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Introduction

It is well-known that the representation varieties are important in many branches of mathematics
and physics. For instance, let Σ be a compact Riemann surface of genus at least 2, Teichmüller space
Teich(Σ) of Σ is the space of deformation classes of complex structures on it. By the uniformization
Theorem, it is the space of hyperbolic metrics, namely Riemannian metrics on Σ with Gaussian
curvature constant (−1). Furthermore, Teichmüller space of Σ can be interpreted as discrete faithful
representations of the fundamental group π1(Σ) of the surface to PSL(2,R). It is well-known that some
certain geometric structures on Σ can also be identified as certain surface group variety [1–6] and the
references therein.

Representation varieties have a large number of applications in many branches of mathematics and
physics such as in 3−manifold topology (in Bass-Culler-Shalen theory [7, 8], in A-polynomial [9], in
hyperbolic geometry [10], in Casson invariant theory [11]), in Yang-Mills and Chern-Simons quantum
field theories [12,13], in skein theory of quantum invariants of 3-manifolds [14,15], in the moduli spaces
of flat connections, holomorphic bundles, and Higgs bundles [16].

Reidemeister torsion(R-torsion) is a topological invariant and was introduced by K. Reidemeister
[17]. Using this invariant, he classified 3−dimensional lens spaces. W. Franz extended the R-torsion and
classified the higher dimensional lens spaces [18]. R-torsion has many applications in several branches
of mathematics and theoretical physics such as topology [19], differential geometry [20], representation
spaces [21] dynamical systems [22], 3-dimensional Seiberg-Witten theory [23], algebraic K-theory [24],
Chern-Simon theory [13], knot theory [24], theoretical physics and quantum field theory [13]. See Refs.
[25] and [26] and the references therein for further information.

Real symplectic chain complex is a algebraic topological instrument and was introduced by E.
Witten [21]. Combining this and R-torsion, he evaluated the volume of several moduli space of
Rep(Σ, G), which is the set of all conjugacy classes of homomorphisms from the fundamental group
π1(Σ) of a Riemann surface Σ to the compact gauge group G ∈ {SU(2), SO(3)} .

In paper [27], we considered the set Rep(Σ, G) of G−valued representations from the fundamental
group π1(Σ) of the surface Σ to the exceptional groups G2, F4, and E6.We proved the well-definiteness
of R-torsion of such representations. We also established a formula for computing R-torsion of such
representations in terms of the well known symplectic structure on Rep(Σ, G), namely, Atiyah-Bott-
Goldman symplectic form for the Lie group G. Then, we applied to G−valued Hitchin representations.
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In paper [28], we investigated G−valued representations of free or surface group with genus > 1 for G ∈
{GL(n,C), SL(n,C)} . We also established a formula for computing R-torsion of such representations
in terms of Atiyah-Bott-Goldman symplectic form for G. Moreover, we applied the obtained results to
hyperbolic 3−manifolds.

In the present paper, we prove a formula of R-torsion for Schottky representations. The theoretical
results are applied to 3−manifolds with boundary consisting orientable surfaces with genus at least 2.

1 Preliminaries

In this section, we provide the necessary definition and basic facts about the topological invariant R-
torsion and the symplectic chain complex. For further information the reader is referred to [21,25,26,29]
and the references therein.

Let C∗ =
(

0→ Cn
∂n→ Cn−1 → · · · → C1

∂1→ C0 → 0
)
be a chain complex of finite dimensional vector

spaces over the field C of complex numbers. For p = 0, . . . , n, we denote the kernel of ∂p, the image of
∂p+1, and the pth homology group of the chain complex C∗ by Zp(C∗), Bp(C∗), andHp(C∗), respectively.
From the definition of Zp(C∗), Bp(C∗), and Hp(C∗) it follows

0 −→ Zp(C∗) ↪→ Cp � Bp−1(C∗) −→ 0

and
0 −→ Bp(C∗) ↪→ Zp(C∗) � Hp(C∗) −→ 0.

For p = 0, . . . , n, if cp, bp, and hp are bases of Cp, Bp(C∗), and Hp(C∗), respectively and if
`p : Hp(C∗) → Zp(C∗), sp : Bp−1(C∗) → Cp are sections of Zp(C∗) → Hp(C∗), Cp → Bp−1(C∗),
respectively, then with the help of above short-exact sequences we have the basis bpt`p(hp)tsp(bp−1)
of Cp. Here, t denotes the disjoint union.

Let cp, bp, hp, `p, and sp be as above. Then, R-torsion of the chain complex C∗ with respect to
bases {cp}np=0, {hp}np=0 is defined by

T
(
C∗, {cp}n0 , {hp}

n
0

)
=

n∏
p=0

[bp t `p(hp) t sp(bp−1), cp]
(−1)(p+1)

,

where [ep, fp] denotes determinant of the change-base-matrix from basis fp to ep of Cp.
R-torsion does not depend on the bases bp and sections sp, `p [24].
Let c′p, h

′
p be also bases of Cp, Hp(C∗), respectively. Then, the following change-base-formula is

valid [24]:

T
(
C∗,

{
c′p
}n

0
,
{
h′p
}n

0

)
=

n∏
p=0

( [
c′p, cp

][
h′p,hp

])(−1)p

T
(
C∗, {cp}n0 , {hp}

n
0

)
.

Let
0 −→ A∗

ı−→ B∗
j−→ D∗ −→ 0 (1)

be a short-exact sequence of chain complexes, and let cAp , c
B
p , c

D
p , h

A
p , h

B
p , and hDp are bases of Ap,

Bp, Dp, Hp(A∗), Hp(B∗), and Hp(D∗), respectively. Let us consider the corresponding Mayer-Vietoris
long-exact sequence of vector spaces

C∗ : · · · −→ Hp(A∗)
ıp−→ Hp(B∗)

jp−→ Hp(D∗)
δp−→ Hp−1(A∗) −→ · · ·

associated to short-exact sequence (1). Note that C3p = Hp(D∗), C3p+1 = Hp(A∗), and C3p+2 = Hp(B∗)
then we can consider the bases hDp , hAp , and hBp for C3p, C3p+1, and C3p+2, respectively.
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Theorem 1. [24] Suppose cAp , c
B
p , c

D
p , h

A
p , h

B
p , and hDp are as above. Suppose also

[
cBp , c

A
p ⊕ c̃Dp

]
=

±1, where j
(
c̃Dp

)
= cDp . Then, it follows

T
(
B∗,

{
cBp
}n

0
,
{
hBp
}n

0

)
= T

(
A∗,

{
cAp
}n

0
,
{
hAp
}n

0

)
× T

(
D∗,

{
cDp
}n
p=0

,
{
hDp
}n

0

)
T
(
C∗, {c3p}3n+2

0 , {0}3n+2
0

)
.

Theorem 1 yields the sum-lemma.

Lemma 1. Assume A∗, D∗ are chain complexes of vector spaces and cAp , c
D
p , h

A
p , and hDp are bases

of Ap, Dp, Hp(A∗), and Hp(D∗), respectively. Then, the following equality

T(A∗ ⊕D∗, {cAp t cDp }n0 , {hAp t hDp }n0 ) = T(A∗, {cAp }n0 , {hAp }n0 )T(D∗, {cDp }n0 , {hDp }n0 )

is valid.

The proof of Lemma 1 can also be found in [30].
(C∗, ∂∗, {ω∗,q−∗}) is said to be C−symplectic chain complex of length q, if

1 C∗ : 0→ Cq
∂q→ Cq−1 → · · · → Cq/2 → · · · → C1

∂1→ C0 → 0 is a chain complex of length q, where
q ≡ 2 (mod 4),

2 for p = 0, . . . , q, ωp,q−p : Cp × Cq−p → C is a ∂−compatible non-degenerate anti-symmetric
bilinear form. Namely,

ωp,q−p (∂p+1a, b) = (−1)p+1ωp+1,q−(p+1) (a, ∂q−pb)

and
ωp,q−p(a, b) = (−1)p(q−p)ωq−p,p(b, a).

From the fact that q ≡ 2 (mod 4) we have ωp,q−p(a, b) is (−1)pωq−p,p(b, a). From ∂−compatibility
of ωp,q−p we obtain the non-degenerate pairing [ωp,q−p] : Hp (C∗)×Hq−p (C∗)→ C.

For the rest of the paper, if the C−symplectic chain complex (C∗, ∂∗, {ω∗,q−∗}) is clear, then
∆ (hp,hq−p) is the determinant of the matrix of the non-degenerate pairing

[ωp,q−p] : Hp (C∗)×Hq−p (C∗)→ C

in the bases hp, hq−p.
Assume C∗ is a C−symplectic chain complex of length q and cp, cq−p are bases of Cp, Cq−p,

respectively. We say ω−compatible, if the matrix of ωp,q−p in cp, cq−p is equal to the k × k identity

matrix Idk×k when p 6= q/2 and
(

0l×l Idl×l
−Idl×l 0l×l

)
when p = q/2, where k = dimCp = dimCq−p and

2l = dimCq/2.
For computing R-torsion in terms of intersections pairings, we have the following result suggests a

formula. Namely,

Theorem 2. [31] If (C∗, ∂∗, {ω∗,q−∗}) is a C−symplectic chain complex with the ω−compatible bases
cp, p = 0, . . . , q and if hp is a basis of Hp (C∗) , p = 0, . . . , q, then the following formula holds:

∣∣T (C∗, {cp}q0 , {hp}q0)∣∣ =

(q/2)−1∏
p=0

|∆(hp,hq−p)|(−1)p
√ ∣∣∆ (hq/2,hq/2)∣∣(−1)q/2

. (2)
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In case hp = hq−p = 0, the convention 0 = 1.0 is used and hence ∆(hp,hq−p) = 1. Let us also note
that equation (2) can be improved as:

T
(
C∗, {cp}q0 , {hp}

q
0

)
=

(q/2)−1∏
p=0

∆(hp,hq−p)
(−1)p

√
∆
(
hq/2,hq/2

)(−1)q/2

. (3)

For details of (3), we refer the reader to [28; Remark 2.4]. See [27, 28, 30], for further applications of
Theorem 2.

2 Main results

Let Σ be a closed orientable surface of genus at least 2 with the universal covering Σ̃. Let G be the
Lie group PSL(2,C) and G be the Lie algebra of G with the non-degenerate symmetric bilinear form
B. Here, B is the Killing form.

Assume % : π1(Σ)→ G is a homomorphism from the fundamental group π1(Σ) of Σ to G. Let E% =

Σ̃×G/ ∼ be the corresponding adjoint bundle over Σ. Here, (x1, t1) ∼ (x2, t2), if (x2, t2) = (γ ·x1, γ ·t1)
for some γ ∈ π1(Σ), the action of γ in the first component by deck transformation (γ · x1 = γ (x1))
and in the second component by the adjoint action (γ · t1 = Ad%(γ)(t1) = % (γ) t1% (γ)−1).

LetK be a cell-decomposition of Σ for which the adjoint bundle E% is trivial over each cell and K̃ be
the lift ofK to the Σ̃.Denote by Z [π1(Σ)] the integral group ring. Let C∗

(
K;GAd%

)
= C∗

(
K̃;Z

)
⊗ G/ ∼,

where for all γ ∈ π1(Σ), σ⊗t ∼ γ·σ⊗γ·t, the action of γ by the first component is by deck transformation
and in the second is by adjoint action. We have the following chain complex:

0 −→ C2

(
K;GAd%

) ∂2⊗id−→ C1

(
K;GAd%

) ∂1⊗id−→ C0

(
K;GAd%

)
−→ 0. (4)

Here, ∂p denotes the usual boundary operator. Denote byH∗
(
K;GAd%

)
andH∗

(
K;GAd%

)
the homologies

and cohomologies of the chain complex (4), respectively, where C∗
(
K;GAd%

)
denotes the set of Z[π1(Σ)]-

module homomorphisms from C∗

(
K̃;Z

)
to G. See [25] for details and unexplained subjects.

Clearly, for conjugate %, %′ : π1(Σ) → G i.e. %′ (.) = A% (.)A−1 for some A ∈ G, we have
isomorphic C∗

(
K;GAd%

)
and C∗

(
K; GAd%′

)
. Similarly, the corresponding cochains C∗

(
K;GAd%

)
and

C∗
(
K; GAd%′

)
are isomorphic.

Consider chain complex (4). Assume
{
epj

}mp
j=1

is a basis of Cp (K;Z) . For j = 1, . . . ,mp, fix a

lift ẽpj of epj . Then, cp =
{
ẽpj

}mp
j=1

of Cp
(
K̃;Z

)
is a Z[π1(Σ)]−basis. Assume A = {ak}dimG

k=1 is a

B−orthonormal basis of the Lie algebra G. Namely, the matrix of the form B equals to the identity
matrix of size dimG. Hence, we obtain a C−basis cp = cp ⊗% A of Cp

(
K;GAd%

)
. We call such a basis

a geometric basis for Cp
(
K;GAd%

)
.

If cp = cp ⊗% A and hp are respectively the geometric basis of Cp
(
K;GAd%

)
and a basis of

Hp

(
Σ;GAd%

)
, then T

(
C∗
(
K;GAd%

)
, {cp ⊗% A}2p=0 , {hp}

2
p=0

)
is said to be the R-torsion of the triple

K, Ad%, and {hp}2p=0 .

Theorem 3. [28; Theorem 3.1] If Σ, K, %, cp = cp ⊗% A, and hp, p = 0, 1, 2, are as above, then
T
(
C∗
(
K;GAd%

)
, {cp ⊗% A}2p=0 , {hp}

2
p=0

)
does not depend on the basis A, lifts ẽpj , conjugacy class of

%, and the cell-decomposition K.

From Theorem 3, we have the well-definiteness of R-torsion of such representations, and hence we
write T(Σ, {hp}2p=0) rather than T

(
C∗
(
K;GAd%

)
, {cp ⊗% A}2p=0 , {hp}

2
p=0

)
.
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Assume Σ, K, G, G, %, cp = cp⊗%A are as above. Let us consider the dual cell-decomposition K ′ of
Σ corresponding to the cell-decomposition K. Consider the lifts K̃ and K̃ ′ of K and K ′, respectively.
For i = 0, 1, 2, we have the intersection form

(·, ·)i,2−i : Ci
(
K;GAd%

)
× C2−i

(
K ′;GAd%

)
−→ C (5)

defined by (σ1 ⊗ t1, σ2 ⊗ t2)i,2−i =
∑

γ∈π1(Σ) σ1. (γ • σ2) B (t1, γ • t2) .Here, “.” denotes the intersection
number pairing, the action of γ on σ2 by deck transformation and on t2 is by the adjoint action.

Using the anti-symmetric, ∂−compatible (·, ·)i,2−i, we have the non-degenerate anti-symmetric form

[·, ·]i,2−i : Hi

(
Σ;GAd%

)
×H2−i

(
Σ;GAd%

)
−→ C. (6)

Note that if Di = Ci
(
K;GAd%

)
⊕ Ci

(
K ′;GAd%

)
, and if we consider the bilinear form ωi,2−i : Di ×

D2−i → C defined by extending the intersection form (5) zero on Ci
(
K;GAd%

)
× C2−i

(
K;GAd%

)
and

Ci
(
K ′;GAd%

)
×C2−i

(
K ′;GAd%

)
, then D∗ becomes a C−symplectic chain complex. Note also that the

bases ci of Ci
(
K̃;Z

)
and c′i of Ci

(
K̃ ′;Z

)
corresponding to ci result an ω−compatible basis for D∗.

Kronecker pairing 〈·, ·〉 : Ci
(
K;GAd%

)
×Ci

(
K;GAd%

)
→ C is defined by 〈θ, σ⊗%t〉 = B (t, θ (σ)) . It

has natural extended to 〈·, ·〉 : H i
(
Σ;GAd%

)
×Hi

(
Σ;GAd%

)
→ C.

Recall the cup product ∪ : Ci
(
K;GAd%

)
×Cj

(
K;GAd%

)
→ Ci+j

(
Σ̃;C

)
is defined by (θi ∪ θj) (σi+j) =

B
(
θi
(
(σi+j)front

)
, θj
(
(σi+j)back

))
. Here, σi+j is in Ci+j(K̃;Z) and K̃ denotes the lift of K to Σ̃

θi : Ci

(
K̃;Z

)
→ G, θj : Cj

(
K̃;Z

)
→ G are Z[π1(Σ)]-module homomorphisms. This yields the cup

product
^B: Ci

(
K;GAd%

)
× Cj

(
K;GAd%

)
−→ Ci+j (K;C)

with natural extension

^B: H i
(
Σ;GAd%

)
×Hj

(
Σ;GAd%

)
−→ H i+j (Σ;C) ,

where [θi] ^B [θj ] = [θi ^B θj ] .

Using the isomorphisms by (6) and the Kronecker pairing, we get the Poincare duality isomorphisms

PD : Hi

(
Σ;GAd%

) ∼= H2−i
(
Σ;GAd%

)∗ ∼= H2−i (Σ;GAd%

)
.

For i = 0, 1, 2 we have the

H2−i (Σ;GAd%

)
× H i

(
Σ;GAd%

) ^B−→ H2 (Σ;C)xPD
xPD 	

x
Hi

(
Σ;GAd%

)
× H2−i

(
Σ;GAd%

) [·,·]i,2−i−→ C.

Here, C → H2 (Σ;C) sends 1 ∈ C to the fundamental class of H2(Σ;C) and the inverse of this is
integration over Σ.

Clearly, we have the following pairing

Ωi,2−i : H i
(
Σ;GAd%

)
×H2−i (Σ;GAd%

) ^B−→ H2 (Σ;C)

∫
Σ−→ C. (7)

Ω1,1 is called Atiyah-Bott-Goldman symplectic form for G on the representation variety Rep(Σ, G).

In [28], we established a formula for computing Reidemeister torsion of representations in terms of
Ω1,1 Atiyah-Bott-Goldman symplectic form for the Lie group G. More precisely,
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Theorem 4. [28; Theorem 3.2] Let Σ, K, K ′, % be as above. Let cp and c′p be the corresponding
geometric bases of Cp

(
K;GAd%

)
and Cp

(
K ′;GAd%

)
, respectively, p = 0, 1, 2. If hp is a basis of

Hp

(
Σ;GAd%

)
, p = 0, 1, 2, then the following formulas are valid

i. T
(

Σ, {hp}2p=0

)
= ie

iθ
2

∆ (h0,h2)√
∆ (h1,h1)

,

ii. T
(

Σ, {hp}2p=0

)
= ie

iθ
2

√
δ (h1,h1)

δ (h2,h0)
.

Here, ∆ (hp,h2−p) is the determinant of the matrix of (6) in hp and h2−p, ∆ (h0,h2) = |∆ (h0,h2)| eiθ,
where i =

√
−1 and −π < θ ≤ π. δ

(
h2−p,hp

)
is the determinant of the matrix of (7) in hp and h2−p,

and hp denotes the Poincare dual basis of Hp(Σ;GAd%) corresponding to hp of Hp(Σ;GAd%), p = 0, 1, 2.

Note that in case H0

(
Σ;GAd%

)
and thus H2

(
Σ;GAd%

)
are zero, by Theorem 4 we get

T (Σ, {0,h1, 0}) = i
√

∆ (h1,h1)
(−1)

= i
√
δ (h1,h1).

3 Applications

Schottky representation and Thurston symplectic form

Before stating our application, let us recall Thurston symplectic form. For more information and
unexplained subjects, we refer [32] and the references therein.

Let Σg, g ≥ 2, be a closed orientable surface. We say that λ ⊂ Σg is a geodesic lamination, if it is
closed and also consists of disjoint complete geodesics without any self-intersection points, called leaves
of λ (see Figure 1 (a)). We say that the geodesic lamination λ is maximal, if the complement Σg − λ
consists of finitely many ideal triangles, that is, triangles with vertices at infinity (see Figure 1 (b)).

α1

α2

α3

(a)

α1

α2

α3β1 β2

β3 β4

β5 β6

(b)

Figure 1. (a) Geodesic lamination with 3 closed leaves (b) Maximal geodesic lamination with 3 closed
leaves and 6 infinite leaves spiraling towards closed leaves.

Let λ ⊂ Σg be a geodesic lamination and G be an abelian group. A G−valued transverse cocycle σ
for λ is a function from the set of all transverse arcs to the leaves of λ to G so that σ is finitely additive
and invariant under the homotopy of arcs transverse to λ. To be more precise, σ(k) = σ(k1) + σ(k2),
when the arc k transverse to leaves of λ is decomposed into two subarcs k1, k2 with disjoint interiors,
and σ(k) = σ(k′) when the transverse arc k is deformed to arc k′ through arcs transverse to the leaves
of the geodesic lamination λ (Fig. 2). Let us denote the group of G−valued transverse cocycles for λ
by H (λ;G) . In the case λ is a maximal geodesic lamination and G = R, C, or R/2πZ, H(λ;G) is
isomorphic toG6g−6 [33]. For example, by using a (fattened) train-track Φ ⊂ Σg carrying the lamination
λ, one gets the isomorphism H(λ;R) ∼= R6g−6.
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k k′
k1

k2

Figure 2. The arcs k and k′ are transverse to the leaves of lamination λ. The arc k is deformed to k′

through arcs transverse to the leaves of the geodesic lamination. Moreover, k is splitted into two
transverse subarcs k1, k2 with disjoint interiors.

Recall that a train-track Φ ⊂ Σg is composed of finitely many “long” rectangles e1, . . . , en, called
edges of Φ, foliated by arcs parallel to the “short” sides and meeting only along arcs (possibly reduced
to a point) lying in their short sides. Furthermore, each point of the “short” side of a rectangle is also
contained in another rectangle, each component of the union of the short sides of all rectangles is an
arc, as opposed to a closed curve, and finally since the closure Σg − Φ of the complement Σg − Φ has
a certain number of “spikes”, corresponding to the points where at least 3 rectangles meet, it is also
required that no component of Σg − Φ be a disc with 0, 1 or 2 spikes or an annulus with no spike.

Note that foliating the edges of the train-track Φ by using the short sides, we get a foliation of Φ,
and the leaves are called the ties of Φ. The finitely many ties where several edges meet are said to be
the switches of Φ. If a tie is not a switch, then it is called a generic tie. If λ lies entirely in the interior
of Φ and if, moreover, the leaves of λ are transverse to the ties of Φ, then λ is said to be carried by Φ
(Fig. 3). We refer [34] for constructions of a train-track.

eins

erights

elefts

swich
ties

leaves of geodesic lamination

Figure 3. Locally a train-track carries a geodesic lamination.

Suppose Φ ⊂ Σg is a train-track. A real-valued function from the set of edges of Φ is called an edge
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weight system for Φ, if it satisfies the switch relation. Namely, for each switch s of Φ, let e1, . . . , ep be
the edges adjacent to one side of s and let ep+1, . . . , ep+q be the edges adjacent to the other side, we
have

∑p
i=1 a (ei) =

∑p+q
j=p+1 a (ej) . Let us denote the real vector space of all edge weight systems for Φ

by W (Φ;R) .

Let λ ⊂ Σg be a geodesic lamination carried by the train-track Φ. Consider the injective map
associating each transverse cocycle σ ∈ H(λ;R) to the edge weight system aσ ∈ W (Φ;R) defined by
aσ (e) = σ (ke) . Here, ke is a tie of e. In the case of maximal lamination λ, the map is an isomorphism
H (λ;R) ∼=W (Φ;R) [33].

One can arrange the train-track Φ so that at each switch s of Φ, there are one incoming edge ein
s

touching the switch s on one side and two outgoing edges eleft
s , eright

s touching s on the other side,
where as seen from the incoming edge ein

s and for the orientation of the surface Σg, e
left
s branches out to

the left and eright
s branches out to the right. Thurston symplectic form on W(Φ) is the anti-symmetric

bilinear form ωThurston :W(Φ;R)×W(Φ,R)→ R defined by

ωThurston (a, b) =
1

2

∑
s

det

 a
(
elefts

)
a
(
eright
s

)
b
(
elefts

)
b
(
eright
s

)  ,
where the summation is over all switches of Φ.

By using the isomorphism H(λ;R) ∼= W(Φ;R), we have the Thurston symplectic form ωThurston :
H(λ;R) × H(λ;R) → R. As is well known that ωThurston is an algebraic intersection number and is
independent of Φ [32, 34].

Recall that Teichmüller space Teich (Σg) of the surface Σg is the space of isotopy classes of complex
structures on Σg. By The Uniformization Theorem, it is the space of isotopy classes of Riemannian
metrics with constant Gaussian curvature (−1), that is, hyperbolic metrics on Σg. One can also identify
it with the space of conjugacy classes of all discrete faithful homomorphisms from the fundamental
group π1(Σg) to PSL(2,R). With the help of a maximal geodesic lamination λ ⊂ Σg and sending to
each hyperbolic metric m ∈ Teich(Σg) the corresponding shearing cocycle σm ∈ H(λ;R), F. Bonahon
embedded Teich(Σg) as an open cone C(λ) ⊂ H(λ;R) [32]. If k is an arc transverse to λ, the shearing
cocycle σm(k) measures the “shift to the left” between the two ideal triangles in H2/%m (π1 (Σg))
corresponding to the components of Σg − λ containing the endpoints of k. Here, %m : π1 (Σg) →
PSL(2,R) is the discrete faithful representation associated to m.

Recall that for a homorphism % : π1 (Σg)→ PSL(2,C), there is the following commutative diagram

H1
(

Σg; sl (2,C)Ad%

)
× H1

(
Σg; sl (2,C)Ad%

)
^B−→ H2 (Σg;C)xPD

xPD 	
x

H1

(
Σg; sl (2,C)Ad%

)
× H1

(
Σg; sl (2,C)Ad%

) [·,·]1,1−→ C.

(8)

Here, C→ H2 (Σg;C) is the isomorphism sending 1 ∈ C to the fundamental class of H2 (Σg;C) .

Recall also that

ωPSL(2,C) : H1
(

Σg; sl (2,C)Ad%

)
×H1

(
Σg; sl (2,C)Ad%

)
^B→ H2 (Σg;C)

∫
Σg→ C

is called Atiyah-Bott-Goldman symplectic form for PSL(2,C) [35]. It is known that ωPSL(2,C) is related
with the Goldman symplectic form on Teich(Σg)

ωGoldman : H1
(

Σg; sl (2,R)Ad%

)
×H1

(
Σg; sl (2,R)Ad%

) ^BR→ H2 (Σg;R)

∫
Σg→ R.
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Here, BR is the Killing form of the set sl (2,R) , which is 2× 2 trace zero matrices over R.
In [31], considering the isomorphism T%Teich (Σg) ∼= H(λ;R), which is obtained by the real-

analytical parameterization of F. Bonahon [32] and complexfying ωThurston, it was proved that

ωPSL(2,C) = 2ωT. (9)

Here,
ωT : H (λ;C)×H (λ;C)→ C (10)

is the complexfied Thurston symplectic form.
For more information and unexplained subjects, we refer the reader to [31] and the references

therein.
For a fixed g ≥ 2, let us consider the free group Fg with generators X = {x1, . . . , xg} . The set

Hom (Fg,PSL(2,C)) of all homomorphisms from Fg to PSL(2,C) can be identified with PSL(2,C)g by
considering the map % 7→ (% (x1) , . . . , % (xg)) .

Let χ (Fg,PSL (2,C)) be the quotient Hom (Fg, G) //G. As is well known that χ (Fg,PSL (2,C))
naturally has the structure of an algebraic variety and it differs from the set theoretical quotient
Hom (Fg,PSL (2,C)) /PSL (2,C) only at reducible points, namely, representations whose images fix
a point on Ĉ [36]. Let D (Fg,PSL (2,C)) and E (Fg,PSL (2,C)) denote respectively the set of all
discrete, faithful representations and those of representations with dense image in PSL (2,C) . It is
well known E (Fg,PSL (2,C)) is not empty and open, D (Fg,PSL (2,C)) is closed and outside of these
representations in χ (Fg,PSL (2,C)) has measure zero [37] and the references therein.

Let Ai, Bi, i = 1, . . . , g, be 2g disjoint closed (topological) disks in ∂H3 and let γ1, . . . , γg ∈
PSL(2,C) be the Möbiüs transformations of the Riemann sphere Ĉ so that γi (Ai) is the closure of
the complement of Bi. The set {γ1, . . . , γg} generate a free discrete group of rank g, called a Schottky
group. The representation % obtained by xi 7→ γi is in D (Fg,PSL (2,C)) . Let S (Fg,PSL (2,C)) be
the set of Schottky representations. As is well known that S (Fg,PSL (2,C)) lies in the interior of
D (Fg,PSL (2,C)) [38].

In [39], Y. Minsky proved the existence of an open set M (Fg,PSL (2,C)) of χ (Fg,PSL (2,C))
which is strictly larger than S (Fg,PSL (2,C)) and on which Out (Fg) acts properly discontinuously.
We have

Theorem 5. Let Fg denote the fundamental group π1 (Hg) of handle body Hg of genus g ≥
2 with boundary Σg, and let M denote the double of Hg. Suppose λ ⊂ Σg is a fixed maximal
geodesic lamination and % ∈ M (Fg,PSL (2,C)) is such that % ◦ r ∈ Teich(Σg). Let h

Fg
i be bases

for Hi

(
Fg; sl (2,C)Ad%

)
, i = 0, 1, 2, 3. Then, there exist basis hM

j and h
Σg
k of Hj

(
M; sl (2,C)Ad%

)
and Hk

(
Σg; sl (2,C)Ad%◦r

)
, j = 0, 1, 2, 3, k = 0, 1, 2, respectively so that Reidemeister torsion of the

corresponding Mayer-Vietoris long exact sequence H? in these bases is 1. In addition, the following
formula holds:

T
(

Fg,
{
h

Fg
i

}3

0

)
= e

√
−1
4

(−β0+π−θ1) 2
χ(Σg ;sl(2,C))

4
4
√

ΩT.

Here, β0 = dimH0

(
M; sl (2,C)Ad%

)
, h0

1,1 is a basis of H1

(
Σg; sl (2,C)Ad%◦r

)
⊕H1

(
Σg; sl (2,C)Ad%◦r

)
such that T

(
C∗

(
Σg; sl (2,C)Ad%◦r

)
⊕ C∗

(
Σg; sl (2,C)Ad%◦r

)
,
{
h0

1,1

})
is equal to 1,

[
h0

1,1,h
Σg
1 ⊕ h

Σg
1

]
=
∣∣∣[h0

1,1,h
Σg
1 ⊕ h

Σg
1

]∣∣∣ e√−1θ1 . Here, χ (Σg; sl (2,C)) is χ (Σg) dimC sl (2,C) , ΩT is determinant of the

matrix of the symplectic form (10) in the basis h ⊕
√
−1 h, h is the basis of H(λ;R) associated with

the isomorphism obtained by the embedding Teich (Σg) ↪→ H(λ;R)[32], and h1 is the Poincare dual
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basis of H1
(

Σg; sl (2,C)Ad%◦r

)
corresponding to h

Σg
1 . Here, r : π1 (Σg)→ π1 (Fg) is the homomorphism

obtained by the embedding Σg ↪→ Fg.

The proof of Theorem 5 is based on combining Theorem 4 and [28; Theorem 4.2], and the above
results, using the commutative diagram (8), Eq. (9), and the definition of ωPSL(2,C).

Let us now apply [28; Theorem 4.3]. As is well known that for a compact orientable 3−manifold
H, the holonomy representation of the complete hyperbolic structure Hol : π1(H) → Isom+H3 ∼=
PSL(2,C) can be lifted to a representation H̃ol : π1(H) → SL(2,C) [40]. It is also well known that
there is a one-to-one correspondence between the lifts and spin structures on H. Considering one of the
lifts and composing one of a finite dimensional representation V of SL(2,C), we get a representation
% : π1(H)→ SL(V ). Recall that for every positive integer n there is a unique irreducible representation
Vn of SL(2,C) of dimension n, namely, (n − 1)-th symmetric power of the standard representation
V2 = C2. Considering Vn and all above, we get %n : π1(H)→ SL(n,C).

Let H be a compact orientable non-elementary hyperbolic 3−manifold with a boundary consisting
of ` surfaces Σg1 , . . . ,Σg` of genus at least 2, and n ≥ 2. Recall that H is non-elementary if its holonomy
is an irreducible representation in PSL(2,C).

In [40; Theorem 0.1], P. Menal-Ferrer and J. Porti prove that the inclusion ∂H ⊂ H induces
an injection, H1

(
H; sl (n,C)Ad%n

)
↪→ H1

(
∂H; sl (n,C)Ad%n

)
with dimH1

(
H; sl (n,C)Ad%n

)
= (1/2)

dimH1
(
∂H; sl (n,C)Ad%n

)
, and an isomorphism H2

(
H; sl (n,C)Ad%n

)
∼= H2

(
∂H; sl (n,C)Ad%n

)
.

Theorem 6. Assume Σgi , H, M, G, G, %, hH
k , h

M
k , and h

Σgi
j are as above. Then, the following formula

is valid:

T
(

H,
{
hH
k

}3

0

)
= e

√
−1
4

(
−β0+`π−

∑`
i=1 θ

Σgi
1

) ∏̀
i=1

∆
(
h

Σgi
1 ,h

Σgi
1

)−1/4

= e

√
−1
4

(
−β0+`π−

∑`
i=1 θ

Σgi
1

) ∏̀
i=1

4

√
δ (h1,i,h1,i).

Here,
[
h

0,Σgi
1,1 ,h

Σgi
1 ⊕ h

Σgi
1

]
=
∣∣∣[h0,Σgi

1,1 ,h
Σgi
1 ⊕ h

Σgi
1

]∣∣∣ e√−1θ
Σgi
1 , ri : π1 (Σgi) → π1(H) denotes the

homomorphism obtained by the embedding Σgi ↪→ H, β0 = dimH0

(
M;GAd%

)
and h

0,Σgi
1,1 is a basis of

H1

(
Σgi ;GAd%◦ri

)
⊕H1

(
Σgi ;GAd%◦ri

)
so that T

(
C∗

(
Σgi ;GAd%◦ri

)
⊕ C∗

(
Σgi ;GAd%◦ri

)
,
{
h

0,Σgi
1,1

})
= 1,

hj,i is the Poincare dual basis of Hj
(

Σgi ;GAd%◦ri
)
corresponding to the basis hΣgi

j of Hj

(
Σgi ;GAd%◦ri

)
.

The proof of Theorem 6 is based on considering the short-exact sequence

0→
`
⊕
i=1
C∗

(
Σgi ;GAd%◦ri

)
→ C∗

(
H;GAd%

)
⊕ C∗

(
H;GAd%

)
→ C∗

(
M;GAd%

)
→ 0

and combining [28; Theorem 4.1] and [28; Theorem 4.3].
Combining these and Theorem 6, we have

Theorem 7. Considering n = 2 and for i = 1, . . . , `, fixing a maximal geodesic lamination λi ⊂ Σgi,
if %2 : π1 (H) → SL(2,C) is such that %2 ◦ ri ∈ Teich

(
Σgi

)
, i = 1, . . . , `, applying (ii) of Theorem 5,

and using the notation there, we get

T
(

H,
{
hH
k

}3

0

)
= e

√
−1
4

(
−β0+`π−

∑`
i=1 θ

Σgi
1

)
2

1
4

`
Σ
i=1

χ(Σgi ;sl(2,C)) ∏̀
i=1

4
√

ΩT,i.
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Here, ΩT,i is the matrix of the complex Thurston symplectic form ωT : H (λi;C) × H (λi;C) → C in
the basis hi⊕

√
−1 hi, and hj,i is the Poincare dual basis of Hj

(
Σgi ; sl (2,C)Ad%2◦ri

)
corresponding to

h
Σgi
j , and hi is the basis of H(λi;R) associated with the isomorphism obtained by the real analytical

embedding Teich (Σgi) ↪→ H (λi;R) [32]. Here, ri : π1 (Σgi) → π1 (H) is the homomorphism obtained
by the embedding Σgi ↪→ H.
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Шоттки көрсетiлiмi мен Рейдмейстер бұралуы жайында ескерту

Мақалада Шоттки көрсетiлiмi үшiн Рейдмейстердiң бұралу формуласы анықталған. Теориялық нәти-
желер 2-ден кем емес тектi бағдарланған беттерден тұратын жиектi 3−көпбейнелерге қолданылады.

Кiлт сөздер: Шоттки көрсетiлiмi, Рейдмейстер бұралуы, көрсетiлiмнiң көпбейнелерi, Атьи-Ботта-
Голдман симплектикалық формасы, Терстонның симплектикалық формасы.

Ф. Хезенжи1, Я. Созен2

1Университет Дюздже, Дюздже, Турция;
2Университет Хаджеттепе, Анкара, Турция

Замечание о представлениях Шоттки и кручении Рейдемейстера

В статье установлена формула кручения Рейдемейстера для представлений Шоттки. Теоретические
результаты применены к 3−многообразиям с краем, состоящим из ориентируемых поверхностей рода
не менее 2.

Ключевые слова: представления Шоттки, кручение Рейдемейстера, многообразие представлений, сим-
плектическая форма Атьи-Ботта-Голдмана, симплектическая форма Терстона.
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