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Abstract   

Objective: We examined interactions between genotype and a Dietary Approaches to Stop Hypertension 

(DASH) diet score in relation to systolic blood pressure (SBP). Methods: We analyzed up to 9,420,585 

biallelic imputed single nucleotide polymorphisms (SNPs) in up to 127,282 individuals of six population 

groups (91% of European population) from the Cohorts for Heart and Aging Research in Genomic 

Epidemiology consortium (CHARGE; n=35,660) and UK Biobank (n=91,622) and performed European 

population-specific and cross-population meta-analyses. Results: We identified three loci in European-

specific analyses and an additional four loci in cross-population analyses at P for interaction < 5e-8. We 

observed a consistent interaction between rs117878928 at 15q25.1 (minor allele frequency = 0.03) and 

the DASH diet score (P for interaction = 4e-8; P for heterogeneity = 0.35) in European population, where 

the interaction effect size was 0.42±0.09 mm Hg (P for interaction = 9.4e-7) and 0.20±0.06 mm Hg (P for 

interaction = 0.001) in CHARGE and the UK Biobank, respectively. The 1 Mb region surrounding 

rs117878928 was enriched with cis-expression quantitative trait loci (eQTL) variants (P = 4e-273) and 

cis-DNA methylation quantitative trait loci (mQTL) variants (P = 1e-300). While the closest gene for 

rs117878928 is MTHFS, the highest narrow sense heritability accounted by SNPs potentially interacting 

with the DASH diet score in this locus was for gene ST20 at 15q25.1. Conclusion: We demonstrated 

gene-DASH diet score interaction effects on SBP in several loci. Studies with larger diverse populations 

are needed to validate our findings. 

 

Keywords: DASH Diet; Association Study, Genome-Wide; Gene Environment Interaction;  

 MTHFS; ST20; Systolic Pressure; CHARGE consortium; UK Biobank 
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Introduction 

Nearly half of American adults (and 32% of the global population) have hypertension, an 

established risk factor for cardiovascular disease [1, 2]. The Dietary Approach to Stop Hypertension 

(DASH) diet promotes consumption of fruits, vegetables, whole grains, nuts and legumes, and low-fat 

dairy products, and limits the consumption of red and processed meats, sugar-sweetened beverages, and 

sodium [3]. The DASH diet is based on diets provided in a multicenter, randomized controlled trial 

(RCT), where the primary results successfully reduced blood pressure (BP) among individuals with 

prehypertension and hypertension and was subsequently shown in several additional RCTs [3-7]. For 

example, in the DASH-Sodium trial, the low sodium DASH diet reduced systolic BP by 7 mm Hg 

compared with a typical American diet [6]. In population-based studies, DASH diet scores have been 

developed to reflect an individual’s adherence to the DASH diet plan that was tested in the trials [8, 9]. 

Several independent studies showed that higher DASH diet scores were associated with a decreased risk 

of hypertension and cardiovascular disease [10-13].  

The genetic architecture of hypertension has been studied extensively [14-16]. For example, a 

recent genome-wide association study (GWAS) reported that individuals in the high polygenic score 

quintile, calculated based on over 2,000 BP-associated loci, had a five-fold greater risk of hypertension 

compared to those in the lowest quintile with a low polygenic score [16]. Unhealthy lifestyle such as poor 

diet, smoking, and sedentary lifestyle is also a significant risk factor of hypertension and may interact 

with genetic factors. For example, an earlier study in UK Biobank showed an interaction between a 

polygenic score, built with 314 BP-associated loci, and a healthy lifestyle score for systolic BP. 

Compared to individuals with a low lifestyle score, systolic BP was 4.9 mm Hg lower in those with a high 

lifestyle score and a low genetic risk and 4.1 mm Hg lower in those with a high lifestyle score and a high 

polygenic score [17]. Gene-diet interaction has also been examined in other general populations [18-23], 

however, these studies are limited to investigating specific dietary components such as sodium intake [18, 

19], different types of dietary fat [20, 21], or caloric intake [22]. Little is known about the interaction 

between genes and overall diet quality in relation to BP in the general population. To address this 
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knowledge gap, the Gene-Lifestyle Interactions Working Group, part of the Cohorts for Heart and Aging 

Research in Genomic Epidemiology (CHARGE) consortium, investigated genome-wide gene-DASH diet 

score interaction in relation to systolic BP [23-25].  

 

Methods 

Study Populations. We analyzed six participating cohorts in the CHARGE consortium and the UK 

Biobank (Supplemental Appendix 1, Supplemental Table 1). Descriptions of the CHARGE consortium 

and the UK Biobank have been published previously [23, 26]. We included participants if they were aged 

18 to 80 years and had no missing data on genotype, diet, systolic BP measurements, or covariates. The 

different populations in these cohorts included African population (AFR), Admixed American population 

(AMR), Central/South Asian population (CSA), East Asian population (EAS), European population 

(EUR), and Middle Eastern population (MID). In the UK Biobank, we excluded those who were related 

to other participants up to the third degree. All participants provided written informed consent. The 

present study protocol was approved by the Tufts University Institutional Review Board.   

 

Study Design. The study design is depicted in Figure 1. We developed the analytical protocol based on 

the method created by the Gene-Lifestyle Interactions Working Group [27]. Each cohort conducted 

population-specific analysis according to this protocol. Population-specific and cross-population meta-

analyses were then conducted centrally.  

 

Systolic BP. Resting or sitting systolic BP (mm Hg) was measured according to standard protocol in each 

cohort [27]. When multiple BP readings (typically two or three readings) were available, the mean 

systolic BP of all readings was analyzed. For subjects taking anti-hypertensive medications, we adjusted 

their systolic BP by adding 15 mm Hg [14]. We winsorized systolic BP values that were more than 6 

standard deviations (SD) from the mean. 
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DASH Diet Score. Different versions of cohort-specific Food Frequency Questionnaires (FFQ) were used 

to assess dietary intakes largely during the same time for BP measurement in the CHARGE cohorts. 

Cohort specific dietary intake information is provided in Supplemental Table 2. In the UK Biobank, we 

analyzed at least two internet-based 24-hour dietary recalls collected within two years after the baseline 

BP measurement [28]. If a UK Biobank participant did not have a dietary recall within two years of the 

baseline BP measurement, but had BP measured during a follow-up visit, we analyzed their dietary recalls 

collected within two years of that follow-up BP measurement. Each cohort applied their own criteria for 

quality control (QC) of their dietary assessment tools, which is summarized in Supplemental Table 2. In 

each cohort, the DASH diet score was calculated using the same algorithm based on consumption of eight 

components: fruits, vegetables, whole grains, nuts and legumes, low-fat dairy, red and processed meats, 

sugar-sweetened beverages, and sodium [29]. Each component was computed and classified into cohort-

specific quintiles. A score of 1 to 5 was then given for each component according to its quintile rank with 

higher scores for foods where high intake was favorable, and reverse quintile scores for the components 

where low intake was desired. The sum of the component scores resulted in a DASH diet score ranging 

from 8 to 40, with higher scores indicating better diet quality for BP control. Sodium intake was not 

included in the UK Biobank DASH diet score, as the nutrient component was not available when the 

analysis was run.  

 

Association of the DASH diet score with systolic BP. In the Framingham Heart Study (FHS) and the UK 

Biobank, we examined cross-sectional associations of the DASH diet score with systolic BP in a 

multivariate model with adjustment for age, age squared, sex, energy intake, and population (only in the 

UK Biobank) in the first model, and additionally adjusted for BMI in the second model.  

 

Genotyping. Genotyping was performed by each participating cohort using either Illumina or Affymetrix 

arrays. Specific details of genotyping platforms and imputation tools are described in Supplemental Table 

3. SNP dosages were imputed in each cohort using reference panels including 1000 Genomes Phase 1 and 
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Phase 3 panels and Haplotype Reference Consortium (HRC) panel [15, 30, 31]. In the CHARGE cohorts, 

we focused on biallelic variants with minor allele frequency (MAF) ≥0.01. Because of the larger sample 

size, we analyzed biallelic SNPs with MAF ≥0.005 in the UK Biobank. In all cohorts, we only included 

variants where the minor allele counts were >10. Only autosomal SNPs with imputation quality index 

≥0.3 were considered in statistical analyses.  

 

Statistical analysis. Within each cohort, we first performed population-specific interaction analyses with 

the quantitative DASH diet score by examining the multiplicative interaction with SNP dosage. To 

explore whether the potential gene-diet interaction was driven by threshold effect, we also analyzed 

interactions with the DASH diet score dichotomized by its median or lower quartile. Linear regression 

models or linear mixed effect models (for familial data in the CHARGE cohorts) were run adjusting for 

age, age squared, sex, energy intake, BMI, field center (for multi-center studies), cohort-specific SNP-

based principal components, and additional cohort-specific covariates, if any. Narrow sense heritability 

was approximated by the R2 derived from the regression models. The EasyQC R package [32] with 1000 

Genomes data as reference [33] was used to conduct QC of summary statistics across all CHARGE 

cohorts. We followed the UK Biobank’s QC protocol [34] and only analyzed UK Biobank SNPs if these 

SNPs were also analyzed in the CHARGE cohorts. An inverse variance-weighted, fixed-effect meta-

analysis was performed to combine cohort-specific results using METAL [35]. Genomic control was 

applied in the meta-analyses.  

In secondary analyses, we examined associations for SNP-systolic BP (i.e., a main-effect model) 

and performed a 2-degree-of-freedom (2df) test [36] to jointly examine both SNP main effect and SNP-

DASH diet interaction effect, with adjustment for the same covariates included in the interaction analysis 

(Figure 1). Similarly, population-specific analyses were conducted in each cohort, and meta-analyses 

were performed to combine cohort-specific findings. For the interaction analyses and the 2df tests, robust 

estimates of the standard errors (SE) and covariances were used in meta-analyses to protect against 

potential misspecification of the mean models [27]. In all analyses, heterogeneity across cohorts was 
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determined based on Cochran’s Q-test. We considered SNPs with joint P <5e-8 that were present in at 

least two cohorts as significant. Novel loci were identified as SNPs with P-value < 5e-8 that are not in 

linkage disequilibrium (LD R2 ≥0.1; based on the 1000 Genomes data) or are ±500 kb from any 

previously validated BP–associated SNPs in the GWAS Catalog [37].  

To further characterize SNPs significantly interacting with the DASH diet score, we conducted 

colocalization analysis to evaluate whether SNPs with an interaction effect were independent of those 

significant in the main effect GWAS. A Bayesian model, implemented with the Coloc R package, was 

used [38]. SNPs residing within 1 mb of the lead significant variants from the interaction analysis were 

included. Regression coefficients and squared SEs for the interaction term from the present meta-analysis 

and the corresponding values for the same SNPs from a large GWAS for systolic BP [15] were used. The 

colocalization analysis tested five hypotheses (H0-H5) using default priors, i.e., p1=1e-4, p2=1e-4, and 

p12=1e-5, where H0: no SNP has a genetic association in the region; H1: only interaction SNPs had a 

genetic association in the region; H2: only main effect SNPs had a genetic association in the region; H3: 

the two groups of SNPs are associated independently to the locus of interest, e.g., with different causal 

variants; H4: the two groups of SNPs are associated dependently to the locus of interest, e.g., they share a 

single causal variant. We considered the posterior probabilities ≥0.8 for H3 (i.e., two groups of SNPs are 

associated independently with the locus of interest) as significant evidence in support of two independent 

causal variants for systolic BP in one locus.   

To understand the potential functions of SNPs significant in the interaction analysis, we carried 

out analyses to determine whether these loci are enriched with expression quantitative trait loci (eQTL) 

and DNA methylation quantitative trait (mQTL) variants. We used the eQTL and mQTL databases from 

FHS [39, 40]. Both cis- and trans-eQTL and mQTL variants residing within 1 mb regions of the lead 

SNPs significant in the interaction analysis were examined, with significance determined using a one-

sided Fisher’s exact test and corrected for multiple testing as needed.  
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Results 

Participant Characteristics. We analyzed data from up to 35,660 individuals: 28,478 EUR, 2,751 AFR, 

and 4,431 EAS participants from cohorts participating in the CHARGE consortium and up to 91,622 

unrelated UK Biobank participants comprising six population groups: EUR (N=86,932), AFR (N=1,557), 

EAS (N=658), CSA (N=1,898), MID (N=312), and AMR (N=265). Mean age ranged from 20 to 75 years 

in the CHARGE cohorts and 51 to 57 years in the UK Biobank. Both the CHARGE cohorts and the UK 

Biobank included more women than men, 59.1% and 54.2%, respectively. Demographic characteristics of 

participants are shown in Supplemental Table 1.   

 

Association of the DASH diet score with systolic BP. As shown in Supplemental Figure 1, higher DASH 

diet score was inversely associated with systolic BP. Systolic BP was 2.4±0.4 mm Hg lower in the FHS 

(P = 6.1e-8) and 1.1±0.2 mm Hg lower in the UK Biobank (P = 4.2e-12) per 10 units increase in the 

DASH diet score. Additional adjustment for BMI reduced the effect size to some extent: the inverse 

association became nonsignificant (0.2±0.2 mm Hg; P = 0.24) in UK Biobank, while the association 

remained significant in FHS (1.4±0.4 mm Hg; P = 7.6e-4).  

 

Gene-DASH diet score interaction in relation to systolic BP in EUR population. We examined 

8,454,957 common biallelic SNPs available in at least two EUR cohorts. In the meta-analysis of all EUR 

individuals, we found potential interaction for the quantitative DASH score at three independent loci at 

15q25.1 (lead SNP rs117878928, MTHFS, Pint =4e-8), 16q23.1 (lead SNP rs28562150, WWOX, Pint 

=3.9e-8), and 18q21.2 (lead SNP rs138826501, Pint =2.6e-8) (Table 1; Supplemental Figures 2 and 3). 

The direction of the interaction between rs117878928 (MTHFS at 15q25.1) and the quantitative DASH 

score was consistent in all study populations (Phet = 0.35; Supplemental Figure 4). The interaction effect 

size (mean and SE) for the lead SNP, rs117878928, was 0.42±0.09 (Pint = 9.4e-7) and 0.20±0.06 (Pint = 

0.001) in the CHARGE cohorts and the UK Biobank, respectively. The other two loci were statistically 

significant in the CHARGE cohorts but not in the UK Biobank (Table 1).  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 12, 2023. ; https://doi.org/10.1101/2023.11.10.23298402doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.10.23298402
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

12 

 

12 

 

Interaction analysis with dichotomized DASH diet scores. To explore if the interaction analysis was 

influenced by a threshold effect, we analyzed the DASH diet score dichotomized by either the cohort-

specific median or lower quartile (Supplemental Figure 2). In EUR participants, correlations of effect size 

and log10 Pint were slightly stronger in the analysis using the continuous DASH diet score compared to 

the median or lower quartile dichotomized DASH score (Supplemental Figure 5). For SNPs with Pint < 

1e-3 in the quantitative DASH diet score analysis, their effect sizes and log10 Pint were correlated with 

that from analyses using the median dichotomized DASH score (Pearson r = 0.92 and 0.31, respectively; 

Supplemental Figure 6) and the lower quartile dichotomized DASH score (Pearson r = 0.74 and 0.16, 

respectively; Supplemental Figure 6).  

 

Colocalization analysis. We examined whether the lead interaction SNPs at the three loci colocalized 

with known systolic BP associated SNPs at the same loci (±1Mb region surrounding the lead SNPs). At 

the MTHFS locus (15q25.1), the colocalization analysis demonstrated that rs117878928 (MTHFS at 

15q25.1) was a potential causal variant of systolic BP independent of the GWAS SNPs (i.e., SNPs with 

significant main effect in previous GWAS; posterior probably of H3 = 0.97; Table 2; Supplemental Figure 

7). Because of low posterior probability of H1, H3, or H4, colocalization analysis did not support that the 

interaction SNPs identified in the other two loci (16q23.1 and 18q21.2) were causal variants to systolic 

BP (Table 2).   

 

Stratified analysis of lead SNP at 15q25.1. We conducted stratified analyses by rs117878928 genotype, 

CC (dosage ≤ 0.35, n = 8,1792), CA (dosage ≥ 0.75 and ≤ 1.25, n= 4,967), AA (dosage ≥ 1.65, n= 75) in 

the UK Biobank. CA and AA were combined due to small sample size (n = 5,042), and participants with 

ambiguous rs117878928 genotype were excluded. After adjusting for sex, age, age squared, energy 

intake, and BMI, we observed that one SD higher DASH diet score was associated with 0.15±0.07 (P = 

0.02) mm Hg lower systolic BP in individuals with CC genotype, whereas one SD higher DASH diet 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 12, 2023. ; https://doi.org/10.1101/2023.11.10.23298402doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.10.23298402
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

13 

 

13 

score was associated with 0.78±0.27 (P = 0.004) mm Hg higher systolic BP in those with CA or AA 

genotype. 

 

Expression and DNA methylation quantitative loci variants at the MTHFS locus. Low heterogeneity 

and the colocalization analysis suggest that, out of the significant three loci, rs117878928 may be causally 

interacting with the quantitative DASH score and associated with systolic BP. We further found that this 

locus was enriched with both cis-eQTL variants (Fisher exact test; P = 4e-273) and cis-mQTL variants (P 

= 1e-300). Figure 2 showed the link between SNPs with Pint < 1e-3 and cis-eQTL and cis-meQTL 

variants. In the 1 mb region around the lead SNP (rs117878928), we found 419 cis-eQTL variant-gene 

transcript pairs from 144 unique cis-eQTL variants and seven genes (including four protein coding genes; 

Supplemental Table 4) and 1,629 cis-mQTL variant-CpG pairs from 151 unique cis-mQTL variants and 

32 CpGs (mapped to five protein coding genes; Supplemental Table 5) [39, 40]. For example, we found 

that a cis-eQTL variant, rs12915498 (Pint = 8.8e-4), accounted for 9.4% of heritability of expression levels 

of MTHFS and a cis-meQTL variant, rs11856431 (Pint = 6.8e-4), accounted for 22.7% of heritability of 

methylation levels of cg23855392 (a DNA methylation site ~6 kb away from the transcription start site of 

MTHFS). The highest heritability accounted by SNPs potentially interacting with the DASH diet score 

was for ST20 (a neighbor gene of MTHFS at 15q25.1). A cis-eQTL variant, rs35666771 (Pint = 5.2e-5), 

accounted for 11.1% of heritability of expression levels of ST20 and a cis-mQTL, rs3178646 (Pint = 9.9e-

4), accounted for 46.5% of heritability of methylation levels of cg21315874 (a DNA methylation site ~6 

kb away from the transcription start site of ST20). 

We found that 139 cis-mQTL variants with Pint < 0.001 at the MTHFS locus were linked to four 

CpGs (cg13805518, cg02196730, cg26673396, and cg00225070) that were associated with a 

Mediterranean-style diet score at random-effect meta-analysis P < 0.05 [41]. The top cis-mQTL variants 

of the four diet-associated CpGs are presented in Supplemental Table 6. Furthermore, 81.2% of cis-

mQTL variants associated with cg13805518 (annotated to ARNT2 at 15q25.1) were cis-mQTLs of 

cg13148921 (another CpG annotated to ARNT2; Supplemental Table 7), which was nominally associated 
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with systolic BP in previous meta-analysis (P = 0.01) [42]. For example, rs11072902 (Pint = 2.6e-5) was 

associated with cg13805518 at P = 1e-46 and cg13148921 at P = 1e-8 [40]. However, none of the cis-

mQTLs of cg13805518 and cg13148921 was in strong LD with the lead SNP (rs117878928) for gene-

DASH diet score interaction, LD R2 < 0.01. 

 

2df test in EUR participants. In secondary analysis, we ran a 2df test to jointly evaluate the SNP and diet-

SNP interaction effect. Most SNPs (93%; n=1230) with Pjoint < 5e-8 in the 2df joint analyses were driven 

by their main genetic effect on systolic BP (Pmain < 5e-8; Figure 3A). We found that 11 loci reached Pjoint 

< 5e-8 with main effect Pmain ≥ 0.001 (Supplemental Table 8; Figure 3A). In these eleven loci, five loci 

(45%) had Pint < 0.001 (Supplemental Table 8). We further compared our 2df test statistics with that from 

the GWAS (i.e. main genetic effect) conducted by the International Consortium for Blood Pressure 

(ICBP) and the UK Biobank in N~750k EUR individuals [15]. As shown in Figure 3B, 98.7% (1230) 

SNPs with Pjoint < 5e-8 in the 2df test had P < 5e-8 in the previous GWAS for BP [15]. Among these, 

none of the SNPs with Pjoint < 5e-8 in the 2df test had Pint < 0.001, and 43 SNPs had Pint < 0.005. Five loci 

with Pint < 0.05 were shown in Supplemental Table 9.   

 

Cross-population analysis. In this analysis, we included 9,420,585 bi-allelic SNPs available in at least 

two cohorts with different populations. We found that five loci reached Pint < 5e-8, including one locus at 

16q23.1 with statistical significance in EUR analysis. It should be noted that three of these five loci are 

driven by low frequency SNPs. (Table 3; Supplemental Figure 8 for Manhattan plot; Supplemental Figure 

9 for regional plots). The lead SNPs in the five loci are intronic variants to THSD7B, SPATA5, UBE3D, 

GATA4, and WWOX, respectively. None of the SNPs with Pint < 0.05 at 1 mb region surrounding the five 

lead SNPs overlapped with SNPs associated with systolic BP (P < 1e-5) in the GWAS catalog [43].  

 

 

Discussion 
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In this genome-wide interaction analysis in the CHARGE cohorts and the UK biobank, we 

showed that the association of DASH diet score with systolic BP was modified by multiple SNPs: at three 

loci in EUR analyses and an additional four loci in cross-population analysis. Our interaction SNP hits are 

independent of known BP loci from BP-GWAS. Furthermore, at the MTHFS locus (15q25.1), we 

demonstrated that the SNP-DASH diet score interaction may affect systolic BP through regulating levels 

of DNA methylation at this locus. While limitations exist in this study, our findings provide novel 

insights into gene-diet interactions in BP with respect to a better understanding of potential mechanisms 

of BP regulation and more personalized dietary advice.  

Hypertension is the leading risk factor for cardiovascular disease [44]. Both environmental and 

genetic risk factors can lead to hypertension. A recent review summarized gene-lifestyle interactions in 

relation to hypertension and highlighted several genes that may interact with lifestyle factors to modify 

the risk of hypertension [45]. For example, several studies investigated interactions between genes and 

dietary components such as salt, alcohol, and fat intake [19, 46-48]. In a study of 4,414 individuals who 

participated in the Korean Genome and Epidemiology Study, an interaction was observed between 

rs3784789 (intronic to CSK and upstream to MIR4513) and estimated 24-hour urinary sodium to 

potassium ratio in relation to the risk of hypotension [46]. This SNP was nominally significant in the 

present interaction analysis, both in the EUR and cross-population analyses (P = 0.009 and 0.005, 

respectively). As also indicated in this previous review study [44], most studies had modest sample sizes, 

and the observed interactions were often different across studies. In the present study, we also observed 

that most of the loci with significant interactions had high heterogeneity, specifically the poor replication 

between observations in the CHARGE cohorts and the UK Biobank (Supplemental Figure 10). This high 

heterogeneity may be partly due to the diverse food habits that limit the ability of the DASH diet score to 

consistently reflect overall diet quality across cohorts or different dietary tools used in our participating 

cohorts. The present study adds novel evidence to the literature regarding interaction between genetic 

variants and overall diet quality, nonetheless, future analyses with larger sample sizes and better 

harmonized dietary information are needed to validate our findings.  
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At 15q25.1, the lead SNP, rs117878928 resides ~2 kb downstream of long noncoding RNA 

(LOC124903536) and ~2 kb upstream of a protein coding gene (MTHFS). MTHFS encodes 

methenyltetrahydrofolate synthase that catalyzes the conversion of 5-formyltetrahydrofolate to 5,10-

methenyltetrahydrofolate. Activation of MTHFS may accelerate folate catabolism by modifying folate 

one-carbon forms, leading to impaired methylation reactions such as DNA methylation [49]. Folate 

metabolism has been implicated in the risk of hypertension [50, 51], although its role is not fully 

established. In an earlier study conducted in EUR participants from two participating cohorts of the 

present study, the Atherosclerosis Risk Communities study (ARIC) and the FHS, an intronic variant 

(rs6495446) of MTHFS has been linked to chronic kidney disease [52], a disease tightly associated with 

elevated BP. However, rs6495446 is not in LD with rs117878928 (R2 = 0.006). 

Our observation regarding the enrichment of cis-mQTLs in this locus appears to be consistent 

with the functionality of MTHFS. In FHS, SNP rs117878928 is a cis-mQTL variant for cg21315874 (h2 = 

0.015, P = 4.4e-15) [40], which is residing at 5’ untranslated region (UTR) of ST20. In the Genetics of 

DNA Methylation Consortium (GoDMC) [53], rs117878928 is also a cis-mQTL variant for other CpGs 

(e.g., cg22389121, P=2.3e-42) at 5’UTR or close the transcription start site of ST20. ST20 is adjacent to 

MTHFS, and it is a tumor suppressing gene involved in several processes such as apoptotic signaling 

pathway, cellular response to ultraviolet C, and negative regulation of cell growth [54]. ST20-MTHS 

readthrough transcript can be formed through splicing to produce a fusion protein that shares sequence 

identity from both genes, which are highly expressed in the liver and kidney 

(https://www.proteinatlas.org) [55]. Overall, our observations indicate that a DNA methylation related 

mechanism may be relevant to the gene-DASH diet score interaction observed in this region.  

The joint analysis of SNP main effects and interaction effects has been shown to be more 

powerful than the analysis of SNP main effects or interaction effects alone, when the genetic effects are 

relatively weak and the interaction effects are moderate [36, 56]. Thus, the joint analysis is a promising 

approach to identify additional loci relevant to traits of interest. In the present study, we compared the 

joint analysis results with main effect statistics obtained from our study sample and a larger GWAS for 
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systolic BP [15], and we identified several candidate loci for future validation (Supplemental Table 8). 

For example, the significant 2df test for an intronic SNP (rs140635454) of NUP93 was driven by its 

interaction with the DASH diet score. A recent study reported a significant 2df test for rs76976871 at this 

gene in a sleep-by-gene interaction analysis for high density lipoprotein cholesterol [57]. Although the 

interaction term was modest in the sleep study [57], our results and theirs combined highlight the 

importance of conducting a comprehensive joint analysis to facilitate identification of loci that are 

potentially modified by diet and other lifestyle factors.   

There are several limitations in this study that should be discussed. First, the cross-sectional 

nature of the study does not allow us to account for reverse causation, which might have occurred if 

individuals with hypertension were advised to change their dietary patterns to help control their blood 

pressure. The DASH diet score was calculated using different versions of FFQs in the CHARGE cohorts 

and multiple 24-hour recalls in the UK Biobank. All these dietary assessments tools are based on self-

reported dietary intake, which is subjective to both random and systematic bias [58]. In addition, different 

versions of FFQs have different food lists and different levels of detail, e.g., a 126-item FFQ was used in 

FHS, while the ARIC Study used a 66-item FFQ; therefore, some DASH diet score components may 

include a different numbers and types of food items. These combined may partly explain the high 

heterogeneity regarding gene-DASH diet score interaction across cohorts. The majority of our study 

participants (91%) were EUR; our cross-population analysis was therefore mainly driven by the EUR 

participants. Furthermore, the numerous associations detected in the lower quartile dichotomized DASH 

score are probably due to misclassification, therefore larger sample size to replicate the threshold analysis 

is necessary.  

In conclusion, we demonstrated gene-DASH diet score interaction in several loci, particularly at 

the MTHFS locus (15q25.1). In addition, we showed that DNA methylation may be a relevant mechanism 

linking gene-diet interaction for systolic BP. Compared to large GWAS, the sample size of the present 

study is modest; therefore, studies with larger sample size and more diverse populations are needed to 
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validate our findings and to facilitate the measure of inter-individual differences in dietary response, 

allowing for identification of high risk subgroups who would benefit the most from dietary modifications.  
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Table 1. Statistically Significantly interacting loci with the quantitative DASH diet score on systolic BP in meta-analysis of EUR participants. 

            UKB CHARGE 

SNP Gene Chr Pos.38 Region EA OA EAF Effect SE Pint Phet 

 

N Effect SE P 

 

N Effect SE P 

rs117878928 MTHFS 15 79841858 15q25.1 A C 0.03 0.28 0.05 4e-8 0.35 86932 0.20 0.06 0.001 28507 0.42 0.09 9.4e-7 

rs28562150 WWOX 16 78530453 16q23.1 A G 0.01 0.48 0.09 3.9e-8 1.85e-8 86932 0.21 0.11 0.05 13628 0.99 0.15 2.7e-11 

rs138826501 
 

18 51789596 18q21.2 T C 0.01 0.37 0.07 2.6e-8 0.003 86932 0.12 0.11 0.25 6945 0.54 0.09 4.2e-10 
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 Table 2. Colocalization analysis for the three statistically significant interaction loci in the EUR analysis. 

Lead SNP rs117878928 rs28562150 rs138826501 

Number of SNPs tested 5672 9885 5304 

PP.H0 0.00 0.57 0.00 

PP.H1  0.00 0.18 0.00 

PP.H2 0.03 0.19 0.91 

PP.H3 0.97 0.06 0.09 

PP.H4 0.00 0.01 0.00 
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Table 3. Statistically significant SNPs in cross-population meta-analysis of gene-quantitative DASH diet score interaction. 

SNP Chr Pos.hg38 Gene Region N EA OA EAF Beta SE Interaction P Heterogeneity P 

rs145158769 2 137235853 THSD7B 2q22.1 4918 A T 0.02 -1.73 0.3 6e-9 1.4e-5 

rs180939244 4 122940020 SPATA5 4q28.1 102530 C G 0.71 -0.44 0.08 9.5e-9 4.4e-16 

rs117137155 6 82895547 UBE3D 6q14.1 6038 T C 0.99 2.06 0.28 1e-13 8.3e-11 

rs116170345 8 11689753 GATA4 8p23.1 3477 A C 0.99 -1.26 0.21 1.6e-9 0.04 

rs28633096 16 78529552 WWOX 16q23.1 109405 T C 0.31 0.41 0.08 5e-8 6.7e-6 
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CHARGE consortium cohorts
EUR: N=28,478
AFR: N= 2,751
EAS: N=4,431

UK Biobank
EUR: N=86,932; AFR: N=1,557

EAS: N=658; CSA: N=1,898
MID: N=312; AMR: N=265

Cross-population meta-
analysis 

Colocalization analysis
Quantitative trait loci analysis
Overlap with diet/BP EWAS 

and BP GWAS

EUR-specific meta-analysis

1. Interaction and Joint (2df) analyses: 
Systolic BP = β0 + βE E + βG SNP + βGE E * SNP + βCC

2. Analysis of main effect in the presence of the DASH diet score: 
Systolic BP = β0 + βE E + βG SNP + βCC
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