
1

Vol.:(0123456789)

Scientific Reports |        (2023) 13:13009  | https://doi.org/10.1038/s41598-023-40166-w

www.nature.com/scientificreports

Examining the impact of cue 
similarity and fear learning 
on perceptual tuning
Jonas Zaman 1,2*, Kenny Yu 3, Marta Andreatta 4, Matthias J. Wieser 4 & Yannik Stegmann 5

Past research on the effects of associative aversive learning on discrimination acuity has shown mixed 
results, including increases, decreases, and no changes in discrimination ability. An animal study 
found that the type of learning experience determined the direction and extent of learning-induced 
changes. The current preregistered web-based study aimed to translate these findings to humans. 
Experiment 1 (N = 245) compared changes in stimulus discrimination between simple learning 
(only one oriented grating cue), coarse differential conditioning (physically distinct cues), and fine 
differential conditioning (physically similar cues) as well as to their three respective control groups. 
The discrimination task consisted of a two-alternative-forced-choice task with oriented grating 
stimuli. During learning, a specific orientation was paired with unpleasant pictures. Our analysis using 
generative modeling demonstrated weak to moderate evidence that aversive learning did not alter 
discrimination acuity in any of the groups. In a follow-up experiment (N = 121), we replicated these 
findings despite successful learning trajectories in all three groups and a more detailed assessment of 
discrimination acuity. Contrary to prior assumptions, our findings indicate that aversive learning does 
not enhance perceptual discrimination, and the presence of additional safety cues does not appear to 
moderate this effect.

In the past decades, a significant body of research has accrued demonstrating that associative fear learning can 
alter sensory processing at various levels of the sensory stream (for a review,  see1). These findings inspired the 
idea that fear learning fosters the detection and discriminability of threat-associated stimuli via amplifying neural 
tuning profiles to the conditioned stimulus (i.e., the stimulus predictive for an aversive event) and inhibiting 
responses to physically similar stimuli. Clinical reports support this notion of enhanced stimulus detection and 
discriminability of cues present during a traumatic  event2. Yet, laboratory research in humans on the perceptual 
sequelae of associative learning has produced mixed results. Some studies have found that associative learning 
leads to increased discriminability, while others have found decreased or no changes in discriminability (for a 
review,  see3). This suggests that any potential relationship between associative learning and stimulus discrimi-
nability is complex and warrants further investigation.

As associative learning processes are conserved across species, researchers interested in fear conditioning 
frequently seek converging evidence from translational research to apply findings from animal models to under-
stand the more complex human  functions4. An animal study conducted by Aizenberg and  Geffen5 found that 
in mice, the effects of fear learning on tone discrimination could go both ways, with fear learning sharpening 
or widening perceptual tuning. This effect depended on the presence of another tone during learning (i.e., dif-
ferential learning) and the physical similarity between the two tones. During differential conditioning, one tone 
(called the conditioned stimulus or CS+ [The + or—signs denote the presence or absence of US reinforcement]) 
was paired with an aversive outcome (foot shock, called the unconditioned stimulus or US), while another tone 
(CS−) is consistently predictive of the US absence. Differential conditioning only improved perceptual discrimi-
nation with physically similar CSs (CSs: 15.0 kHz and 12.75 kHz), while physically distinct CSs (CSs: 15.0 kHz 
and 7.5 kHz) decreased the discrimination acuity of tones around the reinforced tone (CS+). Fear learning with 
only the 15.0 kHz tone (i.e., simple conditioning) yielded the worst perceptual discrimination.
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Human studies, however, have yielded mixed results on the relationship between aversive learning and per-
ceptual discrimination. For instance, in line with the work of Aizenberg and  Geffen5 is the finding that aversive 
learning led to an improvement in detection thresholds and perceptual discrimination using indistinguishable 
odors as CS+ and CS−6–8. Also in line is the finding that associative learning (with monetary reward and loss 
as USs) led to worse perceptual discrimination using distinct tones as CSs (but also visual CSs)9–13). However, 
improvements in the discrimination of low-level visual features and odors have also been reported after associa-
tive learning with distinct CSs both in the laboratory and a web-based  study14–16. In addition to these conflicting 
findings, several studies did not find a consistent change (or no change) in perceptual discrimination or threshold 
 sensitivity17–23. However, the multitude of methodological differences among studies (e.g., adopted discrimination 
task, stimulus modality, reinforcement rate, type of US) renders a direct comparison of these findings difficult.

In light of these inconsistent findings and to bridge the gap between human and animal research, this present 
study aims to replicate the animal study of Aizenberg and  Geffen4 to examine further in humans the moderating 
effect of cue similarity on learning-induced changes in perceptual discrimination. We focused on the effect of an 
additional safety cue (CS−) and its physical similarity to the threatening cue (CS+) on changes in discrimination 
acuity due to learning. The study consisted of two experiments with between-subjects designs. Experiment 1 
compared changes in stimulus discrimination between three experimental groups: simple conditioning, coarse 
differential (with physically distinct CSs), fine differential conditioning (with physically similar CSs), and their 
respective control groups. The control groups received identical stimulus presentations as their experimental 
counterparts (but no aversive USs) to control for the effects of mere stimulus exposure. Experiment 2 was similar, 
with minor methodological differences and the omission of the control groups. We hypothesized that aversive 
learning would lead to decreased discrimination acuity between the conditioned stimulus (CS+) and surround-
ing stimuli in the simple and coarse differential conditioning group, with the most pronounced deterioration 
in the simple conditioning group. In contrast, we expected aversive learning to improve discrimination acuity 
between the CS+ and surrounding stimuli in the fine differential conditioning group.

Material and methods
Open practices statement. We report how we determined our sample size, all data exclusions, all manip-
ulations, and all measures in the  study24. Both experiments and analyses were preregistered at the Open Science 
Framework (experiment 1: https:// osf. io/ hz2sa ; experiment 2: https:// osf. io/ 7wn3g). All data, analysis codes and 
the experimental materials can be accessed at https:// osf. io/ rkbp9/.

Participants. In Experiment 1, a sample size estimation with a conservative effect size of f = 0.15 [see sup-
plemental information (SI) for more details] yielded a total sample size of N = 228 (n = 38 × six groups). For 
Experiment 2, we adjusted the sample size estimation based on the average weighted effect size of Experiment 
1 and Stegmann et al.15, yielding a total sample size of N = 117 (n = 39 × three groups) (see SI). Data were col-
lected online via Pavlovia, with participants recruited via Prolific (For Experiment 1, a part of the participants 
was recruited locally using the University of Würzburg SONA Systems for Experiment 1 [N = 36]). Data collec-
tion lasted from December 2021 to March 2022 for experiment 1; experiment 2 was conducted in August 2022. 
Inclusion criteria were: age > 18 years, fluent understanding of English, normal or corrected to normal vision, 
and an approval rating > 80 (Only for the Prolific sample). Exclusion criteria were: Missing data on either of the 
discrimination phases > 10%, accuracy on the memory task < 70%, and participants who indicated they did not 
respond seriously during the task (self-report at the end of the experiment). As group allocation was random, 
data collection continued until the targeted 38 per group was reached. This led to the following final sample sizes 
per group: simple conditioning (SC) = 40,  SCcontrol = 39, coarse differential conditioning (coarse DC) = 40, coarse 
 DCcontrol = 38, fine differential conditioning (fine DC) = 39, fine DC control = 49 in Experiment 1. For Experiment 
2, the same inclusion and exclusion criteria were used, although with slightly adjusted cut-off scores: (i) the 
prolific approval rating was set to 90% instead of 80%, (ii) and > 15% instead of 10% of missing data on either 
the discrimination phases or the acquisition phase led to exclusion. The final sample sizes per group for Experi-
ment 2 were SC = 41, coarse DC = 41, fine DC = 39. See SI for the demographics of the sample. The ethics com-
mittee of the Department of Psychology at the University of Würzburg approved all experimental procedures 
(approval code: GZEK 2020-43). Procedures were in agreement with the Declaration of Helsinki (Version 2008). 
All participants provided informed consent online. They received monetary compensation (6£, + 10£ per hour). 
The participants recruited via the Wurzburg SONA systems entered a lottery for one out of four 30€ Amazon 
coupons as compensation).

Stimuli. Circular black-and-white sinusoidal grating stimuli (10 Hz spatial frequency) filtered with a Gauss-
ian envelope (i.e., Gabor patch) with maximum contrast of 100% at the center served as conditioned stimuli and 
were used for the visual discrimination task. The Gabor patch with an orientation of 45° relative to the vertical 
axis served as the CS+ in all groups. Depending on the group, a different orientation was used as CS−. An ori-
entation of 10° served as CS− in the coarse DC groups, while an orientation of 40° served as CS− in the fine DC 
groups. Given our similar design, these differences were based on the two-alternative forced choice discrimina-
tion data from Stegmann et al.15 to ensure that the selected CS-’s were easy and very difficult to discriminate 
from the CS+ .

Aversive pictures. Identical to Stegmann et al.15, aversive pictures (pictures I26, I209, I208, I714, I276, I855, 
I210, I496, I287, and I440 from the Open Affective Standardized Image Set (OASIS)25) served as unconditioned 
stimuli (US).

https://osf.io/hz2sa
https://osf.io/7wn3g
https://osf.io/rkbp9/
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Protocol. Initially, participants were redirected to SoSciSurvey to fill in some demographic (age and gender) 
and the State Trait Anxiety Inventory (STAI-T) which assesses state anxiety  levels26. The actual experimental 
procedure then consists of a pre and post-learning discrimination task, a classical conditioning protocol, and a 
US memory task (Fig. 1A). In the end, all participants indicated whether they responded seriously during the 
experiment or not (with the instruction that their response would not affect their compensation).

Discrimination task. The discrimination task comprised 160 (or 168 trials in Experiment 2) trials, each starting 
with a 1500–2500 ms presentation of a centrally presented fixation cross before the first Gabor patch was pre-
sented for 500 ms. This stimulus was masked by a scrambled stimulus (300 ms) and followed by a blank screen 
(200 ms) before the second Gabor patch appeared for 500 ms (Fig. 1B). On every trial, participants had maxi-
mally 3 s to respond whether the presented stimulus pair was identical or different via button presses. Else this 
was coded as a missing response (1% of the trials in Experiment 1 and Experiment 2). One of the Gabor patches 
always was the orientation (45°) used as CS+ (called target stimulus) and was equally likely to be presented as the 
first or second stimulus. The task was repeated twice, once before and once after fear conditioning. In Experi-
ment 1, the number of presentations per orientation (range of orientations: from 15° till 75° in steps of 1°) fol-
lowed a Gaussian distribution (identical to Stegmann et al.15). Therefore, Gabor patches near the CS+ orientation 
were more often presented than distinct Gabor patches (see Fig. 4). In Experiment 2, a uniform distribution was 
used with a more restricted range (21 stimuli, range: 35°–55°) with each stimulus presented eight times to have a 
more detailed measurement. The presentation order was randomly shuffled for each participant and time point. 
Participants did not receive feedback except from 20 extra practice trials at the beginning of the experiment, 
which we did not include in the analysis.

Fear conditioning. Two groups underwent a differential fear conditioning protocol (coarse DC and fine DC) 
consisting of 40 CS+ presentations and 40 CS− presentations (80 trials in total), with the CS+ trials always fol-
lowed by the US (100% reinforcement rate) (Fig. 1C). The CS− was not followed by the US. In the simple condi-
tioning group (SC), only CS+ (40 trials, again 100% reinforced by the US) but no CS− trials were presented. Each 
trial started with a 1500–2500 ms fixation cross, followed by the presentation of a CS Gabor patch (500 ms). If 

Figure 1.  (A) Overview of the experimental protocol. The pre-learning threat assessment was only in 
Experiment 1 (grey). (B) Trial structure and timing of the discrimination task. (C) Trial structure and timing 
of the associative learning task in Experiment 1 and Experiment 2. Adapted from Stegmann et al.15 with 
permission.
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the trial was reinforced, an aversive picture was then presented for 1000 ms. Only five of the ten aversive pictures 
served as US in all three conditioning groups. The remaining five pictures were used for the US memory task 
at the end of the experiment. The choice of US was counter-balanced among participants. In the three control 
groups in Experiment 1 (coarse  DCcontrol, fine  DCcontrol, and  SCcontrol), the same number of CSs were presented 
as their experimental counterparts but no USs. In Experiment 2, we added two changes to the protocol: (i) the 
assessment of US predictions via button presses (coded as 1 = aversive picture, 0 = no aversive picture) on every 
trial during the conditioning phase, and (ii) that the presentation duration of the CSs was increased to 3 s. If par-
ticipants responded slower than 3 s, this was registered as a missing response. These changes were implemented 
to assess learning trajectories throughout the conditioning phase. After the fear conditioning phase, participants 
rated the following range of Gabor patches (10°, 20°, 30°, 40°, 45°, 50°, 60°, 70°, 80°) on US expectancy (‘How 
much do you expect the presence of a picture after this stimulus?’, 0 = not at all; 100 = very likely). In Experiment 
1, the same range of stimuli was also rated on subjective threat before and after fear conditioning.

US rating and memory task. At the end of the experiment—as an attention check—participants in the condi-
tioning groups were presented with the five aversive pictures used as US, in addition to the five novel aversive 
pictures. Participants had to indicate (yes/no) whether the picture was presented during the conditioning ses-
sion. Correct answers were summed, resulting in a memory score with a range from 0 to 10. To ensure that par-
ticipants perceived the pictures as aversive, ratings for subjective arousal (“As how arousing do you perceive this 
picture?”, 0 = low arousing, 100 = very arousing) and valence (“As how pleasant/unpleasant do you perceive this 
picture?”, 0 = very pleasant, 50 = neutral, 100 = very unpleasant) were obtained using visual analog scales after 
each aversive picture presentation (mean arousal = 52.23 (SD = 37.51), mean valence = 82.86 (SD = 21.15), see SI 
for a visualization of the ratings per US).

Analysis. All analyses were performed in R 4.1 (2020-06-06;27). In order to ensure clarity and comparabil-
ity, we adopted the same analysis strategy for both experiments, deviating from the preregistered rmANOVA’s 
for Experiment 1. We used generalized linear mixed models (GLMMs) to analyze US expectancy ratings (using 
the lme4 package v1.1.23;28, which are more flexible and powerful approaches capable of dealing with continu-
ous and binary outcomes compared to  rmANOVAs29. US expectancy ratings were analyzed with the following 
linear mixed models. In Experiment 1, the within-subject predictor was Stimulus (categorical predictor: nine 
levels), and the between-subjects predictors were Condition (categorical predictor: simple, fine, coarse) and 
US (categorical predictor: US, no US). All main and interaction effects were included. In Experiment 2, the 
between-subjects predictor US was omitted. Based on the estimated marginal means of these models (using 
the EMMEANS package;30, we assessed the symmetry around the CS+ in the US expectancy gradient for each 
group using custom contrasts (coded as: ¼, ¼, ¼, ¼, 0, −¼, −¼, −¼, −¼). A lack of symmetry around the 
CS+ (called an area shift) would be reflective of differential learning as responding to stimuli on the non-CS− 
side of the CS+ tends to be higher than to equidistant stimuli on the CS− side after differential  conditioning31,32. 
This phenomenon is thought to emerge due to the occurrence of both excitatory (US prediction) and inhibitory 
(US absence) learning in differential conditioning paradigms. However, more recent research has suggested a 
potential role of biased perceptual or memory mechanisms underlying this  phenomenon33. Finally, differences 
between the CSs were investigated using pairwise comparisons (using the rstatix package). The result of the 
threat ratings from Experiment 1 can be found in the SI.

The trial-by-trial US predictions from Experiment 2 were first analyzed separately per group with a logistic 
GLMM that comprised Repetition (scale predictor: 1–40) and Stimulus (categorical predictor: CS+ , CS−) and 
their interaction as within-subject predictors. For the SC group, as only CS+ trials were presented, the predictor 
Stimulus and its interaction were excluded from the model. In the second step, group differences in CS+ trajec-
tories were assessed by running a GLMM (only including CS+ trials) with Repetition (scale predictor: 1–40) as 
a within-subject predictor and Group (categorical predictor: coarse DC, fine DC, SC) as between-subject factor 
and their interaction. Lastly, differences in US predictions for the CS- trials were compared between the dif-
ferential conditioning groups in a model with Repetition (scale predictor: 1–40) as a within-subject predictor 
and Group (categorical predictor: coarse DC, fine DC) as a between-subject factor and their interaction. The 
random part of the models comprised a subject-dependent intercept (and a subject-dependent effect of Stimulus 
when included). The logistic regression expresses the logarithm of the odds (i.e., the ratio of the probability of 
expecting the US compared to the probability of expecting its absence) as a linear relationship with the predictor 
variables. In these models, the estimated beta for the intercept is the log odds that expresses the probability of 
expecting the US relative to the probability of expecting the US absence (for a reference category). In our model, 
the CS+ was the reference category. Thus, values lower than 0, equal to 0, or greater than 0 indicates whether the 
probability of expecting the US was lower, equal, or higher than the probability of expecting the US absence. Beta 
estimates for the other predictors are log odds ratios that convey to what extent the odds change if the stimulus 
is a CS− compared to a CS+ .

Deviating from our preregistration, we fitted normal distributions to individuals’ discrimination data in 
a Bayesian framework. By employing a hierarchical structure in the model, we could account for uncertainty 
at both the group and individual levels. Figure 2 presents a graphical representation of our model, which uses 
a Directed Acyclic  Graph34 to show the connections between variables. The relevant data for the two normal 
distributions in the center of Fig. 2 are the responses during both the pre and post-learning discrimination task, 
denoted as y1ij and y2ij (where i = 1,…,n refers to the participant and j = 1,…,mi to the trial). The means ( µ1 and µ2 ) 
and variances ( σ1 and σ2 ) for both distributions are determined at the individual level and are further refined by 
group-level parameters. With the group-level parameters, we investigated to what extent the discrimination abil-
ity differs between pre-learning and post-learning conditions. We used Bayes Factors (BFs) to determine whether 



5

Vol.:(0123456789)

Scientific Reports |        (2023) 13:13009  | https://doi.org/10.1038/s41598-023-40166-w

www.nature.com/scientificreports/

the standardized differences in group means and standard deviations ( δµ and δσ ) between pre and post-learning 
conditions were significantly different from 0, indicating a change in discriminability after learning. As a rule of 
thumb, BF > 10 is considered strong evidence that the standardized difference differed from 0, 3 < BF < 10 = mod-
erate evidence, and 1 < BF < 3 = weak evidence, while BF < 1/10, 1/10 < BF < 1/3 and 1/3 < BF < 1 indicated strong, 
moderate or weak evidence for no  difference35. Additionally, by comparing the difference in the posterior values 
of individual variance parameters between the two conditions ( σ1-σ2 ), we were able to investigate how learning 
impacted individuals’ discriminability and the degree to which it did so. For correlations between these posterior 
mean parameter estimates and generalization tendencies based on US expectancy ratings, see the SI.

In all datasets, we performed parameter estimation using Markov Chain Monte Carlo (MCMC) with the Gibbs 
sampling  method36 through  JAGS37 in R (using the R2jags package). We ran three MCMC chains per model, with 
30,000 iterations, discarding the first 500 iterations (i.e., burn-in). We thinned the samples by a factor of 2 for 
each chain (i.e., only retaining every  2nd sample), resulting in 14,750 samples for each parameter. We computed 
the R-hat (Gelman-Rubin) statistic to assess convergence based on the three sample chains. All R-hats were below 
1.01, indicating that MCMC convergence was reached. We also visually inspected the chains and confirmed that 
they all resembled “a fat hairy caterpillar” without any unusual pattern, indicating good convergence.

Results
US expectancy ratings. In Experiment 1, different US expectancy gradients were found between 
groups across the test dimension [Condition × US × Orientation: F(16,1912) = 3.78, p < .001 η2p = .03, 95% CI 
(0.01, 0.04)], with no differences in gradients between the control groups [US = no.US: Condition × Orienta-
tion: F(16,984) = 1.14, p = .310 η2p = .02, 95% CI (0.00–0.02)] and distinct patterns in the experimental groups 
[US = US: Condition × Orientation: F(16,928) = 3.87, p < .001, η2p = .06, 95% CI (0.02, 0.08)] (Fig. 3). Alike, we 
found in Experiment 2 different US expectancy gradients across the test range between the experimental groups 
[Condition × Orientation: F(16,944) = 7.33, p < .001, η2p = 0.11, 95% CI (0.06, 0.17)] (Fig. 3). For the full model 
output see the SI. Next, we tested for symmetry around the CS+ in each group using custom contrasts on the 
model’s estimated means. The US expectancy gradient was symmetrical in the SC groups in both Experiment 1 
[t(928) = 1.10, p = .270, η2p = 0.00, 95% CI (0.00,0.01)] and Experiment 2 [t(944) = 0.05, p = .963, η2p = 0.00, 95% CI 
(0.00,0.00)] and asymmetrical in the coarse DC groups in both Experiments with lower US expectancy ratings 
towards the CS- orientation [exp1: t(928) = 8.82, p < .001, η2p = 0.08, 95% CI (0.05,0.11); exp2: t(944) = 12.666, 
p < .001, η2p = 0.15, 95% CI (0.11,0.19)]. The pattern in the fine DC groups differed between Experiments with a 
symmetrical gradient in Experiment 1 [t(928) = 0.97, p = .331, η2p = 0.00, 95% CI (0.00,0.01)] but not in Experi-
ment 2 [t(944) = 5.850, p < .001, η2p = 0.05, 95% CI (0.02,0.06)]. Finally, we tested for differences in US expectancy 
ratings between the CS+ and CS− in each group using pairwise comparisons (see Table 1). Surprisingly, no dif-
ference between the CS+ and the CS− in the fine DC groups (45° vs. 40°) was found in either Experiment 1 or 

Figure 2.  The Directed Acyclic Graph of the model for the 2AFC discrimination data.
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2, while ratings to these two proximal stimuli did differ in the other experimental groups in Experiment 1 but 
not in Experiment 2.

US predictions. In Experiment 2, we assessed US predictions on every trial as an additional measure to 
investigate whether learning was successful in all three conditions. Despite large interindividual differences, 
on average each group picked up the association between the CS(s) and the US (or it’s absence) (Fig.  4). 
US predictions were significantly more likely than no US predictions for CS+ trials in all three groups [SC: 
βintercept = 1.486, SE = .230, z = 6.460, p < .001; fine DC: βintercept = 0.488, SE = .177, z = 2.755, p = .006; coarse DC: 
βintercept = 1.836, SE = .269, z = 6.833, p < .001] but only significantly increased across CS+ repetitions in the SC 
group [SC: βrepetition = 0.044, SE = .007, z = 6.819, p < .001; fine DC: βrepetition = 0.008, SE = .004, z = 1.845, p = .065; 
coarse DC: βrepetition = 0.012, SE = .006, z = 1.948, p = .052]. For CS− trials, in the fine DC group, predictions were 
not different from CS+ trials at the start [βCS- = − 0.186, SE = .260, z = − 0.716, p = .474] but evolved differently 
throughout the experiment as no-US predictions became more likely [βCS-:repetition = − 0.032, SE = .007, z = − 4.947, 
p < .001]. While for the coarse DC group, no-US responses were more likely during CS-trials from the start 
[βCS- = − 3.478, SE = .543, z = − 6.404, p < .001] and occurred more often with CS− repetitions [βCS-:repetition = − 0.043, 
SE = .009, z = − 4.795, p < .001]. Group comparisons were in line with the results from the groupwise analy-
sis and revealed (1) more US predictions during CS+ trials in the SC and coarse DC groups compared to the 
fine DC [βdelta = 0.960, SE = .308, z = 3.120, p = .002]; βdelta = 1.280, SE = .322, z = 3.972, p < .001]] with no differ-
ence between the former [βdelta = 0.320, SE = .327, z = 0.980, p = .327]); (2) stronger increases in US predictions 
across CS+ repetitions for the SC compared to both DF groups [βdelta = − 0.032, SE = .009, z = − 3.610, p < .001; 
βdelta = − 0.035, SE = .008, z = − 4.461, p < .001] with no difference between the latter [βdelta = 0.001, SE = .008, 

Figure 3.  Averaged post-learning US expectancies and standard errors for Experiment 1 (top panel) and 
Experiment 2 (bottom panel). The grey lines in the top panel are the control conditions that received an equal 
amount of CSs but no USs. The red (CS+) and blue (CS−) lines indicate the position of the group’s CSs on the 
test range.
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z = 0.428, p = .669]; (3) for CS- trials, substantially greater no-US predictions in the coarse DC compared to the 
fine DC group[βdelta = − 1.832, SE = .361, z = − 5.075, p < .001]; and (4) no differential increase in no-US predic-
tions across CS− repetitions[βdelta = − 0.005, SE = .008, z = − 0.694, p = .488].

Discrimination. As visible in Fig. 5, there was no change in discrimination acuity from pre- to post-learning, 
as would be reflected by a change in either the mean or the standard deviation of the fitted Normal distributions. 
For most groups, there was anecdotal or moderate evidence in favor of the Null hypothesis (i.e., no difference 

Table 1.  Pairwise comparisons between the CSs per group. As the correction for multiple testing using the 
Holm procedure did not alter the interpretation of our findings, we only reported uncorrected p-values.  
* = p ≤ .05, ** = p ≤ .01, *** p ≤ .001 

45° versus 40° 45° versus 10°

Experiment 1

 Simple t(38) = 2.11, p = .042* t(38) = 5.47, p < .001***

 Fine DC t(39) = 0.78, p = .435 t(39) = 3.10, p = .004**

 Coarse DC t(39) = 2.27, p = .029* t(39) = 6.70, p < .001***

Experiment 2

 Simple t(40) = 1.31, p = .197 t(40) = 3.34, p = .002**

 Fine DC t(38) = 0.60, p = .554 t(38) = 3.96, p < .001***

 Coarse DC t(40) = 0.21, p = .834 t(40) = 6.59, p < .001***

Figure 4.  Average US predictions across fear conditioning trials in Experiment 2. Error bars denote standard 
errors of the mean.
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between both group distributions) (see Table 2). As a sensitivity analysis, we reran the model, only including 
participants of Experiment 2 who passed a pre-defined learning criterium (Response probability of predicting 
US > .5 for the last 20 CS+ trials, in case of a differential group, also a probability of predicting the US < .5 for the 
last 20 CS− trials) and found very similar patterns. See SI for the posterior means of the group parameters and 
their 95% credible intervals. Inspection of the individual posterior distributions of the difference scores between 
pre- and post-conditioning standard deviations revealed that for most participants, zero was within the 95% 
credible interval, indicating insufficient evidence for improvements or deterioration in discrimination acuity 
(Fig. 6).

Discussion
In two online experiments, we investigated the impact of fear learning on the ability to discriminate the stimulus 
predictive of an aversive outcome from other similar physical stimuli. Retrospective US expectancy ratings in 
both experiments and US predictions during learning in Experiment 2 indicated that overall, participants learned 
to predict the aversive outcome. Despite successful learning, we failed to find evidence favoring learning-induced 
changes in perceptual discrimination acuity. On the contrary, in most groups, we found weak to moderate 
evidence that aversive learning did not alter discrimination acuity. Furthermore, we did not find evidence for a 
moderating effect of the type of learning experience. Our findings suggest that other (methodological) aspects, 
beyond those investigated, may be responsible for the previous incongruent findings.

The lack of an effect in any of the three experimental groups in Experiment 1 was unexpected, given that 
the adopted procedures closely resembled those used by Stegmann et al.15, who found an effect, namely an 
improvement in the discrimination of low-level visual features. Also, the observed gradients in US expectancy 
ratings, similar to those reported by Stegmann et al.15, indicate successful (differential) learning and rule out the 
possibility that the absence of the effect was due to learning failures. However, the presence of a symmetrical 
gradient in the fine DC group (in contrast to the expected asymmetrical gradient in the coarse DF group) raised 
some concerns regarding differential learning in this particular  group31,32. In the second experiment, we included 
US predictions during the acquisition phase to foster learning and measure it more directly. The findings from 
Experiment 2 further support that the absence of an effect of learning on discrimination acuity did not stem from 
learning failures in the experimental groups. However, as large interindividual differences existed in learning 
trajectories, we rerun our analysis after only including participants that met a preregistered learning criterium. 
This did not alter the findings.

One reason for the different findings across studies may lie in the analysis method for the discrimination data. 
Both studies fitted distributions with their variance as an index of discrimination acuity. In Stegmann et al.15, 
inferential statistics (i.e., rmANOVAs) on the obtained individual parameter estimates were used, with param-
eters estimated using the maximum likelihood method. Such an approach does not take the uncertainty regarding 
parameter estimates (i.e., that other parameters values could have yielded similar results) into account during 
statistical inferences, while the adopted Bayesian framework in our study did so (as a review  see38,39. To further 
investigate the potential impact of analytical approaches on the results, we reanalyzed the data from Stegmann 
et al.15 using the same method as in the current study. Similar to our findings, we found Bayes factors indicating 
weak to moderate evidence for the absence of an effect (see SI for these additional analyses), thereby contradicting 
the originally reported findings. Due to the wide 95% credible intervals of parameter estimates in Experiment 
1, we increased the number of stimulus presentations in the discrimination task in Experiment 2 to ascertain 
that the parameter uncertainty was not responsible for the observed lack of an effect. As expected, increasing 
the number of measurement points per stimulus led to more certain parameter estimates of discrimination acu-
ity (i.e., the SDs) reflected by the narrower 95% credible intervals in Experiment 2 compared to Experiment 1. 
Despite these reductions in parameter uncertainty, the observed effect remained absent.

The numerous methodological differences between the previous studies prevent an exhaustive discussion. 
Therefore, we will discuss some potential aspects that may explain the incongruent findings. Although, at first 
glance, none seem capable of explaining all of the findings. For instance, unlike the studies that found discrimina-
tion deteriorations after learning, an absolute stimulus identification task has never been adopted in the studies 
that found learning-induced improvements. During an absolute stimulus identification task, participants must 
identify the CSs from memory along a range of presented stimuli with large interstimulus intervals. Compared 
to two-alternative-forced-choice (or 3-AFC) tasks with brief or no stimulus intervals, this task depends more on 
memory processes. However, Shalev et al.13 demonstrated reduced stimulus discrimination using both a two-
alternative forced choice task and an adjusted staircase method (see  also11, rendering this explanation unlikely. 
Another cause of the divergent findings may be the modality of the CS. Most studies that reported improvements 
in discrimination acuity used odors as CSs, while auditory CSs were used in most studies that found deteriorated 
discrimination. Yet, Rhodes et al.14 found discrimination improvements using Gabor patches and Shalev et al.13 
demonstrated learning-induced deteriorations using both auditory and different visual CSs. Finally, we used 
visual USs, which may be less aversive than some of the other used US modalities in previous human research 
(somatosensory, auditory, olfactory) and are certainly less aversive than the electrical stimulations that are usually 
employed in animal  research5. Our different US pictures were perceived as unpleasant but only mildly arousing 
(see SI). Given that learning-induced discrimination changes have also been observed for positive USs (e.g., 
monetary reward), it could be that not the valence but the degree of arousal may be an essential determinant to 
observe the effect. However, as arousal ratings were not reported for most of the previously used USs, it remains 
unclear whether aversive shocks, loud noises, negative sounds, monetary loss, or aversive odors were more 
arousing than the aversive pictures used in our study.

Of note, the online format of the current study meant reduced control over external factors such as the size, 
luminance, and quality of the display that may affect discrimination acuity. These factors may have not only 
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Figure 5.  Averaged responses during the 2AFC discrimination test. The grey lines indicate the total amount of 
presented trials per stimulus per discrimination task. Error bars denote standard errors.

Table 2.  Bayes factors.

Bayes factor—Delta Mu Bayes factor—Delta SD

Experiment 1

 Simple 0.637 0.247

 Fine DC 0.441 0.325

 Coarse DC 0.450 0.323

 Simple—Control 0.734 0.339

 Fine DC—Control 0.556 0.220

 Coarse DC—Control 0.454 0.258

Experiment 2

 Simple 0.577 0.243

 Fine DC 0.309 0.262

 Coarse DC 0.311 0.263
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influenced discrimination performance but also may moderate differential learning, as stimuli that have more 
contrast and a larger visual angle are easier to distinguish. However, we argue that technical differences—being 
a constant property within participants—are canceled out in the pre-post comparisons, which were the primary 
outcome. Another less controllable factor in online research compared to in the laboratory is the presence of 
distractors. However, several inclusion criteria were implemented to ensure that only attentive participants were 
included (i.e., US memory score < 7, amount of missing data > 15%, and the question about serious responding). 
Furthermore, a re-analysis of the data with only participants who demonstrate learning did not yield any dif-
ferent conclusions, rendering the possibility that our findings stem from inattentive responding rather unlikely. 
A final limitation is that the exclusion criteria for the memory task only applied to the experimental but not to 
the control groups. However, since the number of participants excluded due to bad memory performance was 
relatively small (21 of 449 participants that completed the studies), we assume this did not lead to systematic bias 
between groups. Apart from the inherent limitations of an online study, there are also several advantages to online 
research. For instance, it allows for a very conservative power analysis with a large sample size. Given the ease of 
data collection, we imposed stricter inclusion criteria compared to most laboratory studies, especially regarding 
participants’ behavior during the experiment. Another advantage is that it enabled us to obtain a more heter-
ogenous and representative sample with participants from various countries and ethnical backgrounds, which 
should increase the generalizability of our findings (see SI for sample demographics)40. Finally, past research has 
validated experimental online research to study various cognitive and affective  processes41,42.

In conclusion, this study further contributes to the ongoing debate if associative learning can modify how we 
perceive our surroundings and, if so, to what extent. Contrary to prior assumptions, our findings indicate that 

Figure 6.  The difference in discrimination acuity between pre- and post-conditioning, as reflected by the 
individual posterior estimates of the standard deviations of the fitted Normal distributions in the experimental 
groups from Experiment 1 (top panel), the control groups from Experiment 1 (middle panel), and the 
experimental groups from Experiment 2 (bottom panel). The dots represent the posterior means. Error bars 
denote the 95% credible intervals.
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aversive learning does not necessarily enhance perceptual discrimination, nor does the presence of additional 
safety cues appears to affect this outcome. Overall, our findings and the inconsistent results of previous research 
suggest that conclusions regarding any modulatory effects of associative learning on perception should be made 
cautiously. Especially as re-analysis of some previously reported positive findings actually revealed weak to 
moderate evidence in favor of the absence of an effect.

Data availability
We preregistered the studies on the Open Science Framework (https:// osf. io/ hz2sa; https:// osf. io/ 7wn3g) and 
explicitly mention any deviations. The datasets generated and/or analyzed during the current study are avail-
able in the Open Science Framework repository, https:// osf. io/ rkbp9, together with all analyses code and the 
experiment.
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