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Quantification of Hypsarrhythmia in Infantile
Spasmatic EEG: A Large Cohort Study
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Abstract— Infantile spasms (IS) is a neurological disor-
der causing mental and/or developmental retardation in
many infants. Hypsarrhythmia is a typical symptom in
the electroencephalography (EEG) signals with IS. Long-
term EEG/video monitoring is most frequently employed
in clinical practice for IS diagnosis, from which manual
screening of hypsarrhythmia is time consuming and lack
of sufficient reliability. This study aims to identify poten-
tial biomarkers for automatic IS diagnosis by quantitative
analysis of the EEG signals. A large cohort of 101 IS
patients and 155 healthy controls (HC) were involved. Typ-
ical hypsarrhythmia and non-hypsarrhythmia EEG signals
were annotated, and normal EEG were randomly picked
from the HC. Root mean square (RMS), teager energy (TE),
mean frequency, sample entropy (SamEn), multi-channel
SamEn, multi-scale SamEn, and nonlinear correlation coef-
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ficient were computed in each sub-band of the three EEG
signals, and then compared using either a one-way ANOVA
or a Kruskal-Wallis test (based on their distribution) and
the receiver operating characteristic (ROC) curves. The
effects of infant age on these features were also inves-
tigated. For most of the employed features, significant
(p < 0.05) differences were observed between hypsarrhyth-
mia EEG and non-hypsarrhythmia EEG or HC, which seem
to increase with increased infant age. RMS and TE produce
the best classification in the delta and theta bands, while
entropy features yields the best performance in the gamma
band. Our study suggests RMS and TE (delta and theta
bands) and entropy features (gamma band) to be promising
biomarkers for automatic detection of hypsarrhythmia in
long-term EEG monitoring. The findings of our study indi-
cate the feasibility of automated IS diagnosis using artificial
intelligence.

Index Terms— Biomarkers, electroencephalography,
infantile spasms, hypsarrhythmia, west syndrome.

I. INTRODUCTION

INFANTILE spasms (IS), known also as West Syndrome
[1], is a unique neurological disorder affecting infants aging

mainly between one week to three years [2], [3]. It is reported
that the average incidence rate and prevalence rate of IS are
0.31 and 0.25 per 1000 children, respectively [2], [3], [4].
Higher values are observed in the regions with higher geo-
graphic latitudes, such as Finland, Sweden, and Denmark [5],
[6], [7]. Despite the low incidence and prevalence rates, severe
and frequent epileptic seizures can permanently impair the
cognitive, learning, and language functions of the brains in
most infants [8], [9], [10], [11].

Timely medical intervention may prevent IS-caused men-
tal and/or developmental retardation [12]. In fact, since
1958, a number of studies have reported the effectiveness
of adrenocorticotropic hormone, corticosteroids, and more
traditional anticonvulsants in the treatment of IS [13], [14],
[15]. However, proper medical intervention lies strongly on
timely diagnosis of this disorder. IS is characterized by
three main motor spasms, i.e., flexor, extensor, and mixed
extensor-flexor [16]. The intensity of the spasms may vary
from a massive contraction of many muscle groups to a
minimal contraction of isolated muscle groups. Typical clin-
ical manifestation of IS includes sudden contractions of the
trunk and limbs followed by brief episodes of rigidity, e.g.,
repeated bowings and relaxings [1]. Some subtle spasms may,
unfortunately, be easily undetected by casual observation.
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Several studies have associated the electroencephalography
(EEG) features with IS, and coined the term hypsarrhythmia
to describe the interictal pattern in IS patients [17], [18],
[19]. Long-term video/EEG monitoring has therefore being
proposed for the diagnosis of this disorder [20]. Brain imaging
technologies such as computed tomography (CT), magnetic
resonance imaging (MRI), and positron emission tomography
(PET), have also been proposed to detect the brain abnormali-
ties associated with IS, providing not only helpful information
for the classification between cryptogenic or symptomatic
patients but also some insights into possible pathophysiologic
mechanisms of this disorder [21], [22], [23], [24].

Among these technologies, long-term video/EEG monitor-
ing is most frequently adopted in clinical practice for IS
diagnosis [25], [26], [27]. Unfortunately, the detection of
hypsarrhythmia in the EEG signals is currently performed by
manual screening due to the lack of automatic tools. This
procedure is labor intensive and time consuming, particularly
for long-term, e.g., 24 hour, monitoring [27]. Besides, although
the definition of hyperarrhythmia is straightforward, i.e., ran-
dom high voltage slow waves and spikes [1], manual EEG
screening lacks precision and is usually subjective, leading
to low inter-rater reliability even among experienced pediatric
electroencephalographers and/or even missed diagnosis of this
disorder [25], [28]. Automatic hyperarrhythmia detection from
long-term EEG recordings is therefore demanded for efficient
and precise diagnosis of IS.

Quantitative analysis of the EEG signals is essential for
identifying reliable biomarkers for accurate hypsarrhythmia
detection. Unfortunately, due mainly to the rareness of this
disease, only few studies have investigated the quantitative
characteristics of hypsarrhythmia in IS patients [29], [30], [31],
[32], [33], [34], [35]. Smith et al. quantified the amplitude and
power spectral features in hypsarrhythmia EEG [30]. Some
other studies identified high frequency oscillations during
interictal periods as an objective biomarker for IS [31], [34].
Chu et al. proposed multiscale entropy as a biomarker for
abnormal EEG patterns in IS, and investigated its variation
between pre- and post-treatment [32]. Zheng et al. compared
the functional connectivity of the brain in three different states,
i.e., pre-, during, and post-spasms in IS patients [33].

These studies show clear differences in the proposed fea-
tures between hypsarrhythmia and non-hypsarrhythmia EEG.
However, only few features have been investigated in these
studies, with one in each study. In fact, a number of linear and
non-linear features have been employed to analysis biomedical
signals, such as EEG, ECG, and EMG [36], [37], which have,
unfortunately, never been investigated for the characterization
of hypsarrhythmia. Besides, the statistical significance of the
few existing hypsarrhythmia studies is limited due mainly
to the enrolled small cohorts of infants, i.e., between 15 to
30 [30], [31], [32], [33], [34].

The aim of the present study is, therefore, to quan-
tify reliable and statistically significant EEG features as
biomarkers for the discrimination between hypsarrhythmia
and non-hypsarrhythmia or normal EEG based on a large
cohort of IS infants. The adopted dataset consists of 101 IS
patients and 155 healthy infants with 16-channel 24-hour scalp

EEG recordings. A number of features, including amplitude
and spectral features, entropy features, and some nonlinear
features, are estimated in each sub-band of the EEG sig-
nals, i.e., delta, theta, alpha, beta, and gamma. Dedicated
statistical analysis is performed on each feature in order to
examine its statistical differences between hypsarrhythmia and
non-hypsarrhythmia or normal EEG. The receiver operating
characteristic (ROC) curves and the area under the curve
(AUC) are computed for individual features to explore their
classification power in the detection of hypsarrhythmia. Fur-
thermore, the effect of infant age on the EEG features is also
investigated by dedicated comparison among sub-groups with
different ages, i.e., 0-6 months, 6-12 months, 12-24 months,
and older than 24 months.

II. MATERIALS AND METHODS

A. Dataset and Preprocessing
The present study involved a large cohort of 101 infants

that were suspected of having infantile spasms and underwent
overnight video/EEG evaluation at Xinhua Hospital Affiliated
to Shanghai Jiao Tong University School of Medicine between
January 2018 and November 2022. Besides, 155 heathy infants
were included as heathy control (HC). The demographic infor-
mation of the enrolled infants is reported in Table I. This study
followed strictly the guideline of ‘Declaration of Helsinki:
ethical principles for medical research involving human sub-
jects’. The Ethics Committee at Xinhua Hospital Affiliated to
Shanghai Jiao Tong University School of Medicine approved
the use of human subjects and waved the requirement for the
informed consents as this is a retrospective study.

For both IS patients and HC, overnight scalp EEG were
recorded according to the 10-20 international system [38]
using 10-mm golden plate electrodes. The detected EEG
signals were amplified by a 32-channel NicoletOneTM EEG
System (Natus, USA) with a sampling frequency of 500 Hz.
A clinical expert annotated manually the hypsarrhythmia
segments in all the 101 IS infants. A 15-s hypsarrhyth-
mia segment and a non-hypsarrhythmia segment with the
same length were selected by the expert for each patient.
Those infants who could not produce typical hypsarrhythmia
and non-hypsarrhythmia EEG signals with sufficient length
(15 s) were excluded from this study, resulting in 92 infants
remained for subsequent analyses. Similarly, for the HC group,
a 15-s segment was randomly picked from each subject.
As a consequence, three datasets, i.e., hypsarrhythmia, non-
hypsarrhythmia, and HC, were generated and considered in
the present study. An example of the three EEG signals is
shown in Fig. 1.

For each EEG recording, the 16 channels placed at Fp1, F3,
C3, P3, O1, F7, T3, T5, Fp2, F4, C4, P4, O2, F8, T4, and T6
were used for analysis. The EEG signals were re-referenced
with respected to the common average and then band-pass
filtered between 0.5 and 70 Hz using a third-order Butterworth
filter. Then a second-order IIR notch filter at 50 Hz was applied
to each channel to remove possible power-line interference.
For both filters, the forward-backward filtering approach was
implemented in order to avoid phase shift. Finally, each EEG
signal was divided into five sub-bands, i.e., delta (0-4 Hz),
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TABLE I
DEMOGRAPHIC INFORMATION OF THE ENROLLED INFANTS

Fig. 1. Example of the three EEG signals: a) hypsarrhythmia; b) non-hypsarrhythmia; c) HC.

theta (4)-8 Hz), alpha (8)-12 Hz), beta (12)-30 Hz) and gamma
(>30 Hz), for feature extraction.

B. Feature Extraction
A number of features were extracted from each sub-band

of the EEG signals, including amplitude and spectral fea-
tures, entropy features, and nonlinear correlation coefficient.
In fact, these features are commonly used for the analysis of
biomedical signals, quantifying information such as energy,
periodicity, complexity, and nonlinearity of the data [36], [37].
Estimation of these features were briefly summarized hereafter.

1) Root Mean Square (RMS): RMS is a statistical measure
of signal energy. For a discrete EEG signal x[n] with a length
of N, RMS is calculated as

RMS =

√√√√ 1
N

N∑
n=1

|x[n]|2. (1)

2) Teager Energy (TE): Teager energy is an estimation of
instantaneous energy with an excellent time resolution [39],
and has been employed for the analysis of many biomedical
signals [40]. For a discrete EEG signal x[n], the instantaneous
TE is estimated as

TE[n] = x[n]
2
− x[n + 1]x[n − 1]. (2)

In the present study, the average value of TE[n] over all the
time instances is considered for one channel.

3) Median Frequency (MF): The MF is computed as

MF∑
f =0

P[ f ] =

fs/2∑
f =MF

P[ f ], (3)

where P[ f ] is the power spectral density (PSD) of a single
channel EEG signal x[n] and fs the sampling frequency.

4) Sample Entropy (SamEn): Approximate entropy (ApEn)
and SamEn have been widely used to assess the irregularity of
a time series [37], [41]. Given the fact that estimation of ApEn
and SamEn are quite similar, only SamEn was considered in
the present study, which is estimated in each sub-band of the
15-s EEG segment. A higher value of SamEn indicates a larger
degree of irregularity. The 15-s (length N = 7500) signal x[n]

is divided into epochs with length of m (m = 2 in the present
study), producing L = N − (m + 1) × △ vectors, denoted as
xm and given by

xm[p] = {x[p + k · △] : 0 ≤ k ≤ m − 1},

p = 0, 1, . . . , L − 1, (4)

where △ is an integer time delay and is set to 1 in the present
study in order to assess the entropy measures without down-
sampling [41].

The number of epochs in xm[q] (q = 0, 1, . . . , L − 1) with
distance from a fixed epoch xm[p] (q ̸= p) smaller than a
pre-defined tolerance r is then counted as Bp. In the present
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study, the Euclidean distance ||xm[p] − xm[q]||2 is adopted
as distance measure and the tolerance r is set to 0.2 times
the standard deviation of the data. After obtaining Bp, the
empirical probability Cm

p (r) that a epoch in xm[q] is within r
from xm[p] can be estimated as

Cm
p (r) =

Bp

L
. (5)

With the definition

φN
m (r) =

∑L
p=1 ln[Cm

p (r)]

L
, (6)

the ApEn is calculated as [41]

SamEn(m, r, N ) = φN
m (r) − φN

m+1(r). (7)

5) Multi-Channel Sample Entropy (McSamEn): Multi-
channel SamEn is used to asses the spatiotemporal irregularity
of all the 16-channel EEG recordings [42]. The signal in each
channel is first divided into length-m epochs, in a similar
way as SamEn. For a fixed epoch p in channel i , i.e., xim[p],
the number of epochs in channel j ( j = 1, . . . , 16), i.e.,
xjm[q], q ̸= p, with distance from xim[p] smaller than r is
counted as B j p. The empirical probability is estimated as

Cm
jp(r) =

B j p

16 · L
. (8)

Defining

φN
m (r) =

∑16
j=1

∑L
p=1 ln[Cm

jp(r)]

16 · L
, (9)

the MApEn is calculated as

McSamEn(m, r, L) = φL
m(r) − φL

m+1(r). (10)

6) Multi-Scale Entropy (MsSamEn): Multi-scale entropy has
been proven to be more suitable for analyzing complex phys-
iological signals [32] and is, therefore, adopted in the present
study. MsSamEn is developed based on the SamEn by first
deriving a set of coarse-grained time series xτ [k] from the
original single channel EEG signal x[n],

xτ [k] =
1
τ

kτ∑
n=(k−1)τ

x[n], 1 ≤ k ≤
N
τ

. (11)

Sample Entropy is then calculated on xτ [k]. Given the length
of the original single x[n], ten different scales, i.e., τ =

1, 2, . . . , 10, were considered in the present study, and the
average result over all scales was adopted as the complexity
index of the signal.

7) Nonlinear Correlation Coefficient (NCC): The nonlinear
correlation coefficient of a time series signal is used to describe
the nonlinear dynamic behavior between two signals. A higher
NCC indicates a higher nonlinear correlation between the
signals. NCC is calculated as follows:

h2
j |i =

∑N
n=1 x j [n]

2
−

∑N
n=1[x j [n] − f (xi [n])]2∑N

n=1 x j [n]2
, (12)

where f (x) is a linear piecewise approximation of the
nonlinear regression curve.

C. Statistical Analysis
For each subject, McSamEn was estimated among all

the 16 EEG channels. RMS, TE, MF, SamEn, and MsSamEn
were calculated in individual channels, and the average results
over the 16 channels were considered for each subject.
Besides, NCC was calculated between two channels, and the
average result over the 120 (16 × 15/2) different pairs was
taken into account.

Each feature extracted from the three datasets, i.e., hyp-
sarrhythmia, non-hypsarrhythmia, and HC, was expressed
as mean ± standard deviation. A Kolmogorov-Smirnov
test was employed to examine the distribution of each
feature. For the features with normal distribution, a one-
way ANOVA was adopted to assess the global difference
in each feature among the three datasets. Besides, the
differences in each feature between paired groups, e.g., hyp-
sarrhythmia vs. non-hypsarrhythmia, hypsarrhythmia vs. HC,
and non-hypsarrhythmia vs. HC, were also tested using a
multi-comparison with the ‘tukey-kramer’ criterion. The sig-
nificant level was set to 0.05. For un-normally distributed
features, a non-parametrical method, i.e., Kruskal-Wallis test,
was used for the statistical analysis.

Furthermore, the ability of each feature to provide
correct classification between hypsarrhythmia and
non-hypsarrhythmia EEG was also assessed by the area under
the receiver operating characteristic (ROC) curve,derived
over the full dataset of remained 92 IS patients using a
threshold procedure. In addition, a 5-fold cross-validation
was performed in order to evaluate sensitivity, specificity,
and accuracy of each feature for the classification between
hypsarrhythmia and non-hypsarrhythmia EEG. To this end, for
each feature, both hypsarrhythmia and non-hypsarrhythmia
were subdivided into 5 groups. An optimal threshold was
then determined by ROC curve analysis (point closest to the
upper left corner) on 4 groups and applied to the remaining
group to evaluate the classification performance, rounding
until all groups underwent classification. This procedure was
repeated for 10 random subdivisions in 5 groups.

III. RESULTS

Figure 2 shows the mean and standard deviation of each
feature extracted from the three datasets, calculating in the
sub-bands of the EEG signals. As indicated by RMS, the aver-
age signal energy concentrates in the delta band for all the
three datasets, and it decreases dramatically with increased fre-
quency band. Besides, in all frequency bands, RMS extracted
from hypsarrhythmia dataset is significantly (p < 0.05) higher
than that from non-hypsarrhythmia dataset or HC, indicat-
ing significantly larger signal energy during hypsarrhythmia.
Such difference decrease also with increased frequency band.
No significant difference between non-hypsarrhythmia and HC
is observed in RMS. Similar trend is also observed in NCC.

Different from RMS and NCC, the entropy features
increases with increased frequency band for all the three
datasets. However, similar to RMS and NCC, all entropy fea-
tures, including SamEn, McSamEn, and MsSamEn, extracted
from the hypsarrhythmia EEG are significantly different
(lower) from that extracted from non-hypsarrhythmia EEG or
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Fig. 2. Features extracted from the hypsarrhythmia and
non-hypsarrhythmia EEG for different age groups.

HC, suggesting a more regular patterns in the EEG signals
during hypsarrhythmia as compared to the rest state. Besides,
such difference seems to increase with increased frequency
band until to beta. In addition, in some frequency band,
significant differences in the entropy features are also observed
between non-hypsarrhythmia EEG of the IS patients and the
normal EEG of the HC.

Difference in MF among the three datasets is less
impressive. MF extracted from the hypsarrhythmia EEG
is significantly different from that extracted from the
non-hypsarrhythmia EEG only in the beta and gamma bands.
And we can also observe significant difference between the
non-hypsarrhythmia EEG and HC in delta, theta, and gamma
bands.

The ROC curves of each feature discriminating between
hypsarrhythmia and non-hypsarrhythmia EEG, derived from
the full IS datasets, are shown in Fig. 3. In the delta band,
RMS and TE produce the best classification while the entropy
features yield the poorest classification. However, with an
increase in the frequency band, the classification power of
RMS and TE decreases gradually while the classification
power of the entropy features increases gradually. Eventually,

Fig. 3. ROC for discrimination between hypsarrhythmia and
non-hypsarrhythmia EEG derived from the full IS datasets. FPR: false
positive rate; TPR: true positive rate.

in the gamma band, the entropy features, particularly the
MsSamEn, produces the best discrimination ability between
hypsarrhythmia and non-hypsarrhythmia EEG. The classifica-
tion power of NCC and MF seems to be less promising except
for NCC in the delta band. The AUC values of each feature
in each EEG band are reported in Table II.

Accuracy, sensitivity, specificity, and F1 score of the 5-fold
cross validation are also reported in Table II. Similarly, RMS
and TE produces the best performance in the delta band and
gradually decreased performance with increased frequency
band. Entropy features produce gradually increased perfor-
mance with increased frequency band until beta. Although the
performance of the entropy features drops a little in the gamma
band as compared to beta, they are the best among all the
features in this band. MF and NCC produces less impressive
cross-validation results in all frequency bands.

The effects of infant age on the extracted features are
shown in Fig. 4. For RMS, significant differences between
hypsarrhythmia and non-hypsarrhythmia EEG are determined
almost in all sub-age groups except for one age group (0-6 m)
in the gamma band. Besides, the observed difference seems to
increase with increased infant age. Similar trend can also been
observed in the TE feature. All the entropy features extracted
from the hypsarrhythmia EEG are significantly lower than
that from non-hypsarrhythmia EEG in most of the sub-bands
and sub-age groups. These difference seems also to increase
with an increase in the infant age. Such age effect can also
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TABLE II
FEATURES EXTRACTED FROM THE FULL DATASET OF THE HYPSARRHYTHMIA AND NON-HYPSARRHYTHMIA

EEG TOGETHER WITH THE RESULTS OF THE 5-FOLD CROSS VALIDATION

be determined in the NCC feature in all EEG bands except
for gamma. No age-related increase in the difference between
hypsarrhythmia and non-hypsarrhythmia is observed for MF.

IV. DISCUSSION

The primary goal of this study was to explore whether quan-
titative EEG features might be employed for the discrimination
between hypsarrhythmia and non-hypsarrhythmia EEG in IS
patients, and thus identify them as potential biomarkers for
automatic hypsarrhythmia detection in long-term EEG mon-
itoring. RMS, TE, MF, SamEn, McSamEn, MsSamEn, and
NCC are widely used features in the analysis of physiological
signals [36], [37] and therefor are analysed in the present
study.

Our results show that the hypsarrhythmia EEG produces
large amplitude (RMS) in the delta and theta bands. This
is due to the fact that hypsarrhythmia EEG consists mainly
of high voltage slow waves [1], [13]. On the other hand,
the non-hypsarrhythmia and HC EEG are recorded during
sleeping and therefore consist also mainly of slow waves.
Yet, significant difference in RMS between hypsarrhythmia

and non-hypsarrhythmia or HC EEG is observed in the delta
and theta bands, suggesting RMS, particularly computed in the
lower EEG bands, to be an excellent biomarker for automatic
hypsarrhythmia detection.

Note that RMS computed in lower EEG bands is very sensi-
tive to motion artifacts, which may violate its ability to distin-
guish between hypsarrhythmia and non-hypsarrhythmia EEG.
TE computed in the delta band produces good classification
performance between hypsarrhythmia and non-hypsarrhythmia
EEG and, therefore, may also be a promising biomarker for
hypsarrhythmia detection. In fact, TE results in an excel-
lent time resolution and is robust to white noise and tonal
interference [43]. Unfortunately, due to the short support
width, TE is sensitive to transient signals and hence susceptible
to transient noise such as motion artifacts.

Apart from the slow waves, it is reported that hypsar-
rhythmia may also contain sharp waves and spikes [1],
[13]. Consequently, as shown in our results, RMS, SamEn,
MsSamEn, and McSamEn computed in higher EEG bands
show also significant difference between the hypsarrhythmia
EEG and the other two. Furthermore, the entropy features,
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Fig. 4. Features extracted from the hypsarrhythmia and
non-hypsarrhythmia EEG for different age groups.

particularly MsSamEn, computed in the gamma band produces
the best classification between hypsarrhythmia and non-
hypsarrhythmia. MsSamEn in the gamma band can therefore
be considered as a most powerful biomarker for hypsar-
rhythmia detection with minimized disturbance from motion
artifacts, since motion artifacts usually present in the low
frequency band and may be expected to be eliminated in the
gamma band.

Besides, studies have reported that scalp-recorded high
frequency oscillations, i.e., > 80 Hz, may serve as an objective
EEG biomarker of infantile spasms [31], [34]. We do observed
significant difference in MF, computed in the beta and gamma
bands, between hypsarrhythmia and non-hypsarrhythmia EEG.
However, we do not investigate the high frequency compo-
nents beyond 70 Hz, as, for scalp-recorded EEG, these high
frequency components may suffer from extremely low signal
to noise ratio and are, therefore, not reliable for identifying
biomarkers of IS. In fact, most of previous studies investi-
gating the high frequency oscillations utilized invasive EEG
measurements rather than scalp EEG [44], [45], [46].

Interesting to note that for most of the computed
features, the difference between hypsarrhythmia and

non-hypsarrhythmia EEG increases with increased infant age.
This observation may be ascribed to the fact that the infant
brain is undergoing a rapid development during the first
couple of years. It may also suggest that automatic detection
of hypsarrhythmia EEG in infants with age below 6 months
is much more challenging. More efforts are therefore required
for improving auto-detection of hypsarrhythmia in the early
age of infants.

Worth also to note that for TE and many of the entropy
features, significant difference is also observed between
non-hypsarrhythmia EEG and the EEG of the HC. This
may, on the one hand, be explained by inter-subject variabil-
ity. On the other hand, it may indicate inherently different
EEG patterns for the IS infants even without hypsarrhyth-
mia as compared to the HC. Nevertheless, it will not
violate the identification of TE and the entropy features
as objective hypsarrhythmia biomarkers since TE, SamEn,
MsSamEn, and McSamEn extracted from hypsarrhythmia
EEG are significantly different from that extract either from
the non-hypsarrhythmia EEG nor the HC (Fig. 2).

As discussed, RMS, TE and the entropy features may be
compensatory for each other. It is therefore reasonable to
expect an improved classification performance by combining
these features using dedicated machine learning algorithms.
However, the present study is a proof of principle, focusing
mainly on the identification of individual biomarker of hypsar-
rhythmia. Combining different features and dedicated machine
learning algorithms for automatic hypsarrhythmia detection
may be interesting and important directions for our future
studies.

Worthy also to note that, in the present study, all the data
used for analysis are selected during sleep. However, the EEG
signals can be more sensitive to noise during daytime. The
applicability of the identified biomarkers during daytime may
therefore be violated, and thus needs more extensive evalu-
ation. Yet, 24-hour EEG recording is a standard procedure
for the diagnosis of infantile spasms in clinical practice, and
hypsarrhythmia detection during sleep is sufficient for clinical
decision making.

V. CONCLUSION

In the present study, we quantitatively analysed several EEG
features in a large cohort of 101 IS patients and 155 healthy
control in order to identify possible biomarkers of hypsarrhyth-
mia. Our results suggests that RMS and TE computed in the
delta and theta bands and the entropy features computed in
the gamma band may be considered as promising biomark-
ers for automatic hypsarrhythmia detection. Besides, infant
age may influence the difference in these features between
hypsarrhythmia and non-hypsarrhythmia. Auto-identification
of hypsarrhythmia in the early age is challenging and therefore
requires more efforts and investigation in future studies.
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