathrm{g}}$ to $\operatorname{PSL}(2, \mathbb{C})$ can be identified with $\operatorname{PSL}(2, \mathbb{C})^{g}$ by considering the map $\varrho \mapsto\left(\varrho\left(x_{1}\right), \ldots, \varrho\left(x_{g}\right)\right)$.

Let $\chi\left(\mathrm{F}_{\mathrm{g}}, \operatorname{PSL}(2, \mathbb{C})\right)$ be the quotient $\operatorname{Hom}\left(\mathrm{F}_{\mathrm{g}}, G\right) / / G$. As is well known that $\chi\left(\mathrm{F}_{\mathrm{g}}, \operatorname{PSL}(2, \mathbb{C})\right)$ naturally has the structure of an algebraic variety and it differs from the set theoretical quotient $\operatorname{Hom}\left(\mathrm{F}_{\mathrm{g}}, \mathrm{PSL}(2, \mathbb{C})\right) / \mathrm{PSL}(2, \mathbb{C})$ only at reducible points, namely, representations whose images fix a point on $\widehat{\mathbb{C}}[36]$. Let $\mathcal{D}\left(\mathrm{F}_{\mathrm{g}}, \operatorname{PSL}(2, \mathbb{C})\right)$ and $\mathcal{E}\left(\mathrm{F}_{\mathrm{g}}, \operatorname{PSL}(2, \mathbb{C})\right)$ denote respectively the set of all discrete, faithful representations and those of representations with dense image in PSL $(2, \mathbb{C})$. It is well known $\mathcal{E}\left(\mathrm{F}_{\mathrm{g}}, \mathrm{PSL}(2, \mathbb{C})\right)$ is not empty and open, $\mathcal{D}\left(\mathrm{F}_{\mathrm{g}}, \mathrm{PSL}(2, \mathbb{C})\right)$ is closed and outside of these representations in $\chi\left(\mathrm{F}_{\mathrm{g}}, \operatorname{PSL}(2, \mathbb{C})\right)$ has measure zero [37] and the references therein.

Let $A_{i}, B_{i}, i=1, \ldots, g$, be $2 g$ disjoint closed (topological) disks in $\partial \mathbb{H}^{3}$ and let $\gamma_{1}, \ldots, \gamma_{g} \in$ $\operatorname{PSL}(2, \mathbb{C})$ be the Möbiüs transformations of the Riemann sphere $\widehat{\mathbb{C}}$ so that $\gamma_{i}\left(A_{i}\right)$ is the closure of the complement of $B_{i}$. The set $\left\{\gamma_{1}, \ldots, \gamma_{g}\right\}$ generate a free discrete group of rank $g$, called a Schottky group. The representation $\varrho$ obtained by $x_{i} \mapsto \gamma_{i}$ is in $\mathcal{D}\left(\mathrm{F}_{\mathrm{g}}, \operatorname{PSL}(2, \mathbb{C})\right)$. Let $\mathcal{S}\left(\mathrm{F}_{\mathrm{g}}, \operatorname{PSL}(2, \mathbb{C})\right)$ be the set of Schottky representations. As is well known that $\mathcal{S}\left(\mathrm{F}_{\mathrm{g}}, \mathrm{PSL}(2, \mathbb{C})\right)$ lies in the interior of $\mathcal{D}\left(\mathrm{F}_{\mathrm{g}}, \operatorname{PSL}(2, \mathbb{C})\right)$ [38].

In [39], Y. Minsky proved the existence of an open set $\mathcal{M}\left(\mathrm{F}_{\mathrm{g}}, \mathrm{PSL}(2, \mathbb{C})\right)$ of $\chi\left(\mathrm{F}_{\mathrm{g}}, \mathrm{PSL}(2, \mathbb{C})\right)$ which is strictly larger than $\mathcal{S}\left(\mathrm{F}_{\mathrm{g}}, \operatorname{PSL}(2, \mathbb{C})\right)$ and on which $\operatorname{Out}\left(\mathrm{F}_{g}\right)$ acts properly discontinuously. We have

Theorem 5. Let $\mathrm{F}_{\mathrm{g}}$ denote the fundamental group $\pi_{1}\left(H_{g}\right)$ of handle body $\mathrm{H}_{\mathrm{g}}$ of genus $g \geq$ 2 with boundary $\Sigma_{g}$, and let $M$ denote the double of $H_{g}$. Suppose $\lambda \subset \Sigma_{g}$ is a fixed maximal geodesic lamination and $\varrho \in \mathcal{M}\left(\mathrm{F}_{\mathrm{g}}, \operatorname{PSL}(2, \mathbb{C})\right)$ is such that $\varrho \circ r \in \operatorname{Teich}\left(\Sigma_{g}\right)$. Let $\mathbf{h}_{i}^{\mathrm{F}_{g}}$ be bases for $H_{i}\left(\mathrm{~F}_{g} ; \mathfrak{s l}(2, \mathbb{C})_{A d_{\varrho}}\right), i=0,1,2,3$. Then, there exist basis $\mathbf{h}_{j}^{\mathrm{M}}$ and $\mathbf{h}_{k}^{\Sigma_{g}}$ of $H_{j}\left(\mathrm{M} ; \mathfrak{s l}(2, \mathbb{C})_{A d_{\varrho}}\right)$ and $H_{k}\left(\Sigma_{g} ; \mathfrak{s l}(2, \mathbb{C})_{A d_{\varrho \circ r}}\right), j=0,1,2,3, k=0,1,2$, respectively so that Reidemeister torsion of the corresponding Mayer-Vietoris long exact sequence $\mathcal{H}_{\star}$ in these bases is 1 . In addition, the following formula holds:

$$
\mathbb{T}\left(\mathrm{F}_{g},\left\{\mathbf{h}_{i}^{\mathrm{F}_{g}}\right\}_{0}^{3}\right)=e^{\frac{\sqrt{-1}}{4}\left(-\beta_{0}+\pi-\theta_{1}\right)} 2^{\frac{\chi\left(\Sigma_{g ; \mathrm{sf}(2, \mathrm{C}))}^{4}\right.}{4} \sqrt{\Omega_{\mathrm{T}}}}
$$

Here, $\beta_{0}=\operatorname{dim} H_{0}\left(\mathrm{M} ; \mathfrak{s l}(2, \mathbb{C})_{A d_{\varrho}}\right), \mathbf{h}_{1,1}^{0}$ is a basis of $H_{1}\left(\Sigma_{g} ; \mathfrak{s l}(2, \mathbb{C})_{A d_{\varrho \circ r}}\right) \oplus H_{1}\left(\Sigma_{g} ; \mathfrak{s l}(2, \mathbb{C})_{A d_{\varrho \circ r}}\right)$ such that $\mathbb{T}\left(C_{*}\left(\Sigma_{g} ; \mathfrak{s l}(2, \mathbb{C})_{A d_{\varrho \circ r}}\right) \oplus C_{*}\left(\Sigma_{g} ; \mathfrak{s l}(2, \mathbb{C})_{A d_{\varrho \circ r}}\right),\left\{\mathbf{h}_{1,1}^{0}\right\}\right)$ is equal to $1,\left[\mathbf{h}_{1,1}^{0}, \mathbf{h}_{1}^{\Sigma_{g}} \oplus \mathbf{h}_{1}^{\Sigma_{g}}\right]$ $=\left|\left[\mathbf{h}_{1,1}^{0}, \mathbf{h}_{1}^{\Sigma_{g}} \oplus \mathbf{h}_{1}^{\Sigma_{g}}\right]\right| e^{\sqrt{-1} \theta_{1}}$. Here, $\chi\left(\Sigma_{g} ; \mathfrak{s l}(2, \mathbb{C})\right)$ is $\chi\left(\Sigma_{g}\right) \operatorname{dim}_{\mathbb{C}} \mathfrak{s l}(2, \mathbb{C}), \Omega_{\mathrm{T}}$ is determinant of the matrix of the symplectic form (10) in the basis $\mathfrak{h} \oplus \sqrt{-1} \mathfrak{h}, \mathfrak{h}$ is the basis of $\mathcal{H}(\lambda ; \mathbb{R})$ associated with the isomorphism obtained by the embedding Teich $\left(\Sigma_{g}\right) \hookrightarrow \mathcal{H}(\lambda ; \mathbb{R})[32]$, and $\mathbf{h}^{1}$ is the Poincare dual
basis of $H^{1}\left(\Sigma_{g} ; \mathfrak{s l}(2, \mathbb{C})_{A d_{\varrho \circ r}}\right)$ corresponding to $\mathbf{h}_{1}^{\Sigma_{g}}$. Here, $r: \pi_{1}\left(\Sigma_{g}\right) \rightarrow \pi_{1}\left(\mathrm{~F}_{g}\right)$ is the homomorphism obtained by the embedding $\Sigma_{g} \hookrightarrow \mathrm{~F}_{g}$.

The proof of Theorem 5 is based on combining Theorem 4 and [28; Theorem 4.2], and the above results, using the commutative diagram (8), Eq. (9), and the definition of $\omega_{\operatorname{PSL}(2, \mathbb{C})}$.

Let us now apply [28; Theorem 4.3]. As is well known that for a compact orientable 3 -manifold H , the holonomy representation of the complete hyperbolic structure Hol : $\pi_{1}(\mathrm{H}) \rightarrow \mathrm{Isom}^{+} \mathbb{H}^{3} \cong$ $\operatorname{PSL}(2, \mathbb{C})$ can be lifted to a representation $\widetilde{\mathrm{Hol}}: \pi_{1}(\mathrm{H}) \rightarrow \mathrm{SL}(2, \mathbb{C})$ [40]. It is also well known that there is a one-to-one correspondence between the lifts and spin structures on H. Considering one of the lifts and composing one of a finite dimensional representation $V$ of $\mathrm{SL}(2, \mathbb{C})$, we get a representation $\varrho: \pi_{1}(\mathrm{H}) \rightarrow \mathrm{SL}(V)$. Recall that for every positive integer $n$ there is a unique irreducible representation $V_{n}$ of $\mathrm{SL}(2, \mathbb{C})$ of dimension $n$, namely, $(n-1)$-th symmetric power of the standard representation $V_{2}=\mathbb{C}^{2}$. Considering $V_{n}$ and all above, we get $\varrho_{n}: \pi_{1}(\mathrm{H}) \rightarrow \mathrm{SL}(n, \mathbb{C})$.

Let H be a compact orientable non-elementary hyperbolic 3 -manifold with a boundary consisting of $\ell$ surfaces $\Sigma_{g_{1}}, \ldots, \Sigma_{g_{\ell}}$ of genus at least 2 , and $n \geq 2$. Recall that H is non-elementary if its holonomy is an irreducible representation in $\operatorname{PSL}(2, \mathbb{C})$.

In [40; Theorem 0.1], P. Menal-Ferrer and J. Porti prove that the inclusion $\partial \mathrm{H} \subset \mathrm{H}$ induces an injection, $H^{1}\left(\mathrm{H} ; \mathfrak{s l}(n, \mathbb{C})_{A d_{\varrho_{n}}}\right) \hookrightarrow H^{1}\left(\partial \mathrm{H} ; \mathfrak{s l}(n, \mathbb{C})_{A d_{\varrho_{n}}}\right)$ with $\operatorname{dim} H^{1}\left(\mathrm{H} ; \mathfrak{s l}(n, \mathbb{C})_{A d_{\varrho_{n}}}\right)=(1 / 2)$ $\operatorname{dim} H^{1}\left(\partial \mathrm{H} ; \mathfrak{s l}(n, \mathbb{C})_{A d_{\varrho_{n}}}\right)$, and an isomorphism $H^{2}\left(\mathrm{H} ; \mathfrak{s l}(n, \mathbb{C})_{A d_{\varrho_{n}}}\right) \cong H^{2}\left(\partial \mathrm{H} ; \mathfrak{s l}(n, \mathbb{C})_{A d_{\varrho_{n}}}\right)$.

Theorem 6. Assume $\Sigma_{g_{i}}, \mathrm{H}, \mathrm{M}, G, \mathcal{G}, \varrho, \mathbf{h}_{k}^{\mathrm{H}}, \mathbf{h}_{k}^{\mathrm{M}}$, and $\mathbf{h}_{j}^{\Sigma_{g_{i}}}$ are as above. Then, the following formula is valid:

$$
\begin{aligned}
\mathbb{T}\left(\mathrm{H},\left\{\mathbf{h}_{k}^{\mathrm{H}}\right\}_{0}^{3}\right) & =e^{\frac{\sqrt{-1}}{4}\left(-\beta_{0}+\ell \pi-\sum_{i=1}^{\ell} \theta_{1}^{\Sigma g_{i}}\right)} \prod_{i=1}^{\ell} \Delta\left(\mathbf{h}_{1}^{\Sigma_{g_{i}}}, \mathbf{h}_{1}^{\Sigma_{g_{i}}}\right)^{-1 / 4} \\
& =e^{\frac{\sqrt{-1}}{4}\left(-\beta_{0}+\ell \pi-\sum_{i=1}^{\ell} \theta_{1}^{\Sigma g_{i}}\right)} \prod_{i=1}^{\ell} \sqrt[4]{\delta\left(\mathbf{h}^{1, i}, \mathbf{h}^{1, i}\right)}
\end{aligned}
$$

Here, $\left[\mathbf{h}_{1,1}^{0, \Sigma_{g_{i}}}, \mathbf{h}_{1}^{\Sigma_{g_{i}}} \oplus \mathbf{h}_{1}^{\Sigma_{g_{i}}}\right]=\left|\left[\mathbf{h}_{1,1}^{0, \Sigma_{g_{i}}}, \mathbf{h}_{1}^{\Sigma_{g_{i}}} \oplus \mathbf{h}_{1}^{\Sigma_{g_{i}}}\right]\right| e^{\sqrt{-1} \theta_{1}^{\Sigma g_{i}}}, r_{i}: \pi_{1}\left(\Sigma_{g_{i}}\right) \rightarrow \pi_{1}(\mathrm{H})$ denotes the homomorphism obtained by the embedding $\Sigma_{g_{i}} \hookrightarrow \mathrm{H}, \beta_{0}=\operatorname{dim} H_{0}\left(\mathrm{M} ; \mathcal{G}_{A d_{\varrho}}\right)$ and $\mathbf{h}_{1,1}^{0, \Sigma_{g_{i}}}$ is a basis of $H_{1}\left(\Sigma_{g_{i}} ; \mathcal{G}_{A d_{\varrho \circ r_{i}}}\right) \oplus H_{1}\left(\Sigma_{g_{i}} ; \mathcal{G}_{A d_{\varrho \circ r_{i}}}\right)$ so that $\mathbb{T}\left(C_{*}\left(\Sigma_{g_{i}} ; \mathcal{G}_{A d_{\varrho \circ r_{i}}}\right) \oplus C_{*}\left(\Sigma_{g_{i}} ; \mathcal{G}_{A d_{\varrho \circ r_{i}}}\right),\left\{\mathbf{h}_{1,1}^{0, \Sigma_{g_{i}}}\right\}\right)=1$, $\mathbf{h}^{j, i}$ is the Poincare dual basis of $H^{j}\left(\Sigma_{g_{i}} ; \mathcal{G}_{A d_{\varrho \circ r_{i}}}\right)$ corresponding to the basis $\mathbf{h}_{j}^{\Sigma_{g_{i}}}$ of $H_{j}\left(\Sigma_{g_{i}} ; \mathcal{G}_{A d_{\varrho \circ r_{i}}}\right)$.

The proof of Theorem 6 is based on considering the short-exact sequence

$$
0 \rightarrow \underset{i=1}{\oplus} C_{*}\left(\Sigma_{g_{i}} ; \mathcal{G}_{A d_{\varrho \circ r_{i}}}\right) \rightarrow C_{*}\left(\mathrm{H} ; \mathcal{G}_{A d_{\varrho}}\right) \oplus C_{*}\left(\mathrm{H} ; \mathcal{G}_{A d_{\varrho}}\right) \rightarrow C_{*}\left(\mathrm{M} ; \mathcal{G}_{A d_{\varrho}}\right) \rightarrow 0
$$

and combining [28; Theorem 4.1] and [28; Theorem 4.3].
Combining these and Theorem 6, we have
Theorem 7. Considering $n=2$ and for $i=1, \ldots, \ell$, fixing a maximal geodesic lamination $\lambda_{i} \subset \Sigma_{g_{i}}$, if $\varrho_{2}: \pi_{1}(\mathrm{H}) \rightarrow \mathrm{SL}(2, \mathbb{C})$ is such that $\varrho_{2} \circ r_{i} \in \operatorname{Teich}\left(\Sigma_{g_{i}}\right), i=1, \ldots, \ell$, applying (ii) of Theorem 5, and using the notation there, we get

$$
\mathbb{T}\left(\mathrm{H},\left\{\mathbf{h}_{k}^{\mathrm{H}}\right\}_{0}^{3}\right)=e^{\frac{\sqrt{-1}}{4}}\left(-\beta_{0}+\ell \pi-\sum_{i=1}^{\ell} \theta_{1}^{\Sigma g_{i}}\right) 2^{\frac{1}{4}} \sum_{i=1}^{\ell} \chi\left(\Sigma_{g_{i}} ; \mathfrak{s l}(2, \mathbb{C})\right) \prod_{i=1}^{\ell} \sqrt[4]{\Omega_{\mathrm{T}, i}}
$$

Here, $\Omega_{\mathrm{T}, i}$ is the matrix of the complex Thurston symplectic form $\omega_{\mathrm{T}}: \mathcal{H}\left(\lambda_{i} ; \mathbb{C}\right) \times \mathcal{H}\left(\lambda_{i} ; \mathbb{C}\right) \rightarrow \mathbb{C}$ in the basis $\mathfrak{h}^{i} \oplus \sqrt{-1} \mathfrak{h}^{i}$, and $\mathbf{h}^{j, i}$ is the Poincare dual basis of $H^{j}\left(\Sigma_{g_{i}} ; \mathfrak{s l}(2, \mathbb{C})_{A d_{e_{2} \circ r_{i}}}\right)$ corresponding to $\mathbf{h}_{j}^{\Sigma_{g_{i}}}$, and $\mathfrak{h}^{i}$ is the basis of $\mathcal{H}\left(\lambda_{i} ; \mathbb{R}\right)$ associated with the isomorphism obtained by the real analytical embedding Teich $\left(\Sigma_{g_{i}}\right) \hookrightarrow \mathcal{H}\left(\lambda_{i} ; \mathbb{R}\right)$ [32]. Here, $r_{i}: \pi_{1}\left(\Sigma_{g_{i}}\right) \rightarrow \pi_{1}(\mathrm{H})$ is the homomorphism obtained by the embedding $\Sigma_{g_{i}} \hookrightarrow \mathrm{H}$.

## References

1 Burger, M., Iozzi, A., \& Wienhard, A. (2010). Surface group representations with maximal Toledo invariant. Annals of Mathematics, 172, 517-566.
2 Goldman, W.M. (1988). Geometric structures on manifolds and varieties of representations. The Geometry of Group Representations. Contemporary Mathematics, 169-198.
3 Choi, S, \& Goldman, W.M. (1993). Convex real projective structures on closed surfaces are closed. Proceedings of the American Mathematical Society, 118, 657-661.
4 Guichard, O., \& Wienhard, A. (2010). Topological Invariants of Anosov Representations. Journal of Topology, 3, 578-642.
5 Hitchin, N. (1992). Lie groups and Teichmuller spaces. Topology, 31, 449-473.
6 Labourie, F. (2006). Anasov flows, surface groups and curves in projective space. Inventiones Mathematicae, 165, 51-114.
7 Culler, M., \& Shalen, P.B. (1983). Varieties of group representations and splittings of 3-manifolds. Annals of Mathematics, 117, 109-146.
8 Morgan, J.W., \& Shalen, P.B. (1984). Valuations, trees, and degenerations of hyperbolic structures, I. Annals of Mathematics, 120, 401-476.

9 Le, T.Q. (2006). The colored Jones polynomial and the A-polynomial of knots. Advances in Mathematics, 207, 782-804.
10 Heusener, M., \& Porti, J. (2005). Deformations of reducible representations of 3-manifold groups into PSL(2,C). Algebraic \& Geometric Topology, 5, 965-997.
11 Boden, H.U., \& Curtis, C.L. (2008). Splicing and the SL2(C) Casson invariant. Proceedings of the American Mathematical Society, 136, 2615-2623.
12 Gukov, S. (2005). Three-dimensional quantum gravity, Chern-Simons theory, and the A-polynomial. Communications in Mathematical Physics, 255, 577-627.
13 Witten, E. (1989). Quantum field theory and the Jones polynomial. Bulletin of Communications in Mathematical Physics, 12, 351-399.
14 Frohman, C., \& Gelca, R. (2000). Skein modules and the noncommutative torus. Transactions of the American Mathematical Society, 352, 4877-4888.
15 Sikora, A.S. (2005). Skein theory for $\mathrm{SU}(\mathrm{n})$-quantum invariants. Algebraic \& Geometric Topology, 5, 865-897.
16 Garcia-Prada, O., \& Gothen, P.B. (2013). Mundet i Riera I. Higgs bundles and surface group representations in the real symplectic group. Journal of Topology, 6, 64-118.
17 Reidemeister, K. (1935). Homotopieringe und linsenraume. AAbhandlungen aus dem Mathematischen Seminar der Universitat Hamburg, 11, 102-109.
18 Franz, W. (1935). Uber die Torsion einer Uberdeckung. Journal fur die Reine und Angewandte Mathematik, 173, 245-254.
19 Milnor, J. (1962). A duality theorem for Reidemeister torsion. Annals of Mathematics, 76, 137147.

20 Cheeger, J. (1979). Analytic torsion and the heat equation. Annals of Mathematics, 109, 259-321.
21 Witten, E. (1991). On quantum gauge theories in two dimensions. Bulletin of Communications in Mathematical Physics, 141, 153-209.
22 Hutchings, M., \& Lee, Y. (1999). Circle valued Morse theory and Reidemeister torsion. Geometry \& Topology, 3, 369-396.
23 Meng, G. \& Taubes C.H. (1996). SW = Milnor torsion. Mathematical Research Letters, 3, 661674.

24 Milnor, J. (1966). Whitehead torsion. American Mathematical Society, 72, 358-426.
25 Porti, J. (1997). Torsion de Reidemeister pour les Varietes Hyperboliques. Amer Mathematical Society.
26 Turaev, V. (2002). Torsions of 3-Dimensional Manifolds. Basel: Birkhauser.
27 Hezenci, F., \& Sozen, Y. (2018). A note on exceptional groups and Reidemeister torsion. Journal of Mathematical Physics, 59, 081704.
28 Hezenci, F., \& Sozen, Y. (2022). Representation variety of free or surface groups and Reidemeister torsion. Turkish Journal of Mathematics, 46(4). https://doi.org/ 10.55730/1300-0098.3169
29 Sozen, Y. (2008). On Reidemeister torsion of a symplectic complex. Osaka Journal of Mathematics, 45, 1-39.
30 Sozen, Y. (2012). Symplectic chain complex and Reidemeister torsion of compact manifolds. Mathematica Scandinavica, 111, 65-91.
31 Sozen, Y. (2014). A note on Reidemeister torsion and pleated surfaces. Journal of Knot Theory and its Ramifications, 23, 1-32.
32 Bonahon, F. (1996). Shearing hyperbolic surfaces, bending pleated surfaces and Thurston's symplectic form. Ann. Fac. Sci. Toulouse Math, 5, 233-297.
33 Bonahon, F. (1997). Transverse Holder distributions for geodesic laminations, Topology, 36, 103122.

34 Penner, R.C., \& Harer, J.L. (1992). Combinatorics of Train Tracks, Princeton University Press.
35 Goldman, W.M. (1984). The symplectic nature of fundamental groups of surfaces. Advances in Mathematics, 54, 200-225.
36 Morgan, J.W., \& Shalen, P.B. (1984). Valuations, trees, and degenerations of structures, I. Ann. of Math., 120, 401-476.
37 Breuillard, E., \& Gelander, T. (2003). On dense free subgroups of Lie groups. J. Algebra, 261, 448-467.
38 Sullivan, D. (1981). On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions. Riemann Surfaces and Related Topics. In Proceedings of the 1978 Stony Brook Conference, Princeton University Press.
39 Minsky, Y. (2013). On dynamics of Out(Fn) on PSL(2,C) characters. Israel J. Math., 193, 47-70.
40 Menal-Ferrer, P.,\& Porti, J. (2012). Twisted cohomology for hyperbolic three manifolds. Osaka J. Math., 49, 741-769.

Ф. Хезенжи ${ }^{1}$, Я. Созен ${ }^{2}$<br>${ }^{1}$ Дюздже университеті, Дюздэе, Түркия;<br>${ }^{2}$ Хаджеттепе университеті, Анкара, Түркия

## Шоттки көрсетілімі мен Рейдмейстер бұралуы жайында ескерту

Мақалада Шоттки көрсетілімі үшін Рейдмейстердің бұралу формуласы анықталған. Теориялық нәтижелер 2 -ден кем емес текті бағдарланған беттерден тұратын жиекті 3 -көпбейнелерге қолданылады.

Kiлm сөздер: Шоттки көрсетілімі, Рейдмейстер бұралуы, көрсетілімнің көпбейнелері, Атьи-БоттаГолдман симплектикалық формасы, Терстонның симплектикалық формасы.

Ф. Хезенжи ${ }^{1}$, Я. Созен ${ }^{2}$<br>${ }^{1}$ Университет Дюздже, Дюздже, Турция;<br>${ }^{2}$ Университет Хаджеттепе, Анкара, Туриия

## Замечание о представлениях Шоттки и кручении Рейдемейстера

В статье установлена формула кручения Рейдемейстера для представлений Шоттки. Теоретические результаты применены к 3 -многообразиям с краем, состоящим из ориентируемых поверхностей рода не менее 2 .

Ключевые слова: представления Шоттки, кручение Рейдемейстера, многообразие представлений, симплектическая форма Атьи-Ботта-Голдмана, симплектическая форма Терстона.


[^0]:    * Corresponding author.

    E-mail: fatihezenci@gmail.com

