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A B S T R A C T   

Introduction: Pressure Ulcers (PUs) are a major healthcare issue leading to prolonged hospital stays and decreased 
quality of life. Monitoring body position changes using sensors could reduce workload, improve turn compliance 
and decrease PU incidence. 
Method: This systematic review assessed the clinical applicability of different sensor types capable of in-bed body 
position detection. 
Results: We included 39 articles. Inertial sensors were most commonly used (n = 14). This sensor type has high 
accuracy and is equipped with a 2–4 hour turn-interval warning system increasing turn compliance. The second- 
largest group were piezoresistive (pressure) sensors (n = 12), followed by load sensors (n = 4), piezoelectric 
sensors (n = 3), radio wave-based sensors (n = 3) and capacitive sensors (n = 3). All sensor types except inertial 
sensors showed a large variety in the type and number of detected body positions. However, clinically relevant 
position changes such as trunk rotation and head of bed elevation were not detected or tested. 
Conclusion: Inertial sensors are the benchmark sensor type regarding accuracy and clinical applicability but these 
sensors have direct patient contact and (re)applying the sensors requires the effort of a nurse. Other sensor types 
without these disadvantages should be further investigated and developed. We propose the Pressure Ulcer Po
sition System (PUPS) guideline to facilitate this.   

1. Introduction 

The development of pressure ulcers (PUs) in bedridden patients is an 
iatrogenic complication that significantly reduces quality of life by 
causing pain and prolonging hospital stays [1,2]. PUs heal slowly, are 
difficult to treat and have a high risk of recurrence [3]. The reported PU 
incidence in hospitals is approximately 12 % but ranges from 8 to 40 %, 
depending on country, type of hospital (academic, non-academic) and 
department [4]. PUs are wounds induced by sustained tissue deforma
tion caused by a combination of pressure, shear, temperature and hu
midity [5]. This deformation can directly damage cell structures or 
impair blood perfusion, lymphatic function and transport between 
interstitial spaces which causes ischaemia, tissue damage and cell death 
[6,7]. The modified Reswick and Rogers curve indicates that the PU risk 
is dependent on cell deformation, time and individual characteristics. 
PUs usually occur in areas of the body where only a small layer of tissue 
is situated between the bone and the surface such as the sacrum, coccyx, 

heels, ankles and thighs or where medical instruments, with hard sur
faces, contact the skin such as with oxygen masks or instrumental wires. 

PUs can be prevented by taking timely measures to avoid prolonged 
tissue deformation [8,9]. Identifying patients at risk is important to 
provide these patients with frequent body turns, pressure-reducing 
support surfaces and to secure a healthy skin condition [10]. Tissue 
deformation is ideally monitored directly to assess the PU risk. Unfor
tunately, this deformation can only be measured at low resolution with 
bulky short-time measurement devices such as ultrasound, MRI and CT 
and only in high resolution with even more impractical ex vivo micro-CT 
imaging [11]. Therefore, in a clinical setting tissue deformation can be 
estimated for example by using interface pressure maps of the skin on 
the mattress. A higher interface pressure often causes higher internal 
pressures, generally causing a larger tissue deformation with corre
sponding higher PU risk. However, every patient has a different anat
omy, fat distribution and tissue condition, which changes the tissue 
tolerance for pressure and the correlation between interface pressure 
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and tissue deformation [12]. Thus, although interface pressure should 
be kept at a minimum, the critical interface pressure for PU development 
over time is different for every patient and is also dependent on the body 
part that is strained by the pressure. 

Regarding the contribution of the microclimate to tissue deforma
tion, research has shown evidence of a negative effect on PU formation 
for both low and high temperatures as well as low and high humidity [7, 
13–15]. Consequently, the goal should be to limit extreme temperature 
and humidity levels of the tissue. Current guidelines [10] advise all 
bedridden patients to be turned on an individualized schedule depend
ing on their mobility, but patients should reposition themselves or with 
assistance at least every 4 h, which, besides pressure relief, also posi
tively affects humidity and temperature. Tracking of the turns and the 
positions and thereby the location of the load on the body allows to 
relieve specific body parts that are disproportionally strained [16,8]. 
However, frequent monitoring and executing patient turns is a signifi
cant time investment for the already over-busy nursing staff. Therefore, 
technical solutions that can assist with this monitoring task are highly 
welcomed. 

Sensor technology equipped with body position detection (BPD) is 
crucial for monitoring the PU risk. BPD has three important advantages 
compared to plain pressure, temperature or humidity measurements. 
First, the body position itself provides a significant amount of infor
mation on the duration of the pressure load on the skin and an estima
tion of the location of the tissue at risk. For PU prevention, information 
about the angle of the trunk is important to estimate the side of the body 
that is loaded with pressure. For example, BPD can detect whether it is 
the tissue around the hip or coccyx that is strained. Second, it enables 
plain pressure, temperature or humidity values to be assigned to an 
anatomical position, which allows the tissue at risk to be tracked over 
time. Additionally, this would allow the plain values to be combined into 
an advanced PU risk model factoring for different (personal) anatomical 
thresholds. An additional advantage of BPD is that the turn frequency 
has been well-researched [17–20] and thus the 4-hour time-interval 
threshold can be used to send out timely warning signals. Finally, the 
value and necessity of BPD have been shown by a study which moni
tored general patient movement and could not find a correlation be
tween PU formation and movement [21]. The authors postulated that 
high-frequency small movements increase both shear forces that act 
on the skin and cause friction, elevating temperature and moisture 
levels, which increases tissue deformation. Thus, it is important to 
differentiate between effective and non-effective movements. 

Previous reviews also focussed on sensor technology as means of PU 
prevention. In 2015, Marchione et al. [22] summarized the available 
sensor techniques. Therefore, our current review continues from this 
point in time. Mansfield et al. [23] published a survey on various ap
proaches for preventing pressure ulcers and also included active pre
vention strategies. Both the review and the survey were broad and did 
not focus on BPD. Silva et al. [24] concentrated on reviewing the data 
processing abilities and specifications of the algorithms. Finally, Moore 
et al. specifically focussed on movement detection and reported a large 
heterogeneity between studies and found a lack of consensus on defining 
clinically relevant movements based on the included articles. Therefore, 
we focussed on a detection method that is more likely to be clinically 
relevant. Consequently, in this systematic review we assessed the clin
ical applicability of sensor types that can detect in-bed body positions. 

2. Methods 

2.1. Database search 

The scope of this systematic review concerned BPD sensor systems 
for the prevention of PUs. Therefore, the search was conducted on da
tabases focusing on the fields of medicine and computer science. The list 

of these databases and their electronic addresses is presented in Fig. 1. 
The search was conducted on October 25th 2022. Synonyms of pressure 
ulcers and words related to sensor, technology and measurements were 
included in the search string that is presented below (complete strings 
per database are included in the appendix): 

(decubitus OR bedsore OR pressure ulcer OR pressure-sensitive-mat) 
AND (sensor OR devices OR early diagnosis OR sensor* OR sensing OR 
sense* OR bedsens* OR early-detect*) AND (technology OR monitor OR 
monitoring OR measurement OR measuring* OR measurer*) 

2.2. Manual screening of title and abstract 

After the databases were searched, the title and abstract were 
manually independently in- or excluded by two scientists (TvH and 
AMvD) using the following in-and exclusion criteria: 

Inclusion:  

• Test subjects and patients of all age groups measured in-bed  
• Continuous automatic body position monitoring systems  
• Articles from 2015 onwards 

Exclusion:  

• Lack of in-bed BPD  
• Animals  
• Less than 3 test subjects or patients 
• Case reports, narrative reviews, expert opinions, editorials, confer

ence proceedings, patents  
• Study protocol only  
• Redundant -> the author has published a more recent paper 

describing the same with a larger dataset  
• Cameras -> privacy concerns, issues when a quilt is used and low 

light noise [25] 

2.3. Data extraction 

After the title and abstract screening was completed, the included 
articles were entirely read for the following properties: 

Authors •Publication year •Hardware used for monitoring the pa
tient •Manufacturer •Medical •CE •Study population •Type of popula
tion •Were the participants instructed? •Detectable body positions 
•Number of hours/samples •Reported BPD accuracy •Location of the 
sensor •Extensiveness of accuracy report 

3. Results 

The database search resulted in 2689 articles of which 1130 dupli
cates were removed. During selection, 1334 articles were rejected based 
on reading the title and abstract. After reading the full text, 185 of the 
224 articles were rejected based on exclusion criteria that were not 
previously identified during the title and abstract screening. Thus, 39 
articles were included in this systematic review. The PRISMA flow dia
gram is shown in Fig. 1. Data from the included articles were extracted 
and are shown in table 1. 

The 39 included articles were categorized into 6 subsections based 
on sensor types: the two most studied sensors were inertial (n = 14) and 
piezoresistive sensors (n = 12), followed by piezoelectric sensors (n = 3), 
load sensors (n = 4), radio-wave-based sensors (n = 3) and capacitive 
sensors (n = 3). First, the working mechanism per sensor type is dis
cussed, followed by the sensor variance, validation, clinical use and 
availability. Table 1 presents an overview of the properties of each 
sensor type. 
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3.1. Body positions 

The results presented in table 2 and 3 show the large variety in the 
type and number of bed positions that were discerned. The most com
mon positions that were detected are supine, left lateral and right lateral 
followed by the prone and fowler supine position. Additionally, varia
tions in the positions of the extremities in the lying positions were 

adopted such as left and right foetus, supine with a bent left or right leg 
and supine with arms parallel to the body or with the extremities wide. 
Finally, positions were categorised based on the location in bed, for 
example, lying on the left side of the bed, supine lying to the left or 
sitting on the side of the bed. The inertial sensors used the torso angle 
directly with a threshold turn angle of − 20 or +20◦ to differentiate 
between the supine and left or right lateral, whereas the transition angle 
from, for example, left lateral to prone was not specified for other sensor 
types. Additionally, some sensors used a movement score, in which they 
differentiated between large and small movements. 

3.2. Inertial sensors 

Inertial sensors consist of a triaxial-accelerometer (3D acceleration), 
a gyroscope (3D angular velocity and orientation) and sometimes a 
magnetometer (compass direction), which combined can detect motion 
and estimate body trunk angles [55]. The sensor is usually positioned on 
the sternum but can be attached to the abdominal area, extremities or 
hip as well [29,30,32]. 

The Leaf sensor and the PRESENSE system are two sensors equipped 
with a warning system that use the body turn angle as a threshold for 
differentiating between left, right and supine positions. These sensors 
are directly attached to the skin of the upper chest when in use [8,19,26, 
28]. The Leaf system is completely single-use [26] and therefore with 
larger recurring cost, while the PRESENSE uses a disposable ECG sticker 
with a multiple-use inertial sensor [28]. Both systems discriminate po
sitions according to degrees of turn angle across specified thresholds 
(20◦ and 12- or 15-minute tissue decompression time) and automatically 
reset after self-repositioning [8,27]. 

The sensors without a warning system use a smart algorithm to 
determine body positions instead of using the turn angle of the trunk. In 
four studies, two or more sensors were combined with a smart algorithm 
to determine the body positions [32,33] with two studies also including 
the position of the extremities [30,35]. The first sensor was positioned 
on the sternum or abdominal area, whereas the eventual second and 
additional sensors were positioned on the wrists, hip or ankles. The 
sensors that were not used on patients were usually placed on the 
clothing, although the way of attachment was not always specified [32]. 
Finally, some systems used one central computing unit connected to 
multiple types of sensors including ECG and breathing rate to obtain 
more parameters for the health status of the patient [34,36]. 

Of all of these sensors, only the leaf sensor and PRESENSE are used 

Fig. 1. PRISMA flow diagram.  

Table 1 
Overview of the sensor types.  

Sensor Type Detection Position Applicability 

Inertial sensors + High repositioning 
detection accuracy 
including body turn 
angle 

- Wearable 
- Risk of 
rolling on the 
sensor 
- Detached 
sensors 
- Contact with 
the skin 
- Higher risk 
of infection 

+ Warning 
system present  
+ Medical CE 
approval 

Piezoresistive 
sensors 

+ BPD and pressure 
- Sensitive to drift 

- On top of the 
mattress 
- Reduced 
comfort 

+ Adjustable 
dependent on 
application 

Piezoelectric 
sensors 

+ Also detects heart rate 
and respiratory rate 
- Limited BPD categories 

+ Under the 
mattress 

- Signal is easily 
disturbed 

Load sensors - Limited BPD, no prone 
position 

+ Inside or 
under the 
bedframe 

+ Durability 
+ Ease of use 

Radio wave- 
based sensors 

- Susceptible to 
interference 

+ No patient 
contact 

- External 
antenna’s 

Capacitive 
sensors 

+ Pressure and BPD - On top of the 
mattress 

+ Accurate 
pressure reading 
possible 
- Bulky 

+ represents advantages, whereas – are disadvantages. 

Table 2 
Different body positions from the extracted articles as described in detail in 
Table 3.  

# Position Number of articles 

Prime positions: 
1 S=Supine 27 
2 L=Left lateral 25 
3 R=Right lateral 25 
4 P=Prone 15 
5 FS=Fowler Supine (sitting) 8 
6 O=Out of bed 1* 
Extremity positions: 
7 Fl=left foetus (legs pulled up) 4 
8 Fr=right foetus (legs pulled up) 4 
9 SL=supine with bent left leg 2 
10 SR=supine with bent right leg 2 
11 Sp=supine arms parallel to body 1 
Location in-bed: 
12 Ss=sitting on the side of the bed 2 
13 LL2=Lying on the left side of the bed; 1 
14 LR2=lying on the right side of the bed 1 
15 LL=supine lying to the left 1 
16 LR=supine lying to the right 1 

*One article included out of bed as a position, other articles did not report it 
separately. 
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Table 3 
Detailed overview of the included articles.  

1st Author Pub. 
Year 

Sensor 
type 

Manufacturer / name Medical 
CE 

Study 
pop 

Population 
type 

Instructed Body positions Hours/samples Reported Accuracy Extensive report 

Inertial sensors 
D. Pickham [8] 2018 IS Leaf Healthcare yes 1312 718MP, 

594FP 
no Body angle 103,000 h not spec. – 

T.L. Yap (2) [26] 2022 IS Leaf Healthcare (not specified) yes 992 629MP, 
363FP 

no Body angle 16.06–17.44 days 
per patient 

Margin of error: 
±2.5◦

– 

J. Maguire [9] 2021 IS Leaf Healthcare yes 154 83MP, 71FP no Body angle 74,523 h not spec. – 
S. C. Schutt [27] 2018 IS Leaf Healthcare yes 138 68MP, 70FP no Body angle Base: 4322+ int: 

3532 h 
not spec. – 

T.L. Yap (1) [19] 2019 IS Leaf Healthcare yes 44 13MP, 31FP no Body angle 11,632 h not spec.  
B. S. Renganathan 

[28] 
2019 IS PRESENSE no 40 Patients no Body angle 774+676 h not spec. – 

A. R. Budarick  
[29] 

2020 IS 2x +
cap 

Delsys + Xsensor yes 25 13 M, 12F yes Body angle unknown not spec. – 

P. Alinia [30] 2020 IS 5–9x MTx 3-DOF orientation trackers 
(Xsens Technologies) 

no 30 19 M, 11F yes B 278 episodes of 20 s Location dependent 
Best: 98.4 % Worst: 64.8 
% 

Conf. + RSP per 
sensor position 

L. Nuksawn [31] 2015 IS tri-axial accelerometer no 20 10 M, 12F yes S,L,R, FS, standing, 
walking 

unknown 85.7 % no 

R. M. Kwasnicki  
[32] 

2018 IS 3x ADXL330, InvenSense ITG-3200, 
Honeywell HMC5843 

no 16 9 M, 7F yes B,Fl,Fr,Sp,Pp 256 random 
postures 

With calibration: 
99.5 % (4 postures) 92.5 
% (8 postures) 

Conf. 

E. B. Monroy [33] 2020 IS 2x Tactigon ONE no 7 3 M, 4F yes S,L,R,FS,SR,SL 500,000 samples 99 % Conf. 
Z. Zhang [34] 2015 IS biosignalsplux sensor no 7 5 M, 2F yes B unknown 99 % Conf. 
G. Cicceri [35] 2020 IS Raspberry pi + Adafruit LSM303 no 6 Healthy yes B, FS, movement 8707 samples 99.1 % Conf. 
R. K. Megalingam 

[36] 
2016 IS Arduino + ADXL 335 no 5 Healthy yes Body angle unknown not spec. – 

Piezoresistive sensors 

G. Matar [37] 2020 PR Sensor Products 64 × 26 mattress no 12 10 M, 2F yes B 1116 images 97.9 % Conf. 
R. Hudec [38] 2021 PR Textile: yarn and velostat no 21 18 M, 3F yes B 630 samples 82.2 % Conf. 
R. Onose [39] 2017 PR Garment-textile no 20 4 M, 16F yes no BPD unknown not spec. no 
H.K. Diao [40] 2021 PR FSR 32 × 32 no I: 16 +

O: 5 
9 M, 7F yes + no B 1056 samples Instructed: 95.1 %; 

overnight: 86.4 %; 
yes 

D. Hayn [41] 2015 PR ADXL 345 + FSR-406 no 14 Patients no move/non mov 8111 h not spec. – 
M. B. Pouyan  

[42] 
2017 PR 2 pressure mats n/a 13 Healthy yes S,L,R 20.024 data points 80.4–85.5 % RSP per patient 

M. Heydarzadeh  
[43] 

2016 PR Vista Medical Boditrak yes 10 Healthy yes B,Fl,Fr 60.000+ images? 98.1 % Conf. 

F. J. Costello [44] 2021 PR 32 × 64 pressure mat n/a 13 Healthy yes S,L,R,Sw,Ss,Sr,SR, 
SL,Fl,Fr 

20,024 data points 98.6 % Conf. 

T. H. Kim [45] 2019 PR FSR 16 × 8 no 7 6 M, 1F no B,LL,LR 258 postures 90 % APP 
Y. W. Hung [46] 2015 PR FSR 18 × 12 no 6 Healthy yes S,L,R, movement 900 images 95.9 % inconsistent 
Y. S. Hong [47] 2018 PR 18 FSR 408, 27 FSR 406 no 5 Elderly yes S,L,R 374 tests threshold 300: 87.3 % no 
A. P. Rodríguez  

[48] 
2020 PR Vista Medical Boditrak yes 8 Healthy yes S,L,R 232 real, 6032 

augmented 
99.0 % RSP per patient 

Piezoelectric sensors 

W. Viriyavit [49] 2020 PE + PR 2 FSR 402; Piezoelectric 
Diaphragms 

no 3 Patients yes S,LL2,LR2,FS,O 459 h, 5335 samples 97.1 % Conf. 

M. X. Liu [50] 2018 PE piezoelectric film in the mattress no 12 6 M, 6F no B 8 h (40 min * 12 
subjects) 

Uncorrected: 90 % 
corrected: 97 % 

APP 

(continued on next page) 
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Table 3 (continued ) 

1st Author Pub. 
Year 

Sensor 
type 

Manufacturer / name Medical 
CE 

Study 
pop 

Population 
type 

Instructed Body positions Hours/samples Reported Accuracy Extensive report 

M. Enayati [51] 2018 PE 4 hydraulic tubes incl. pressure 
sensors 

no 58 Healthy yes B unknown K-fold:100 %, LOSO: 75 
% 

no, ext. 

Load sensors 

N. Zahradka [52] 2018 Load iLoad Pro no 54 Healthy Yes S,L,R,FS,Ls,Rs, 
movement 

54 pos. + 54 
movement 

Position: 74.9 %, 
Movement.: 79.7 % 

Conf. 

N. Pupic [53] 2022 Load Load cell + 3 IMU no 18 10 M, 8F Yes S,L,R + bins 2963 samples LOSO: 84.0 % ± 12.2 % 
15◦ bin: 52 %− 56 % 

No, ext 

G. Wong [54] 2020 Load Load cell: DLC902–30KGHB no 20 8 M, 12F yes S,L,R 4932 observations 94.2 % Conf. 
D. M. Minteer  

[55] 
2020 Load 

+ IS 
custom no 10 3MP, 7FP no movement/ 

repositioning 
105 h; 137 
movements 

85 % (Gown: 80 %, Load: 
89 %) 

-/no 

Radio wave-based systems 

J. Liu [25] 2019 RW RFID tag matrix no 12 8 M,4F yes B,Fl,Fr 120 samples 96.7 % Conf. 
S. A. Shah [56] 2016 RW Leaky Coaxial cable no I: 3 + II: 

6 
Healthy yes S,Lateral,FS n/a not spec. no 

V. Nguyen [57] 2016 RW IR-UWB no 6 3 M, 3F yes B n/a 88.9 % No, ext 

Capacitive sensors 

S. Rus [58] 2017 Cap Multi-capacitance no 14 Healthy yes B,FS 3741 samples LOSO: 90.4 % dispersed 
subset: 85 % 

Conf. 

S. Fryer [59] 2022 Cap Xsensor Foresite Yes 12 Patients No Movement n/a ~80 % No 
D.J.C. Matthies  

[60] 
2021 Cap + PZ 12 Pressure Tiles + 8 Capacitors no 11 8 M, 3F yes B,Ss n/a LOSO: 85.0 % 

50 % split: 99.5 % 
Conf. 

Sensor types: IS=Inertial Sensor; PR=Piezoresistive sensor; PE=Piezoelectric sensor; Load=Load sensor; RW=Radio wave based sensor; HS=hydraulic sensor Cap= Capacitive sensor; Population type: M=male; F=female; 
MP=male patient, FP=female patient; Instructed: Volunteers were instructed to attain certain positions B=Main/Basic positions: Supine (S), Left lateral (L), Right lateral (R), Prone (P); Body positions FS=Fowler’s supine, 
O––Out of bed; SR= Supine with bent right leg; SL; Supine with bent left leg, Sp=Supine arms parallel to the body, Pp=Prone arms parallel to the body, LL = supine lying to the left, LR = supine lying to the right, 
LL2=Lying on the left side of the bed; LR2=lying on the right side of the bed, Fl=Left foetus, Fr=Right foetus, Ss=Sitting on the side of the bed, Ls=Sitting on the left side, Rs=sitting on the right side; Reported accuracy: K- 
fold cross-validation: body positions were randomly picked from all subjects; LOSO=Leaf One Subject Out cross-validation, all body positions of one person were excluded from the training set Extensive report: Conf.=
confusion matrix; RSP=Recall, Specificity, Precision; APP=Accuracy per posture; no, ext=an extensive report was provided, but not on the classification distribution. 
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clinically. Most studies with inertial sensors that used the body turn 
angle did not specify the accuracy of the system, however, one study 
reported a turn angle accuracy of ±2.5◦ for the Leaf sensor [19]. The 
systems that were validated for BPD report a high classification accuracy 
between 99 % and 99.5 % [32–35]. Nuksawn et al. [31] achieved a 
lower accuracy (85.7 %), however, their system was also able to 
differentiate between standing and walking, increasing the number of 
categories and thus increasing the detection difficulty. 

We found the most comprehensive clinical studies with inertial 
sensors. The largest study was by Pickham et al. [8] with 1312 patients 
which compared the PU prevalence with and without the sensor active. 
The PU incidence was significantly lower in the intervention group (0.7 
%) compared to the control group (2.3 %). In 2022, Yap et al. [19] 
included 992 patients in a clinical trial, on a high-spec foam mattress, 
and found no new development of PUs when using 2, 3 or 4-hour 
turn-interval warnings (intervention) compared to a 5.2 % baseline 
incidence. Three other studies focused on compliance with the 2-hour 
turning protocol. In 2019, Yap et al. observed an increase in mean 
compliance from 61.4 % to 81.5 % in a population of 44 residents [26]. 
Schutt et al. (2018) found a comparable increase in compliance from 64 
% to 98 % in a population of 75 patients [27]. Renganathan et al. (2019) 
found the greatest increase in compliance from 24 % to 98 % in a small 
population of 40 patients [28]. Finally, Maguire et al. found that 
extending personalised turn intervals up to 4 h could be safely imple
mented without increasing PU incidence [9]. 

Due to direct patient contact for the majority of inertial sensors, both 
frail skin and an adhesive allergy were exclusion criteria, because some 
can cause skin tears or an allergic reaction [8,27]. Another complication 
was the patient rolling on top of the sensor which can be uncomfortable 
or can in itself induce PUs [42,54]. Moreover, sensors were reported to 
detach due to resident picking behaviours, moist skin under the sensor 
or skin products applied before sensor application [26]. 

3.3. Piezoresistive sensors 

Piezoresistive sensors are sensors that can detect changes in elec
trical resistance relative to the applied force, which can be converted to 
pressure values (in mmHg) [61]. These sensors are often located on top 
of the mattress underneath the bedsheet since this enables the most 
direct pressure distribution measurements. Piezoresistive sensors are 
versatile as their number and positioning can be adjusted to fit the 
application. For example, some are placed homogeneously covering the 
whole mattress, providing a detailed pressure map of the patient 
whereas others are positioned in certain patterns aiming to obtain the 
most critical data to estimate body positions with the least number of 
sensors to reduce cost [40,47]. 

The piezoresistive BPD accuracy, tested in a maximum of 21 healthy 
volunteers, ranges between 75.9 % and 98.6 % [37,38]. The results in 
table 1 show that piezoresistive sensors with BPD have not been used on 
patients yet. However, pressure mats have been used with patients for 
their pressure mapping capabilities, without a BPD- or warning system 
[62–64]. 

From the selection of piezoresistive systems that can detect body 
position, only one was a ready-built commercially available system [43]. 
The other systems were self-built systems that frequently use the same 
basic components such as the commercially available FSR-406 sensors 
while using a different number and placement of the sensors [37,40, 
45–47]. 

There are several disadvantages of piezoresistive sensors. First, the 
position of the sensors on top of the mattress reduces comfort [41]. 
Second, according to Pouyan et al. [42], for high precision, this sensor 
type has to be calibrated each time that it was used because it suffers 
from drift. Finally, they require storage space when not in use and, may 
spread infection, due to indirect contact with the patient, if not properly 
cleaned [54]. 

3.4. Piezoelectric sensors 

Piezoelectric sensors can detect vibrations such as small movements, 
respiratory rate and heart rate [21]. The sensor is usually placed under 
the mattress in the thoracic region of the patient, but it cannot detect 
absolute pressure due to charge leakage [65]. 

Viriyavit et al. [49] combined two piezoelectric sensors and two 
piezoresistive sensors attached to a ready-made sensor panel to detect 
in-bed weight distribution in a fall prevention study. A low number of 
sensors was used to keep the system low-cost. The system was tested on 
three subjects resulting in 5335 samples and can discern five body po
sitions including off-bed, sitting, lying centre, lying left and lying right 
with an accuracy of 97 %. 

A different approach to BPD is to use the ballistocardiograph (BCG) 
signal -movement generated by the heart - to identify the four basic body 
positions. Liu et al. [50] used a piezoelectric film integrated into the 
mattress whereas Enayati et al. [51] used 4 water tubes fitted under the 
mattress. Depending on the angle of the body, the BCG signal becomes 
weaker or stronger from which the body position can be deducted. Both 
Viriyavit and Liu et al. achieved a BPD accuracy of 97 % in a lab-testing 
environment, however, the systems were neither tested on patients nor 
were they commercially available yet. Enayati et al. [51] achieved 100 
% accuracy with the K-fold test method and 75 % accuracy with the 
leave-one-subject-out (LOSO) test method. The system performance was 
affected by electrical devices and the type of bed [65] and it was unclear 
how BCG data were affected by clothing, pillow and blanket [50]. 

3.5. Load sensors 

Load sensors are commonly placed in the bedframe or as pads under 
the bed wheels and can detect the weight (distribution) of the person in 
the bed. Combining the signals of the load sensors, deviations in the 
centre of mass during movement can be calculated, which subsequently 
can be used to estimate the orientation of the patient. The advantages of 
this sensor type are the lack of patient contact, the low costs and the low 
maintenance requirements [54]. 

Minteer et al. developed both a load sensor system and an inertial 
sensor (gown) [55]. The systems were simultaneously assessed by 
monitoring 10 immobile patients with both the camera, inertial sensor 
and load sensors resulting in an accuracy of 85 % for ‘repositioning’ 
events. These events were defined as “a rotation of the patient’s core 
body while lying in bed, to include adjusting individual limbs for 
cleaning purposes and/or comfort measures.” The authors reported 
eleven missed movements and two false positives for the gown sensor 
(total=65) and seven missed events with one false positive for the load 
sensor (total=72). Noticeably, only one accuracy was reported for the 
two systems together without providing separate values. 

Wong et al. [54] proposed a PU prevention tool and advocated the 
benefits of using load sensors compared to other sensor types. They 
noted that the posture detection of a clinical 30-degree angle with 
support pillows was more difficult to detect than a 90-degree left or right 
lying position, resulting in a detection accuracy ranging from 73 % to 94 
%. Pupic et al. [53] used a similar setup and achieved an accuracy of 85 
% for differentiating between left, right and supine. They also investi
gated the influence of the turn angle of the patient on the interface 
pressure exerted on the tissue around the sacrum, left- and right 
trochanter. They found that 15-degree steps provided clinically relevant 
differences in pressure but their load sensor system was only able to 
differentiate this small bin size with an accuracy of 52–56 %. 

Zahradka et al. [52] also demonstrated with 54 healthy volunteers 
that certain body positions could be determined with load sensors with 
an overall accuracy of 74.9 %. However, similar to the other two studies 
with load sensors, they could not differentiate between supine and prone 
position. Furthermore, they found that the difference between lying and 
sitting could be well detected, but differentiating between lying posi
tions resulted in a high classification error when not binding categories 
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together. 

3.6. Radio wave-based sensors 

Systems based on radio waves consist of a transmitter that sends out 
radiation in the non-ionizing electromagnetic spectrum and a receiver 
that detects it. Because the body is an obstacle between the transmitter 
and receiver, it causes disturbances via reflection, refraction and scat
tering, which leads to different signal profiles for specific body positions 
[25,56]. There is no need for direct contact with the patient. Three 
variants are discussed below, although they are in the prototype phase 
and have not yet been validated on patients. 

3.6.1. Radio-frequency identification (RFID) tags 
In 2019, Liu et al. [25] positioned 500 passive (=battery free) RFID 

tags under a thin mattress which were powered and beamed by an RFID 
reader (antenna) that was positioned above the bed. The operating 
frequency was not specified. The tags were taped under a bed sheet or on 
the surface of a mattress and scattered the radio waves back to the 
receiver. Depending on the body position, a grayscale profile was 
created corresponding to the differences in signal strength caused by the 
presence of a body between the tags and the reader. According to the 
authors, they used an algorithm that can be used for the general popu
lation. The tags can detect two additional postures beside the basic 
positions: left and right foetus. Moreover, the tags can also estimate the 
respiratory rate. 

3.6.2. Leaky coaxial cable 
Shah et al. [56] used a commercial Leaky coaxial cable (LCX) that 

communicates to a 2.4 GHz Wi-Fi-router. They used an LCX cable of 1 
meter for one volunteer and a 3-meter-long cable for the detection of 
two or more volunteers in multiple rooms. They stated that an LCX cable 
is more robust than an antenna setup because of the directionality of the 
signals and they mention the proposed systems obtained high identifi
cation accuracy. However, the authors did not report the accuracy of the 
system and the test subjects had homogeneous heights and weights. 

3.6.3. IR-UWB radar 
Nguyen et al. [57] used Impulse radio ultra-wideband (IR-UWB) 

radar to detect postures, heart rate and respiration rate. The IR-UWB 
radar, a 40 × 40 inch (102 × 102 cm) panel, was positioned under the 
mattress and tested on six subjects. In this study, a frequency of 4.1 MHz 
(between AM and FM radio wave frequency) was used which is different 
from continuous radio wave-based techniques as it transmits informa
tion via bursts of short impulses instead of using a sine wave. This en
ables operation with time-of-flight instead of received signal strength 
indication (RSSI), which increases ranging measurement precision that, 
besides the basic body postures, can be used to detect heart rate and 
respiration rate. A posture detection accuracy of 88.9 % was achieved 
for the basic positions. 

3.7. Capacitive sensors 

Capacitive sensors are situated on the mattress and can detect 
changes in electrical charge which enables pressure measurement or 
contact detection. 

Rus et al. [58] described their system as a big touch screen with 
crossed wires that can detect mutual capacitance at the intersections of 
the wires. A very low radio wave frequency of 7.3 kHz was used. The 
basic positions were detected together with the fowler supine position. 
They reported a LOSO accuracy of 90.5 % for the whole dataset but 
specified 94.7 % and 85.0 % for a similar and dispersed subset, 
respectively. 

Matthies et al. [60] used both pressure sensors and capacitive sensors 
attached to a mattress protector. The system achieved an accuracy of 
99.5 % with a 50 % split and 85.0 % with the LOSO test method for the 

basic positions and sitting on the side of the bed. 
Fryer et al. [59] used a capacitive sensor mat that measures absolute 

pressure. They used this to track large-scale movements that resulted in 
a clear change in the spatial distribution of pressure through changes in 
posture. They found that certain movement patterns correlated to ac
quired skin damage, demonstrating that the system could potentially be 
used for PU prevention. 

4. Discussion 

4.1. Summary of main results 

We assessed the clinical applicability of different sensor types that 
can detect body positions in bed. Most articles on BPD systems included 
inertial sensors and (piezoresistive) pressure sensors. Alternative types 
were piezoelectric sensors, load sensors, radiofrequency-based tech
niques and capacitive sensors. Recently, two inertial sensors were shown 
to reduce PU incidence [8,19,9] and increase turn compliance [26–28]. 
These findings strengthen the benefits of technical support for nurses in 
PU prevention. Although inertial sensors achieve high BPD accuracy and 
reported promising clinical evidence, they have some serious drawbacks 
concerning comfort and clinical usability [66]. That is why it is desirable 
to further develop other sensor types for body position monitoring that 
do not need (direct) patient contact and do not require extra effort of 
nurses to operate. 

4.2. Warning system 

For active PU prevention, sensors must be equipped with a warning 
system [24]. A warning system should alert nurses if a patient de
teriorates from low-risk to high-risk or it should assist with turn-protocol 
compliance. High-risk patients could be detected with no-contact lower 
accuracy systems such as piezoelectric, load and radio wave-based 
sensors whereas strict turn-protocol monitoring of high-risk patients 
could be achieved by using higher accuracy, extremity measuring, 
techniques such as piezoresistive, capacitive and inertial sensors. 
Currently, most of the BPD systems are in the prototype stage and do not 
have an active warning system. However, for BPD systems this should be 
easy to implement, because turn guidelines have already been investi
gated. Although personalised alarm thresholds are still under review, a 
4-hour turn frequency is recommended for general use and has been 
shown to reduce PU incidence [10,19]. 

4.3. Body position categories and accuracy 

For most use cases, it is important to have a BPD system with a low 
misclassification rate. However, the accuracy is affected by multiple 
factors. A few studies have reported different classification accuracies 
depending on the number of body position categories [32,40] and many 
based on the validation setup [51,58,60]. For example, one study per
formed accuracy tests in both a lab setting and a setting closer to clinical 
practice with longer measurements and random movements and found a 
95 % accuracy in a lab setting compared to 86 % in a clinical setting 
[40]. Healthy, well-instructed individuals perform clearly defined 
movements with larger and more consistent shifts in pressure and 
weight distribution compared to patients, especially if a homogeneous 
test population is used. Furthermore, the four basic positions largely 
differ in their pressure maps and weight shifts, whereas in practice pa
tients most likely position themselves in all the gradual steps in between 
as well. Movement thresholds used for healthy volunteers will thus 
likely be different for slowly moving uninstructed patients, lowering 
detection accuracy in clinical practice. Generally, accuracy seems to 
drop 10 % in a setting where volunteers could move randomly in com
parison to instructed volunteers. Additionally, some authors use sensor 
calibration for every new patient in a lab setting to improve accuracy 
[32,42], but this would drastically increase nurse workload in a clinical 

T.M.N. van Helden et al.                                                                                                                                                                                                                      



Medical Engineering and Physics 124 (2024) 104096

8

setting [67]. 
Next, we notice that most authors, except one [54], tested their 

systems in a lab setting with a flat mattress, whereas most bedridden 
patients are required to have a minimum head of bed angle (HOB) of 30◦

or more [68]. This is an issue because the pressure map and weight 
distribution of someone positioned in a 30-degree HOB compared to a 
0-degree HOB differ significantly [69,70]. Furthermore, in none of the 
articles the legs were raised 30◦ to achieve semi-fowler positions and in 
several articles no pillows were used in the training data [37,40,60], 
despite this being common practice. These differences in the way the 
algorithms were trained and tested most likely lead to a lower accuracy 
in clinical practice, reducing usability for PU prevention. 

Unfortunately, the number and type of categories differed between 
published articles, decreasing comparability between systems. The 
number of categorised body positions relates to the accuracy of the 
system [32]. Fewer categories are more robust and thus result in a 
higher classification accuracy whereas distinguishing a high number of 
categories is more difficult [51]. It is easy to increase the reported ac
curacy by limiting or avoiding positions that are difficult to detect 
during testing. To avoid bias, a more representative value is to report a 
confusion matrix that reports the predicted and true labels per category. 
This allows for the assessment of the classification accuracy of specific 
categories, better predicting real-world accuracy. 

Finally, the rationale of the chosen positions was missing or lacking 
clinical relevance in most of the articles. The sensor systems were often 
not able to differentiate between sitting and lying in bed and one cate
gory was missing completely from most articles: the 30-degree side- 
lying position, which is recommended by the EPUAP guidelines [10]. 
Currently, only articles with inertial sensors specify that they use a trunk 
turn threshold of 20◦ and two articles with load sensors. One article used 
training data with a 30-degree trunk turn angle [54] whereas the other 
article reported accuracies for different bin sizes [53]. To increase 
clinical relevance and comparability between sensors, we suggest which 
positions are clinically relevant and should be included in future articles. 

4.4. Recommendation on body positions 

To further align clinical usefulness and development, we would like 
to propose the Pressure Ulcer Position System (PUPS) guideline in which 
we define the clinically relevant positions for PU prevention (Fig 2.). The 

PUPS includes two important detection functions: detecting patients at 
risk and monitoring high-risk patients. Ideally, a sensor system can be 
used for both, but an exception could be made for large-scale, less 
expensive applications. First, a patient at risk of a PU should be detected 
based on the turn frequency of large trunk movements. Healthy patients 
acquire more positions and use larger movements that should be easily 
differentiated from immobile patients. The corresponding categories are 
prone, left lateral, right lateral, supine, sitting and out of bed in which a 
threshold of 45◦ is picked as an intermediate angle. 

The second function is monitoring the turn frequency compliance 
and requires a higher detection accuracy of 15◦. Pupic et al. [54] found 
that every 15-degree trunk rotation significantly changes the pressure 
applied to the tissues around the sacrum and trochanter and these cat
egories are clinically actionable. However, postoperative patients are 
often not allowed to turn beyond a 30-degree trunk angle, thus high- 
accuracy differentiation above this angle is clinically irrelevant. Next, 
the head of bed (HOB) angle is important to differentiate between the 
relative pressure on the tissues around the sacrum and ischium (sitting 
bone). Although a HOB angle of up to 30◦ is considered optimal for 
reducing PU risk [10], the HOB angle should be detected up to 45◦

because a minimum of 30–45◦ can be required to decrease the risk of 
ventilator-associated pneumonia [68,71]. A HOB angle of 45◦ is also 
often used to read and may be tolerated by medium-risk patients, 
whereas a HOB angle of more than 45◦ is considered high-risk sitting 
and should be limited to eating purposes only [72]. 

4.5. Limitations 

At the moment of writing this review, the total amount of clinical 
evidence was restricted and limited to inertial sensors only. This is why 
we widened our search and also included, amongst others, validation 
studies with healthy volunteers. Therefore, accuracy between systems 
should be carefully evaluated, especially when comparing a lab setting 
with a more realistic setting. Some articles were included despite not 
having BPD because they described ‘Repositioning’ as a rotation of the 
patient’s core body while lying in bed [41,55,59]. This provides less 
information, but may still be sufficient to prevent PUs. Furthermore, one 
article without BPD [39] was included because it went one step beyond 
BPD. The authors developed wearable clothing with a known position of 
the sensors in relation to the body. This is one step beyond regular BPD, 

Fig. 2. Proposed Pressure Ulcer Position System (PUPS) guideline for the prevention of pressure ulcers.  
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since the pressure values could be paired to the anatomical position 
without the use of an advanced model. 

5. Conclusion 

Multiple sensors are available that can detect body positions, how
ever, with varying accuracy. Mostly inertial sensors have been clinically 
investigated demonstrating that a sensor equipped with a body-turn 
warning system can reduce PU occurrence and increase turn compli
ance. Unfortunately, most other sensor types have not been tested in a 
clinical representative setting. The head of bed angle was usually tested 
in a flat position which is common in sleep studies but not for hospi
talized bedridden patients at risk of a PU. This difference most likely 
reduces accuracy in clinical practice. To increase clinical applicability 
and comparability between sensors, we propose the PU position system 
(PUPS). PUPS consist of the relevant clinical positions and standardizes 
detection categories between sensors which could improve assessment 
of the sensors and increase the value of sensor monitoring systems for 
the prevention of PUs. 
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