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Abstract 

 This paper provides, first, the most general preference axiomatization of average 

utility (AU) maximization over infinite sequences presently available, reaching almost 

complete generality (only restriction: all periodic sequences should be contained in 

the domain). Here, infinite sequences may designate intertemporal outcomes streams 

where AU models patience, or welfare allocations where AU models fairness, or 

decision under ambiguity where AU models complete ignorance. Second, as a 

methodological contribution, this paper shows that infinite-dimensional 

representations can be simpler, rather than more complex, than finite-dimensional 

ones: infinite dimensions provide a richness that is convenient rather than 

cumbersome. In particular, (empirically problematic) continuity assumptions are not 

needed. Continuity is optional. 
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1. Introduction 

 

Many authors have argued for “fair” average utility (AU) maximization, as a 

normative objection to impatience and discounted utility (da Volterra 1574; Elster 

1986 pp. 10-11; Jevons 1871; Pigou 1920; Sidgwick 1874; Weinstein 1993). AU 

maximization has also gained popularity for fair social welfare evaluations and 

decisions under complete ignorance (Gravel et al. 2018). It is central in Laplace’s 

(1796) principle of insufficient reason and is used in the folk theorem in repeated 

games (Peters 2015 §7.2.2). As an important and widely applicable decision model, 

AU has received numerous axiomatizations for the finite-dimensional case.1  

 This paper considers AU for infinitely many timepoints (dimensions). Here, 

mathematical and philosophical problems arise. Limits may diverge and choice 

paradoxes arise. For example, patience or fairness may be irreconcilable with strong 

Pareto for welfare evaluations (Diamond 1965). Equivalently, for uncertainty, 

stochastic dominance may be violated (Wakker 1993). The two-envelope paradox and 

Dubin’s paradox are among the paradoxes for uncertainty.2 These problems have 

intrigued researchers long time, and many solutions have been discussed, often by 

restricting the domain of preference or relaxing completeness of preference. 

 This paper provides a preference axiomatization of AU maximization over 

infinite sequences of great, and almost complete, generality. For instance, unlike all 

preceding axiomatizations, we do not need the assumption of continuity, which is less 

innocuous than may seem as explained below. Similar to preceding work, we adopt 

the approach of domain restriction. Our only restrictive assumption will be that all 

periodic sequences (defined later) should be contained in the preference domain. This 

is considerably less stringent than what has been assumed in all preceding 

 

1 These axiomatizations were central in Blackorby et al. (1977), Gravel et al. (2012), and Kothiyal et al. 

(2014). Every axiomatization of additive ∑ 𝑉𝑗(𝑥𝑗)𝑛
𝑗=1  (Debreu 1960; Gorman 1968; Krantz et al. 1971), 

including expected utility ∑ 𝑝𝑗𝑈𝑗(𝑥𝑗)𝑛
𝑗=1  (Gul 1992; Chew & Karni 1994) with fairness (symmetry) 

added gives AU. Further, quasilinear means from mathematics are constant-equivalence functions of 

AUs, giving many more axiomatizations (Aczél 1966 pp. 151 & 240; Münnich et al. 2000). 

2 For the former, see Kraitchik (1953), Nalebuff (1989), and Yi (2013). For the latter, see Howson 

(2014). Both concern the (im)possibility to have a uniform probability distribution over the natural 

numbers, which underlies AU. 
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axiomatizations of AU.3 Other than this restriction, we obtain complete generality 

regarding preference relations, outcome sets, utility functions, and preference 

domains. We, thus, provide maximal possibilities for reconciling desirable properties 

and for detecting mathematical problems. Whereas we do not need continuity, we can 

easily incorporate it when desired. Thus, Observation 6 adds continuity and provides 

the most general axiomatization of continuous AU in the literature. To obtain our 

results, we will solve two problems for preference axiomaizations of AU, explained 

next. 

 The first problem occurs already in finite-dimensional preference domains. If, yet 

more restrictively, these domains are finite (finitely many elements), then they are 

usually too coarse to imply precise quantitative representations. This greatly 

complicates the mathematical analysis, to the extent that preference axiomatizations 

for finite domains are usually unknown. Researchers, therefore, commonly resort to 

the simplifying assumption that the preference domain is a continuum, as for instance 

throughout Adler (2019), Blackorby et al. (2005), and numerous papers. That is, extra 

structural richness is added to simplify the analysis. Then quantitative representations 

can be precisely identified using continuity assumptions4, and the mathematical 

analysis becomes tractable. Thus, Chambers et al. (2021) wrote: “continuity is a 

necessary regularity condition; without it, no meaningful inferences can be made with 

any finite amount of data.” 

 Continuing our explanation of the first problem, the assumption of continuity 

(w.r.t. a continuum domain) does not come without any empirical cost. To explain the 

problematic empirical status of continuity, we first note that, in isolation, continuity 

can never be verified or falsified by a finite number of observations. In this sense it 

has no empirical content. However, this is not so much a problem and rather is a pro. 

We know exactly what we are doing empirically when assuming continuity in 

isolation: nothing! Thus, several authors have argued that continuity is empirically 

harmless. For instance, Arrow (1971 p. 48) wrote: “The assumption of Monotone 

Continuity seems, I believe correctly, to be the harmless simplification almost 

 

3 See Fishburn & Edwards (1997), Harvey (1986), Lauwers (1998), Marinacci (1998), Pivato (2022), 

and Rébillé (2007). 

4 It is understood here that the right scale type, such as an equivalence class of interval scales (defined 

later), then is uniquely identified. 
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inevitable in the formalization of any real-life problem”, a point supported by Drèze 

(1987 p. 12) and Thomson (2001 §4.1.3 p. 338). Unfortunately, those suggestions 

camouflage serious underlying problems. If some other axioms are assumed, then 

continuity is not empirically vacuous. It can then add empirical content to those other 

axioms. This would not be a problem if we knew what that empirical content is, but 

for continuity in our context we do not know exactly what. That is, we do not exactly 

know how to verify or falsify our axiom set including continuity from finitely many 

observations. We thus lose track of what we are doing when continuity and other 

axioms are assumed together. Many authors have pointed out this problem.5 

 The second problem arises with infinite-dimensional domains (Asheim 2010 §4.2 

and Pivato 2014 p. 35). With one exception cited later, authors invariably used the 

axioms for finite-dimensional axiomatizations including restrictive continuity to 

handle finite-dimensional subdomains, and then added axioms to extend the 

representation to the infinite dimensions. In particular, continuity conditions are more 

complex for infinite dimensions. This way, the extra richness of infinite dimensions is 

an extra problem. 

 The two aforementioned problems seem challenging. We provide a solution 

though. In our solution, the extra richness of infinite dimensions is not an extra 

problem but, instead, it simplifies the analysis and even takes away the first 

aforementioned problem, leaving no problem at all. Key is that the richness of infinite 

dimensions can substitute for the richness of continuity. 

 Theorem 3 presents our solution, indeed assuming infinitely many dimensions 

and not needing any continuity. The theorem is obtained by extending an AU 

axiomatization of Kothiyal et al. (2014), presented in the Appendix, to infinite 

dimensions. Kothiyal et al. considered finite streams but allowed any finite length. 

Their domain can be called half-infinite-dimensional. Observation 4 illustrates our 

approach by showing how the infinite dimensions enable us to uniquely capture utility 

without needing continuity. The only paper in the literature that shared our 

observation that infinitely many dimensions may be a convenience rather than a 

problem is, to our best knowledge, Pivato (2014 p. 56). 

 

5 See Khan & Uyanik (2021), Kothiyal et al. (2014), Krantz et al. (1971 §9.1), Pfanzagl (1968 §6.6), 

Pivato (2014 p. 32), and Wakker (1988). 
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 Observation 5 shows that our new methodology can be used constructively to 

obtain a preference domain where AU is maximized. This way, we can readily 

identify any domain where AU maximization does not encounter any of the 

aforementioned mathematical problems or paradoxes. In particular, a reconciliation is 

obtained for discrete outcome sets, a case not considered before in the literature. 

 

2. Basic Definitions 

 

Γ denotes a set of outcomes, with generic notation 𝛼, 𝛽, … (or 𝑓𝑗, 𝑔𝑗; see later). 

Outcomes can be quantitative or not, and Γ can be finite or infinite. Streams are 

infinite sequences 𝑓 = (𝑓1, 𝑓2, … ) of outcomes, with generic notation 𝑓, 𝑔,… . They 

can be welfare allocations over individuals where average utility (AU) captures 

fairness, time profiles where AU captures patience, gambles on states of nature where 

AU captures extreme ambiguity (complete ignorance), commodity bundles, and so on. 

Our results can be applied to all these contexts. We interpret 𝑓𝑗 as the outcome for 

generation 𝑗, combining welfare and intertemporal considerations. 𝐹, the preference 

domain, denotes a subset of the set of all streams, further specified later. 

 By ≽ we denote a binary relation on 𝐹, the preference relation. We call ≽ a weak 

order if it is complete (𝑓 ≽ 𝑔 or 𝑔 ≽ 𝑓 for all 𝑓, 𝑔 ∈ 𝐹) and transitive. The notation ≻

, ≼, ≺, ~ is as usual. Average utility (AU) holds on a subset 𝐹′ ⊂ 𝐹 if there exists a 

utility function 𝑈: Γ → ℝ such that the average utility lim
𝑛→∞

1

𝑛
∑ 𝑈(𝑓𝑗)𝑛

𝑗=1  (= 𝐴𝑈(𝑓)) 

exists6 for every stream 𝑓 in 𝐹′ and represents preference on 𝐹′, i.e., 𝑓 ≽ 𝑔 ⇔

𝐴𝑈(𝑓) ≥ 𝐴𝑈(𝑔) on 𝐹′. Note that the ordering of natural numbers and indexes is 

essential in the definition of AU. AU and our analysis can, therefore, only be applied 

when such an ordering is naturally available. This occurs, for instance, for discrete 

timepoints and for consecutive generations, but not if the set of indexes were the set 

of rational numbers. 

 We identify outcomes 𝛼 with constant streams (𝛼, 𝛼, … ). Hence, ≽ also applies 

to outcomes. To avoid triviality, we assume throughout that Γ contains at least two 

nonindifferent outcomes. Monotonicity holds if 𝑓 ≽ 𝑔 whenever 𝑓𝑗 ≽ 𝑔𝑗 for all 𝑗. 

 

6 In our terminology, existence implies being real-valued. The average is sometimes called the Cesàro 

limit. 
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Strong Pareto holds if 𝑓 ≻ 𝑔 whenever 𝑓𝑗 ≽ 𝑔𝑗 for all 𝑗 and 𝑓𝑗 ≻ 𝑔𝑗 for some 𝑗. Weak 

Pareto holds if 𝑓 ≻ 𝑔 whenever 𝑓𝑗 ≻ 𝑔𝑗 for all 𝑗. 

 Fairness means that, for a given set of permutations of the indexes, none affects 

preference. For precise definitions, the set of permutations should be specified. Other 

names for fairness used in the literature include anonymity, patience, impartiality, 

(intergenerational) equity, intergenerational neutrality, or symmetry. Fairness is 

typically violated under discounting with impatience, with early generations privileged 

over later ones. By treating infinitely many generations all the same, mainly fairness 

(together with our other axioms) implies that any finite number of generations is 

negligible. Only the long run matters. 

 Fairness is often incompatible with strong Pareto (Diamond 1965; Lauwers 1998; 

Neyman 2023 Fact 12; Weymark 1995). This has been the topic of many studies, 

where different strategies of reconciliation have been examined. Asheim (2010) and 

Petri (2019) provided surveys. Because our model can do without continuity, a new 

reconciliation possibility immediately emerges for weak Pareto: if we have a discrete 

utility range and there exists 휀 > 0 such that any two non-indifferent outcomes have a 

utility distance of at least 휀. Then under AU, indeed, 𝑓 ≻ 𝑔 whenever 𝑓𝑗 ≻ 𝑔𝑗 for all 

𝑗. Another solution, widely studied, is to limit the set of preferences considered, e.g., 

by relaxing completeness (see §6) or, our approach, by considering particular 

subdomains (p-streams, defined later). 

 

3. Average Utility for Periodic Streams 

 

For a finite sequence (𝑥1, … , 𝑥𝑛) of outcomes, called generator, the periodic 

extension, denoted [𝑥1, … , 𝑥𝑛], is the stream 𝑥 = (𝑥1, … , 𝑥𝑛, 𝑥1, … , 𝑥𝑛, 𝑥1, … ). That is, 

𝑥𝑗𝑛+𝑖 = 𝑥𝑖 for all 𝑖 ≤ 𝑛 and 𝑗. Periodic extensions are also called periodic streams or 

p-streams. We call 𝑛 the length (of the periodic extension/stream or the generator), 

denoted ||𝑥||, bearing in mind that periodic streams are infinite sequences.7 For each 

 

7 For a given p-stream, any finite replication of its generator can be taken as another generator and in 

this sense the length depends on the generator specified. This will never cause confusion in our 

analysis. Formally, for unique definitions, we could commit to minimal lengths and generators, with for 

instance (𝑥1, 𝑥2) the generator of [𝑥1, 𝑥2, 𝑥1, 𝑥2], e.g., to obtain a unique notation [𝑛𝑥, 𝑚𝑦] defined 
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outcome 𝛼, [𝛼] = (𝛼, 𝛼, … ) has length ||[𝛼]|| = 1. 𝐹𝑝 denotes the set of all periodic 

sequences, with generic notation 𝑥, 𝑦, …. . 

 The “infinitistic” AU of a p-stream is the “finitistic” average utility of its 

generator. This suggests that p-streams can combine the intuitive convenience of 

finite-dimensional simplicity with the mathematical convenience of infinite-

dimensional richness. This insight underlies the analysis of this paper. We impose 

conditions as much as possible only on 𝐹𝑝, where they are simple. We, accordingly, 

first derive our results on 𝐹𝑝. Observation 1 will in fact achieve complete generality 

of AU maximization, extending Kothiyal et al. (2014 Theorem 7) to infinite 

dimensions. 

 For every preference condition C of ≽, periodic C, or p-C for short, refers to that 

condition when restricted to 𝐹𝑝, as in p-weak ordering, p-monotonicity, and so on. 

We define periodic fairness, or p-fairness for short, to imply that any permutation of 

the 𝑥𝑖s in any p-stream [𝑥1, … , 𝑥𝑛] leaves the stream indifferent. This permutation, 

finitistic in spirit, does involve infinitely many generations. For example, 

interchanging 𝑖 = 1,2 of the generator means interchanging every 𝑗 × 𝑛 + 1 and 

𝑗 × 𝑛 + 2 of the p-stream. 

 P(eriodic)-independence holds if  

  [𝑐1, 𝑥2, … , 𝑥𝑛] ≽ [𝑐1, 𝑦2, … , 𝑦𝑛]  ⇒  [𝑑1, 𝑥2, … , 𝑥𝑛] ≽ [𝑑1, 𝑦2, … , 𝑦𝑛]     (1) 

Note that this involves identical outcomes for generations 𝑛 + 1, 2𝑛 + 1, and so on. 

By fairness, the condition implies that preferences between p-streams of the same 

length are also independent of common 2nd, 3rd, …, and 𝑛th dimensions of the 

generator and, by repeated application, of any number of common dimensions. That 

is, the condition amounts to regular separability for the generators. Asheim & Zuber 

(2014), Rébillé (2007), and Zuber & Asheim (2012) reconciled fairness and Pareto by 

using rank-dependent weakenings of separability. 

 AUs, as do all real numbers, have to satisfy an Archimedean axiom. To prepare 

for a corresponding preference condition, a notation: for p-streams 𝑥, 𝑦, [𝑛𝑥, 𝑚𝑦] 

 

below. P-streams are isomorphic with the set of finite sequences of varying lengths modulo the formal 

identity just mentioned, corresponding with a condition for finite sequences called replication-

invariance (Kothiyal et al. 2014; see the proof of our Observation 1). 
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denotes the periodic stream extending 𝑛 times the (finite) generator of 𝑥 followed by 

𝑚 times the (finite) generator of 𝑦.8 For example, if 𝑥 = [𝑥1, 𝑥2] and 𝑦 = [𝑦1, 𝑦2], 

then [2𝑥, 3𝑦] = [𝑥1, 𝑥2, 𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑦1, 𝑦2, 𝑦1, 𝑦2]. We will suppress 𝑛 = 1 and 𝑚 =

1, as in [𝑥, 4𝑦] = [1𝑥, 4𝑦]. This paper will use the “for all” symbol ∀ and the “there 

exists” symbol ∃.  The p-Archimedean axiom holds if: 

  ∀𝑥, 𝑦, 𝑣, 𝑤 ∈ 𝐹𝑝 with ||𝑥|| = ||𝑦||, ||𝑣|| = ||𝑤||, 𝑥 ≻ 𝑦, ∃𝑛 ∈ ℕ: [𝑛𝑥, 𝑣] ≽ [𝑛𝑦, 𝑤]

 (2) 

That is, no matter how disadvantageous 𝑣 ≺ 𝑤 is, it can be overcome by sufficiently 

many (𝑛) advantages 𝑥 ≻ 𝑦. 

 

Observation 1. Assume that the preference domain 𝐹 contains all periodic streams 

𝐹𝑝. Then 

(i) AU holds on 𝐹𝑝 

       ⇔ 

(ii) ≽ satisfies: 

1. p-weak ordering; 

2. p-Archimedeanity;  

3. p-fairness; 

4. p-independence. 

 

 In the above observation, p-monotonicity is implied by the other conditions. 

Strong Pareto is also implied on 𝐹𝑝 by the other conditions. The simplicity of the 

necessary and sufficient conditions in Observation 1 and in Kothiyal et al. (2014 

Theorem 7) is in stark contrast to the very complex necessary and sufficient axioms 

needed for general finite-dimensional structures (Jaffray 1974).9 

 

8 Formally, this notation requires specification of the generators chosen. This requirement will never 

cause problems in our analysis, where the choice of generator will never matter. For simplicity of 

presentation, we leave the chosen generator implicit. 

9 Kothiyal et al. (2014) considered finite sequences but their domain was “half-infinite-dimensional” in 

the sense that there was no an upperbound to the lengths of sequences. 
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 We present the proof of the following observation in the main text because it 

illustrates how the richness of infinitely many timepoints brings richness of utility 

without requiring any continuity. This observation is key to the approach of this 

paper, exploited in the next section. 

 

Observation 2. 𝐴𝑈(𝐹𝑝) is dense within its convex hull.   

 

Proof. Consider p-streams 𝑥, 𝑦 with lengths ||𝑥|| and ||𝑦||. We have 

𝐴𝑈([||𝑦||𝑥, ||𝑥||𝑦]) =
1

2
𝐴𝑈(𝑥) +

1

2
𝐴𝑈(𝑦). 

 

4. Average Utility for General Streams 

 

We now turn to general, nonperiodic, streams. Pivato (2014) considered 

representations for such streams using nonstandard real numbers. Pivato generalized 

Kothiyal et al. (2014), using intuitive axioms like those in our Observation 1. Several 

papers considered reconciliations of fairness and Pareto using general orderings with 

multi-utility representations and incompleteness that cannot be represented by real 

numbers (Basu & Mitra 2007; Bossert et al. 2007; Khan & Stinchcombe 2018). We 

will stick to representations by standard real numbers and see how far we can go. Our 

decision-theoretic task is to obtain axiomatizations that use only conditions directly in 

terms of ≽. 

 P-streams will be used to calibrate the other streams. 𝐹𝑝 is rich enough to serve 

this purpose. We therefore assume, implicitly throughout the text and explicitly in 

theorems, that 𝐹 contains all p-streams. We next define the required preference 

conditions. To clarify them, we will claim several implications of AU on 𝐹𝑝. Those 

are all proved in the proof of Theorem 3. 

 We first rule out infinite AU values. To prepare, the outcome set Γ is unbounded 

above if 

  ∀𝛽 ≺ 𝛾 ∈ Γ, ∀𝑛 ∈ ℕ, ∃𝛿 ≻ 𝛾 ∈ Γ:  [𝛿, 𝑛𝛽] ≻ [𝛾, 𝑛𝛾] (3) 

We here used the notation [𝛾, 𝑛𝛾] instead of 𝛾 (which is the same) for clarification. 

The condition implies that, no matter how many times (𝑛) we receive the drawback of 

𝛽 instead of 𝛾, there is an outcome 𝛿 so good and exceeding 𝛾 so much that receiving 
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it once instead of 𝛾 is enough to overcome those 𝑛 drawbacks. Under AU on 𝐹𝑝 it is 

necessary and sufficient for 𝑈 to be unbounded above. Similarly, Γ is unbounded 

below if 

  ∀𝛾 ≻ 𝛽 ∈ Γ, ∀𝑛 ∈ ℕ, ∃𝛼 ≺ 𝛽 ∈ Γ:  [𝛼, 𝑛𝛾] ≺ [𝛽, 𝑛𝛽] (4) 

Under AU on 𝐹𝑝, the condition is necessary and sufficient for 𝑈 to be unbounded 

below. Stream 𝑓 is value-unbounded above, or v-unbounded above for short, if Γ is 

unbounded above and 

  ∀𝛾 ∈ Γ ∃𝑛 ∈ ℕ:  [𝑓1, … , 𝑓𝑛] ≽ 𝛾 (5) 

Under AU on 𝐹𝑝, the condition holds if and only if 𝑙𝑖𝑚𝑠𝑢𝑝𝑛→∞
1

𝑛
∑ 𝑈(𝑓𝑗)𝑛

𝑗=1 = ∞. 

Stream 𝑓 is v-unbounded below if Γ is unbounded below and 

  ∀𝛼 ∈ Γ ∃𝑛 ∈ ℕ:  [𝑓1, … , 𝑓𝑛] ≼ 𝛼 (6) 

Under AU on 𝐹𝑝, the condition holds if and only if 𝑙𝑖𝑚𝑖𝑛𝑓𝑛→∞
1

𝑛
∑ 𝑈(𝑓𝑗)𝑛

𝑗=1 = −∞. 

Stream 𝑓 is v-bounded if it is neither v-unbounded above nor below. Under AU on 

𝐹𝑝, 𝑓 is v-bounded if and only if 𝑙𝑖𝑚𝑖𝑛𝑓𝑛→∞
1

𝑛
∑ 𝑈(𝑓𝑗)𝑛

𝑗=1  and 

𝑙𝑖𝑚𝑠𝑢𝑝𝑛→∞
1

𝑛
∑ 𝑈(𝑓𝑗)𝑛

𝑗=1  are finite. Thus, v-boundedness of 𝑓 need not imply 

boundedness of 𝑓 itself. 

  We next rule out v-bounded streams 𝑓 whose AU is not well-defined. Stream 𝑓 is 

stable if for all p-streams 𝑥 ≻ 𝑦 there exists 𝑁 ∈ ℕ such that [𝑓1, … , 𝑓𝑛] ≼ 𝑥 for all 

𝑛 ≥ 𝑁 or [𝑓1, … , 𝑓𝑛] ≽ 𝑦 for all 𝑛 ≥ 𝑁. That is, we must be able to decide whether 𝑓 

is below 𝑥 or above 𝑦, possibly both. Under AU on 𝐹𝑝, this holds if and only if 

𝑙𝑖𝑚𝑖𝑛𝑓𝑛→∞
1

𝑛
∑ 𝑈(𝑓𝑗)𝑛

𝑗=1 = 𝑙𝑖𝑚𝑠𝑢𝑝𝑛→∞
1

𝑛
∑ 𝑈(𝑓𝑗)𝑛

𝑗=1 . That is, if the liminf is strictly 

smaller than the limsup, so that  
1

𝑛
∑ 𝑈(𝑓𝑗)𝑛

𝑗=1  keeps on fluctuating through the 

interval between them, then because of the denseness of 𝐴𝑈(𝐹𝑝) we can find p-

streams 𝑥, 𝑦 within this interval that reveal this fluctuating character. For this 

revelation, we only use observable preferences between auxiliary p-streams. 

 If we have AU on 𝐹𝑝 then, for v-bounded stable 𝑓, AU is well-defined and finite. 

We, finally, ensure that AU represents the preference relation. P-denseness holds if, 

for all streams 𝑓, 𝑔, 
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  (𝑓 ≻ 𝑔)  ⇔  (∃𝑥, 𝑦 ∈ 𝐹𝑝, 𝑁 ∈ ℕ: ∀𝑛 ≥ 𝑁: [𝑓1, … , 𝑓𝑛] ≻ 𝑥 ≻ 𝑦 ≻ [𝑔1, … , 𝑔𝑛]) (7) 

Under AU on 𝐹𝑝, the condition ensures that for every strict preference 𝑓 ≻ 𝑔, because 

of denseness of 𝐴𝑈(𝐹𝑝), we can get a strict p-stream preference in between 𝑓 and 𝑔. 

More precisely, we can get them in between the beginning 𝑛 outcomes of 𝑓 and 𝑔 for 

all 𝑛 far enough into the future. For this revelation, we again only use observable 

preferences between auxiliary p-streams. In the condition, getting 𝑥 ≻ 𝑦 in between 

precludes infinitesimal strict preferences 𝑓 ≻ 𝑔. In the following theorem, an interval 

scale is unique up to level and unit (positive affine transformations). 

Theorem 3. Assume that the preference domain 𝐹 contains all periodic streams 𝐹𝑝. 

Then 

(i) AU holds on 𝐹. 

⇔ 

(ii) ≽ satisfies: 

1. weak ordering; 

2. p-Archimedeanity; 

3. p-fairness; 

4. p-independence; 

5. all 𝑓 ∈ 𝐹 are v-bounded; 

6. all 𝑓 ∈ 𝐹 are stable; 

7. p-denseness. 

 

Further, if (i) holds, then 𝑈 is an interval scale. 

 

 In the theorem, monotonicity is again implied by the other conditions. Strong 

Pareto need not always hold, and this depends on the domain 𝐹. Because our domain 

𝐹 is the most general for AU available in the literature as yet, it provides maximal 

possibilities of reconciliations through domain restriction. 
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5. Further Results 

 

The following observation shows in a direct manner that the infinitely many 

timepoints provide enough richness to uniquely calibrate 𝑈. This further illustrates 

why we do not need continuity. The result is reminiscent of probability equivalent 

utility measurements in expected utility (Baucells & Villasís 2015; Mosteller & 

Nogee 1951). A proof of Observation 1 alternative to the one in this paper could have 

been obtained by defining a mixture operation with rational mixing weights on p-

streams and then using mixture space techniques. The observation immediately 

follows from substitution. 

 

Observation 4. Assume AU and 𝐹𝑝 ⊂ 𝐹. Assume 𝛾 ≻ 𝛽 ≻ 𝛼 ∈ Γ . Then the 

preference between [𝑚𝛾, 𝑛𝛼] and 𝛽 corresponds exactly with the ordering of 

𝑚

𝑚+𝑛
𝑈(𝛾) +

𝑛

𝑚+𝑛
𝑈(𝛼)  and  𝑈(𝛽).  If we scale 𝑈(𝛾) = 1 and 𝑈(𝛼) = 0, then this 

uniquely determines 𝑈(𝛽). In general, it uniquely identifies the interval scale 𝑈. 

 

 Our preference conditions allow for a constructive definition of preference 

domains where AU can hold. To explain this point, we assume weak ordering. We 

start with the set 𝐹𝑝. We then seek to extend the AU representation step by step, each 

time verifying if streams to be added satisfy all required conditions. That is, they must 

be v-bounded, stable, and for every newly added preference 𝑓 ≻ 𝑔 the right-hand of 

Eq. 7 should hold. We developed our preference conditions so that only p-streams are 

invoked as auxiliary tools. This shows that p-streams provide a convenient calibration 

tool for constructing domains where mathematical problems and inconsistencies can 

be avoided. This, somewhat informal, result is displayed next. 

 

Observation 5. The set of periodic streams offers sufficient calibration possibilities to 

constructively define any preference domain for AU. 

 

 As explained, continuity of utility is optional in our approach. The following 

observation covers connected topological spaces Γ, which includes all intervals, all 

convex subsets of commodity spaces, and many mixture-closed sets of probability 

distributions over prizes. Fishburn & Edwards (1997) also assumed connected 
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topological outcome spaces. All other references made more restrictive topological 

assumptions. 

 

Observation 6. Assume AU on 𝐹 which contains all periodic streams 𝐹𝑝 with the 

outcome space Γ a connected topological space. Then 𝑈 is continuous if and only if 

≽, restricted to p-streams [𝑓1, 𝑓2], is continuous when taken as a binary relation on 

Γ × Γ endowed with the product topology. 

 

Of course, continuity of preference above can be strengthened to hold for any p-

streams of any length, and further by specifying proper infinite-dimensional 

continuities.  

 Appendix B shows that all axioms in Theorem 3 are independent. For each 

axiom, an example is given where that axiom is violated but all other axioms are 

satisfied. Thus, none of the axioms is redundant in the sense of being implied by the 

others.  

 

6. Related Literature 

 

Fishburn & Edwards (1997) axiomatized AU but only for pairs of streams that differ 

on no more than finitely many timepoints. Then the long run does not matter. The 

model is essentially finite-dimensional and too restrictive for most purposes. It 

contains no preferences between periodic streams. 

 Pivato (2022) is closest to us. He was the first to axiomatize AU for (truly) 

infinite sequences. His outcome set is a connected metric space and 𝑈 is continuous. 

His preference domain contains (roughly) the closure of all “regular totally bounded” 

sequences. Regular means that limiting frequencies exist. This requirement 

incorporates all our periodic sequences. All permutations on periodic streams that our 

fairness condition involves belong to his Lévy group and, hence, his Γ-invariance 

implies our fairness. His AU does not satisfy strong Pareto. He did not have to impose 

an Archimedean axiom because it is implied by continuity. Similarly, many other 

papers in the literature used continuity to imply the Archimedean axiom. Relatedly, 
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Chew & Karni (1994) showed that Gul’s (1992) continuity can be dispensed with by 

using an Archimedean and a solvability axiom, both implied by Gul’s continuity.10 

 We next consider some papers that did not exactly axiomatize AU for infinite 

sequences, but that considered close generalizations and/or modifications for infinite 

sequences. Harvey (1986, Theorem 2a and 2´a) considered the maximization of sums 

of utilities rather than averages. To have those sums finite, he specified a status quo 

outcome 𝛼∗ with utility 0, and only considered streams that, roughly, converge to 𝛼∗ 

so strongly that the sum of utilities is defined (his Definition 9). They all have 𝐴𝑈 =

0 and his model can be considered to maximize infinitesimal AU. But it shares most 

characteristics with AU. In particular, it satisfies the preference conditions in our 

Theorem 3 except p-denseness. On his domain, strong Pareto (“strict increasingness”) 

and fairness (“time neutrality”) are reconciled. The main difference with our model is 

that his domain, besides not including periodic streams, is very restricted, with the 

long run never mattering, always ending up at 𝛼∗. 

 Lauwers’ (1998) theorems did not take a preference relation, but a representing 

functional, as primitive. His domain was the set of all bounded real-valued sequences. 

He assumed linear utility ((𝑈(𝛼) = 𝛼), implied by linearity of the functional, and 

supnorm continuity. He also incorporated nonstable streams with representations 

between the limsup and the liminf of AU (his Theorem 2). His anonymity 

immediately implies p-fairness. It cannot be reconciled with strong Pareto. 

 In Marinacci (1998), the outcome set consists of all simple probability 

distributions over a set of prizes. Expected utility is maximized over outcomes. That 

is, the outcome set is convex and utility is linear. The preference domain consists of 

all bounded streams. Marinacci assumed continuity with respect to probabilistic 

mixing of the outcomes and axiomatized liminf AU representations or, more 

generally, their Polya extensions, using axioms similar to axioms from multiple priors 

models in decision under ambiguity. He next added a time invariance axiom that 

implies AU maximization. His patience implies our p-fairness. He did not consider 

reconciliation with strong Pareto.  

 

10 We thank an anonymous referee and associate editor for bringing in these two references. 

Solvability, like continuity, brings in unknown empirical implications, but less so than continuity 

because it is less restrictive. 
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 Rébillé (2007) assumed real-valued outcomes and linear utility and considered 

the domain of all bounded sequences. He considered several generalizations of AU 

such as discounted rank-dependent forms, but he did not derive AU itself. 

 Neymann (2023), again, assumed real-valued outcomes and linear utility and 

considered only bounded sequences. His Theorem 2 characterized AU by, mainly, 

linearity and what he called, in deviation from common terminology, patience 

(roughly, linear patience restricted to constant streams). 

 Strong Pareto and fairness can be, trivially, reconciled by excuding all 

problematic preference situations, leading to a relaxation of completeness. Several 

papers studied such relaxations, but with the purpose of obtaining nontrivial results 

with a rich and interesting domain of preference situations. These studies often 

incorporated preferences where 𝑓 and 𝑔 themselves have undefined AU values, with 

representations between 𝑙𝑖𝑚𝑠𝑢𝑝 𝐴𝑈 and 𝑙𝑖𝑚𝑖𝑛𝑓 𝐴𝑈. These papers all assumed linear 

utility or, equivalently, that outcomes are utils, and they focused on bounded 

sequences or overtaking criteria (Gale 1967; Jonsson & Voorneveld 2018; Svensson 

1980). Other papers considered fairness conditions so much weaker that they do not 

conflict with strong Pareto, including Lauwer’s (2012) fixed-step anonimity. Mitra & 

Basu (2007) showed that such fairness restrictions must satisfy cyclicity and 

conditions regarding mathematical group-operations. Our p-fairness does satisfy those 

conditons and is weaker than the aforementioned fairness conditions. In return, the 

cited papers could handle representations more general than AU. 

 All aforementioned studies assumed continuous and mostly even linear utility. 

Whenever the long run was relevant, all p-streams were included in the domain. 

Focusing on AU representations as defined in §2, our result is uniformly most general 

in the sense that for every such representation in the literature our assumptions are 

satisfied but not the other way around. Besides (1) continuity (always more restrictive 

than in our Observation 6) all published results (2) focused on bounded streams 

whereas we can handle all unbounded streams as long as their AU is finite; (3) 

assumed rich domains of all streams that are bounded and satisfy some regularity 

assumptions, whereas we allow for almost any kind of subdomain; (4) used more 

permutations in their fairness than in our p-fairness. Our result does not generalize the 

existing results in a logical sense. That is, the assumptions in existing results do not 

imply our assumptions in an elementary manner—to our best knowledge—and in this 

sense are not corollaries of our results. Further, most other studies extended the AU 
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representation to streams for which AU is not defined or infinite, and studied other 

properties than considered in this paper. Thus, the existing results remain of 

independent interest. 

 

7. Discussion 

 

Many papers in welfare theory take individual utilities ("utils" or “welfare”) as given 

or, equivalently, assume real-valued outcomes and linear utility for all individuals. 

However, utility is often nonlinear with individual utilities subjective and not directly 

observable. We took the more general approach of allowing for general utility, to be 

revealed from preferences. AU does assume the same utility function for different 𝑗. 

That is, the same outcome gives the same utility for different generations. For 

individual intertemporal (non)discounted utility this is a common assumption, but for 

welfare evaluations there is interest in generation-dependent utility. Harvey (1986 

Theorem 9) and Wakker & Zank (1999) provided models with generation-dependent 

utility, but they heavily used continuity. We leave such generalizations of our results 

to future work. 

 The Archimedean axiom is a technical axiom, like continuity. One could, 

accordingly, be concerned about a similarly problematic empirical status. In several 

situations it has been shown though that Archimedean axioms do not have such 

problems: finitely many observations verify or falsify a set of other axioms if and only 

if they do so with the Archimedean axiom added (Luce et al. 1990 Theorem 21.21). 

The axiom then has no empirical content and is innocuous. We do not know to what 

extent such a result holds for the theorems in this paper. However, these problems of 

empirical status are smaller than for the more restrictive continuity axioms and, 

further, they cannot be avoided anyhow because the Archimedean axiom is necessary 

for any AU representation.  

 The three axioms used to extend AU to non-periodic streams involve “there 

exist” quantifiers and their negations11, and share the drawbacks of all axioms of this 

kind. Whereas it is common in the literature to use continuity axioms to ensure that 

integrals are well-defined and finite, axioms that bring extra restrictions, our three 

 

11 So do the Archimedean axiom and most continuity axioms (∀휀 ∃𝛿). 
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axioms are not only sufficient but also necessary for AU. That is, they cannot be 

avoided for real-valued representations. Pivato (2014) provided AU-type 

representations using nonstandard real numbers, avoiding both continuity and 

Archimedean axioms. For empirical and conceptual purposes, this approach is 

preferable to the use of standard real numbers as in this and most other papers. 

However, as a price to pay, most researchers are not familiar with nonstandard real 

numbers. 
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Appendix A. Proofs 

 

Our proofs are based on Theorem 7 of Kothiyal et al. (2014). Their domain of 

preference consisted of all finite sequences 𝑥∗ = (𝑥1, … , 𝑥𝑛) of any length 𝑛, and a 

preference relation ≽∗ on it. Because there was no upper bound to the length 𝑛, their 

domain can be called half-infinite-dimensional. It can be taken as isomorphic to our 

space of periodic sequences (details are provided in the proof of Observation 1). Their 

preference conditions are the natural analogs of our p-preference conditions. Their 

Theorem 7 showed that AU holds if and only preferences satisfy (1) weak ordering; 

(2) Archimedeanity; (3) fairness (called symmetry); (4) independence; and one further 

condition called replication equivalence, i.e.: 𝑥∗~∗𝑚𝑥∗ for all finite sequences 𝑥∗. 

Here 𝑚𝑥∗ again denotes the 𝑚-fold, finite, periodic replication of 𝑥∗. 

 

Proof of Observation 1. It readily follows that Statement (i) implies Statement (ii). P-

independence follows because common terms in the AU summations cancel. We next 

assume Statement (ii) and derive Statement (i). We consider the domain of Kothiyal et 

al. (2014) defined above. We define a preference relation ≽∗ on this domain by 

(𝑥1, … , 𝑥𝑛) ≽∗ (𝑦1, … , 𝑦𝑚) if [𝑥1, . . , 𝑥𝑛] ≽ [𝑦1, . . , 𝑦𝑚]. Given weak ordering, this 
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definition implies replication equivalence of ≽∗. Kothiyal et al.’s domain is 

isomorphic to our domain of periodic sequences if we identify all periodic extensions 

𝑚𝑥∗ with 𝑥∗ in their domain. All conditions of their Theorem 7 follow, implying an 

AU representation of ≽∗ and, accordingly, one of ≽ on 𝐹𝑝. 

 

Proof of Theorem 3. We first assume Statement (i) and derive Statement (ii). The 

first four conditions, weak ordering, p-Archimedeanity, p-fairness, and p-

independence, follow directly, and by Observation 1.  

 To derive v-boundedness of every act, we assume, for contradiction, that 𝑓 is v-

unbounded above. Then so is 𝑈(Γ): because Γ is unbounded, Eq. 3 holds, implying 

𝑈(𝛿) − 𝑈(𝛾) > 𝑛(𝑈(𝛾) − 𝑈(𝛽)). So, 𝑈(Γ) is indeed unbounded above. Eq. 5 

implies that 𝑙𝑖𝑚𝑠𝑢𝑝𝑛→∞𝐴𝑈[𝑓1, … , 𝑓𝑛] exceeds any 𝑈(𝛾) and, hence, any real number. 

This contradicts that 𝐴𝑈(𝑓) is well-defined and finite. V-unboundedness below 

similarly leads to a contradiction and 𝑓 must be v-bounded. 

 We next assume, for contradiction, that 𝑓 is not stable. Then there exist p-streams 

𝑥 ≻ 𝑦 with [𝑓1, … , 𝑓𝑛] ≻ 𝑥 for infinitely many 𝑛 and [𝑓1, … , 𝑓𝑛] ≺ 𝑦 for infinitely 

many 𝑛. This would imply 𝑙𝑖𝑚𝑠𝑢𝑝𝑛→∞
1

𝑛
∑ 𝑈(𝑓𝑗)𝑛

𝑗=1 ≥ 𝐴𝑈(𝑥) > 𝐴𝑈(𝑦) ≥

𝑙𝑖𝑚𝑖𝑛𝑓𝑛→∞
1

𝑛
∑ 𝑈(𝑓𝑗)𝑛

𝑗=1 , contradicting well-definedness of 𝐴𝑈(𝑓). 

 For P-denseness, assume 𝑓 ≻ 𝑔. Then 𝐴𝑈(𝑓) > 𝐴𝑈(𝑔), i.e., 𝐴𝑈(𝑓) − 휀 >

𝐴𝑈(𝑔) + 휀 for some 휀 > 0. Then ∃𝑁 ∈ ℕ: ∀𝑛 ≥ 𝑁: 𝐴𝑈[𝑓1, … , 𝑓𝑛] > 𝐴𝑈(𝑓) − 휀 >

𝐴𝑈(𝑔) + 휀 > 𝐴𝑈[𝑔1, … , 𝑔𝑛]. Because of denseness of 𝐴𝑈(𝐹𝑝) (Observation 2), there 

are p-streams 𝑥, 𝑦 such that 𝐴𝑈[𝑓1, … , 𝑓𝑛] > 𝐴𝑈(𝑓) − 휀 > 𝐴𝑈(𝑥) > 𝐴𝑈(𝑦) >

𝐴𝑈(𝑔) + 휀 > 𝐴𝑈[𝑔1, … , 𝑔𝑛] for all 𝑛 ≥ 𝑁. P-denseness holds and Statement (ii) has 

been proved. 

 We next assume Statement (ii) and derive Statement (i). We have AU on 𝐹𝑝 by 

Observation 1, providing 𝑈.  

 Assume, for contradiction, 𝑙𝑖𝑚𝑠𝑢𝑝𝑛→∞
1

𝑛
∑ 𝑈(𝑓𝑗)𝑛

𝑗=1 = ∞. Then 𝑈(Γ) is 

unbounded above, readily implying that Γ is unbounded above and so is 𝑓: a 

contradiction has resulted. Similarly, 𝑙𝑖𝑚𝑖𝑛𝑓𝑛→∞
1

𝑛
∑ 𝑈(𝑓𝑗)𝑛

𝑗=1 = −∞ cannot be.  

 Next assume, for contradiction, 𝑙𝑖𝑚𝑖𝑛𝑓𝑛→∞
1

𝑛
∑ 𝑈(𝑓𝑗)𝑛

𝑗=1 <

𝑙𝑖𝑚𝑠𝑢𝑝𝑛→∞
1

𝑛
∑ 𝑈(𝑓𝑗)𝑛

𝑗=1 . Then we can find real numbers 𝜇 < 𝜈 between these such 
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that 
1

𝑛
∑ 𝑈(𝑓𝑗)𝑛

𝑗=1 < 𝜇 for infinitely many 𝑛 and 𝜈 <
1

𝑛
∑ 𝑈(𝑓𝑗)𝑛

𝑗=1  for infinitely many 

𝑛. By denseness of 𝐴𝑈(𝐹𝑝) (Observation 2), we can find periodic 𝑥, 𝑦 with 𝐴𝑈(𝑦) <

𝐴𝑈(𝑥) between 𝜇 and 𝜈, implying 
1

𝑛
∑ 𝑈(𝑓𝑗)𝑛

𝑗=1 < 𝐴𝑈(𝑦) for infinitely many 𝑛 and 

1

𝑛
∑ 𝑈(𝑓𝑗)𝑛

𝑗=1 > 𝐴𝑈(𝑥) for infinitely many 𝑛. This contradicts stability of 𝑓. 

 We can conclude at this stage that 𝐴𝑈(𝑓) is well-defined and finite for all 𝑓. We 

finally show that it is representing. Assume 𝑓 ≻ 𝑔. By p-denseness, we have the right-

hand side of Eq. 7, which implies 𝐴𝑈(𝑓) ≥ 𝐴𝑈(𝑥) > 𝐴𝑈(𝑦) ≥ 𝐴𝑈(𝑔), so that 

𝐴𝑈(𝑓) > 𝐴𝑈(𝑔). Conversely, assume 𝐴𝑈(𝑓) > 𝐴𝑈(𝑔). By denseness of 𝐴𝑈(𝐹𝑝) 

(Observation 2), we can find 휀 > 0 and p-streams 𝑥, 𝑦 and 𝑚, 𝑛 such that 

𝐴𝑈([𝑓1, … , 𝑓𝑛]) > 𝐴𝑈(𝑓) − 휀 > 𝐴𝑈(𝑥) > 𝐴𝑈(𝑦) > 𝐴𝑈(𝑔) + 휀 > 𝐴𝑈([𝑔1, … , 𝑔𝑚]). 

There exists 𝑁 such that for all 𝑛 > 𝑁: 
1

𝑛
∑ 𝑈(𝑓𝑗)𝑛

𝑗=1 > 𝐴𝑈(𝑓) − 휀 > 𝐴𝑈(𝑥) >

𝐴𝑈(𝑦) > 𝐴𝑈(𝑔) + 휀 >
1

𝑛
∑ 𝑈(𝑔𝑗)𝑛

𝑗=1 . By p-denseness, 𝑓 ≻ 𝑔. We have shown: 𝑓 ≻

𝑔 ⇔ 𝐴𝑈(𝑓) > 𝐴𝑈(𝑔), i.e., AU represents the preference relation. 

  We, finally, establish that 𝑈 is an interval scale. It is obvious that we can add any 

constant and multiply by any positive constant. It readily follows from Observation 4 

that we do not have more liberty. 

 We make two further comments: for 𝑈(Γ) to be unbounded above, it does not 

suffice to require that there is no maximal outcome, as for instance with 𝑈(Γ) =

(0,1). In that case, there can still exist a maximal stream 𝑓, for instance for 𝑈(𝑓𝑗) =

1 − 1/𝑗, but no maximal outcome. Further, for P-denseness, it is not enough to 

require that for every 𝑓 ≻ 𝑔 there exists a p-stream 𝑥 with 𝑓 ≻ 𝑥 ≻ 𝑔. Then 

“infinitesimal” strict preferences could exist between different streams with the same 

AU value. 

 

Proof of Observation 6. Continuity of 𝑈 immediately implies continuity of ≽. 

Continuity of ≽ implies continuity of 𝑈 by Wakker (1988 Theorem 3.1). 

 

 

Appendix B. independence of the Axioms 

 

We show that the axioms in (ii) in Theorem 3 are logically independent, showing also 

that none could have been omitted. In all cases below exactly one axiom is violated so 
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that there is no 𝐴𝑈 representation. In all cases, if a functional 𝑉 is defined, it 

represents preferences. If defined through generators, it is always well-defined, i.e., 

independent of which generator is chosen for p-streams. That is, it then satisfies 

Kothiyal et al.’s (2014) replication-invariance. 

 

1 [weak ordering] We take preferences incomplete. Assume that 𝑓~𝑓 for all 𝑓, and 

that any permutation of the 𝑥𝑖s in any p-stream [𝑥1, … , 𝑥𝑛] leaves the stream 

indifferent. There are no other preferences. Then p-fairness holds. All axioms hold 

except Axiom 1. 

 

2 [p-Archimedeanity]. We define a lexicographic representation using two different 

“disjoint” AU representations. Assume Γ = ℝ . 𝑈1 = 0 on (−∞, 0] and 𝑈1(𝛼) = 𝛼 on 

[0, ∞). 𝑈2(𝛼) = 𝛼 on (−∞, 0] and 𝑈2 = 0 on [0, ∞).  𝐴𝑈𝑖 denotes average with 

respect to 𝑈𝑖, 𝑖 = 1,2. 

  𝐹 contains all bounded streams with both averages 𝐴𝑈1 and 𝐴𝑈2 well-defined. 

The preference relation is represented lexicographically by (𝐴𝑈1, 𝐴𝑈2). That is, 𝑓 ≻

𝑔 if 𝐴𝑈1(𝑓) > 𝐴𝑈1(𝑔) or 𝐴𝑈1(𝑓) = 𝐴𝑈1(𝑔) and 𝐴𝑈2(𝑓) > 𝐴𝑈2(𝑔). Further, 𝑓~𝑔 if 

𝐴𝑈1(𝑓) = 𝐴𝑈1(𝑔) and 𝐴𝑈2(𝑓) = 𝐴𝑈2(𝑔). Axioms 1,3,4,5,6 hold trivially. For p-

denseness, assume 𝑓 ≻ 𝑔. If 𝐴𝑈1(𝑓) > 𝐴𝑈1(𝑔), then p-denseness follows from p-

denseness of 𝐴𝑈1. Next assume 𝐴𝑈1(𝑓) = 𝐴𝑈1(𝑔) and 𝐴𝑈2(𝑓) > 𝐴𝑈2(𝑔). For odd 𝑗, 

we define 𝑥𝑗 = 𝑦𝑗 = 2𝐴𝑈1(𝑓) = 2𝐴𝑈1(𝑔) ≥ 0. Next take 𝐴𝑈2(𝑓) > 𝛼 > 𝛽 >

𝐴𝑈2(𝑔). For even 𝑗, 𝑥𝑗 = 2𝛼 and 𝑦𝑗 = 2𝛽. Now 𝑥 and 𝑦 are periodic and 𝐴𝑈1(𝑥) =

𝐴𝑈1(𝑦) = 𝐴𝑈1(𝑓) = 𝐴𝑈1(𝑔), 𝐴𝑈2(𝑓) > 𝐴𝑈2(𝑥) > 𝐴𝑈2(𝑦) > 𝐴𝑈2(𝑔). This shows 

that Axiom 7, p-denseness, also holds. All axioms hold except Axiom 2. 

 

3 [p-fairness]. We take “nonsymmetric” discounted utility. Assume Γ = ℝ, 𝐹 = 𝐹𝑝, 𝑈 

is the identity, and 𝑉(𝑥) = ∑ 𝛿𝑗𝑥𝑗
∞
𝑗=1  with 0 < 𝛿 < 1 (discounted value). All axioms 

hold except Axiom 3. 

 

4 [p-independence] We construct a symmetric representation with sufficiently 

nonlinear interactions to violate separability. Assume Γ = [0, ∞), 𝐹 = 𝐹𝑝.  

𝑉([𝑥1, … 𝑥𝑛]) = ∑
𝑥𝑖

2𝑥𝑗

𝑛2
𝑛
𝑖,𝑗=1 . We show that p-independence is violated: 𝑉([0,1,1]) =
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4/9 = 𝑉([0,0, √4
3

]) but  𝑉([1,1,1]) = 1 < 1.012 = 𝑉([1,0, √4
3

]). All axioms hold 

except Axiom 4. 

 

5 [v-bounded]. We add one unbounded stream. Assume Γ = ℝ, 𝑈(𝛼) = 𝛼, and 𝐹 

contains all streams with well-defined finite 𝐴𝑈 value and one extra element: 𝑓𝑗 = 𝑗 

for all 𝑗. 𝑓  is strictly preferred to all other streams, and 𝐴𝑈 represents preferences 

between all other streams. All axioms hold except Axiom 5. 

 

6 [stability]. We add one nonstable stream. Assume Γ = ℝ, 𝑈(𝛼) = 𝛼, and 𝐹 contains 

all streams with well-defined finite 𝐴𝑈 value and one extra bounded element 𝑔 with 

𝑙𝑖𝑚𝑖𝑛𝑓𝑛→∞
1

𝑛
∑ 𝑔𝑗

𝑛
𝑗=1 = 0 and 𝑙𝑖𝑚𝑠𝑢𝑝𝑛→∞

1

𝑛
∑ 𝑈(𝑔𝑗)𝑛

𝑗=1 = 1. We define 𝑉(𝑔) = 0.5 

and 𝑉(𝑓) = 𝐴𝑈(𝑓) for all other 𝑓. All axioms hold except Axiom 6. 

 

7 [p-denseness] We add one infinitesimal preference difference. Assume Γ = ℝ, 

𝑈(𝛼) = 𝛼, and 𝐹 contains all streams with well-defined finite 𝐴𝑈 value. We take one 

bounded 𝑔 that is nonperiodic. 𝐴𝑈 represents preference with one exception: if 

𝐴𝑈(𝑔) = 𝐴𝑈(𝑓) and 𝑔 ≠ 𝑓 then 𝑔 ≻ 𝑓. All axioms hold except Axiom 7. 
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