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Impact of cerebellar-specific genetic and circuit 
manipulations on the behavioral phenotype and 
cerebellar physiology in murine autism models
Lucas Wahl*, Ines Serra* and Aleksandra Badura

Clinical evidence suggests that developmental cerebellar injury 
and cerebello-cortical connectivity abnormalities are often 
present in autism. In mouse models, cerebellar-specific 
deletions of autism risk genes, or temporally constrained, 
developmental manipulations of cerebellar circuits, elicit 
autistic-like behaviors. Nonetheless, behavioral and 
electrophysiological findings are inconsistent within and across 
models. Additionally, while cerebellar manipulations during 
development can induce autistic phenotypes, studies of early 
cerebellar function and connectivity are scarce. 
In this review, we discuss the impact of cerebellar-specific 
genetic mutations and circuit manipulations on adult behavior 
and cerebellar neuronal activity in murine autism models. We 
also explore how cerebellar development can impact the 
establishment of mature circuits, and we consider the existing 
gaps regarding the use of murine models to elucidate the 
cerebellar role in autism.
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Introduction
Autism spectrum disorder is one of the most frequently 
diagnosed neurodevelopmental conditions, involving a 
range of characteristics, including deficits in social interac-
tion and communication, along with inflexible and repetitive 
behaviors. It has long been known to have a strong genetic 

causation [1] and, according to the Simons Foundation 
Autism Research Initiative database, at the time of writing 
this review, over 1100 genes have been identified that sig-
nificantly increase the possibility of receiving an autism di-
agnosis. However, despite the breadth of genetic knowledge 
on autism susceptibility, studies have failed to identify a 
shared molecular substrate. Therefore, research on autism 
has been increasingly focusing on identifying common 
molecular and anatomical pathways that may underlie core 
autistic phenotypes.

While there is no single brain abnormality evident in all 
autistic people, clinical evidence has placed develop-
mental cerebellar injury and cerebello-cortical con-
nectivity abnormalities at the forefront of the 
pathological findings observed in children and adults 
with an autism diagnosis [2–4]. Furthermore, several 
high-confidence autism risk genes are prominently ex-
pressed in the cerebellum [5,6], with some showing a 
significant enrichment in this region [7]. Researchers 
have hypothesized that because the cerebellum begins 
cellular differentiation very early on in development and 
is one of the last structures to fully mature, it might be 
particularly vulnerable to genetic and environmental 
factors that derail its developmental trajectory [3].

The aim of this review is to discuss how autism mouse 
models representing (1) cerebellar-specific deletions of high- 
confidence autism risk genes, and (2) cerebellar circuit ma-
nipulations, impact adult mouse behavior and electro-
physiological properties of the cerebellar neurons. We also 
explore the developmental mechanisms of how cerebellar- 
specific manipulations could lead to brain-wide abnormal-
ities and autism-like phenotypes. Finally, we consider future 
research directions using mouse models that could further 
elucidate the role of cerebellar development in autism.

Of note, in this review, we alternate between person-first 
(person with autism) and identity- first (autistic person) 
language, as both of those terms are currently preferred 
by the autism community [8].

Cerebellar-specific mutations of autism risk genes show 
commonalities between phenotypic impairments in 
autism-like behaviors
In recent years, several studies employing the targeted 
deletion of known autism risk genes in the cerebellum 
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have been employed to unravel the intricate genetic 
mechanisms underlying cerebellar dysfunction. The 
targeted deletion of these genes within the cerebellum 
has provided valuable insights into their functional sig-
nificance in cerebellar development, maintenance, and 
overall neurological function. Many studies have suc-
cessfully reproduced phenotypes resembling human 
autism-like characteristics, including motor coordination 
deficits, affected social interactions, and cognitive im-
pairments (Table 1). 

Targeted, conditional deletions of autism risk genes in 
the cerebellum have so far focused on genes encoding 
scaffolding proteins, which are members of the signaling 
cascade downstream of cell surface receptors (Shank2  
[9,10] and Grip1/2 [11]), genes in the mechanistic target 
of rapamycin (mTOR) signaling pathway, responsible for 
cell growth and migration (Pten [12], Tsc1 [13–17], Tsc2  
[18], and mTOR [19]), the p75NTR gene encoding the 
p75 neurotrophin receptor [20], which mediates cell 
survival and regulates axonal growth and proliferation, 
the Auts2 gene, a key regulator of the transcriptional 
network during brain development [21], as well as the 
clock gene Bmal1 [22] and Scn8a that encode a voltage- 
gated sodium channel [23–26]. 

In most cases, cerebellar-specific deletions of above-listed 
genes result in impairments in cerebellar-dependent be-
haviors, as seen by affected motor coordination  
[10,12,16–19,21–24] and motor learning [9,12,16,17,21–24]. 
Additionally, when examined for autism-like behaviors, 
cerebellar-specific targeting of autism risk genes showed 
clear effects on the behavioral phenotype with impair-
ments in social interactions [9,12,16–18,20,22,24] and in-
creased presence of stereotypes [9–11,16–18,20,24], 
providing important evidence for the role of cerebellar 
functioning in autism-like phenotypes. 

Notably, although cerebellar autism models showed 
strong similarities in behavioral patterns, stereotypical 
behavior was not consistent within nor across models. 
Mice with a Purkinje cell (PC)-specific Pten mutation 
showed decreased grooming duration, yet significantly 
increased upright scrabbling and jumping [12]. Ad-
ditionally, PC-specific Tsc1 mutant mice were found to 
show increased levels of grooming behavior in a study by 
Tsai et al. in 2012 [16], but presented with a far lower 
grooming frequency than wild-type (WT) mice in a 
study by Klibaite et al. in 2022 [13]. Mice with PC- 
specific mutations in the Bmal1 gene were found to have 
an increased number of both spontaneous grooming 
bouts and water puff-induced grooming compared with 
WT mice, while displaying strong impairments in both 
the marble-burying test and the nestlet shredding test  
[22]. The available data thus suggest that stereotypic 
behavior exhibits distinct regulatory patterns associated 
with various genetic mutations, in contrast to the ma-
jority of other autism-like behaviors. Grooming, marble 
burying, and nestlet shredding are all commonly de-
scribed as ‘stereotypic behaviors’. In a recent study by 
Silverman et al. [27], the authors urge caution in attri-
buting results from a single task to a general behavioral 
domain (such as ‘stereotypic behaviors’ or ‘sociability’). 
Instead, the authors suggest that the results from a task 
should be considered solely as a measure of a group’s 
performance in that task, as different tasks may measure 
different aspects of a behavioral domain. The conflicting 
findings in stereotypic behaviors underscore the im-
portance of evaluating multiple assays across multiple 
domains of behavior, which will facilitate comparisons 
between available models. Interestingly, the manifesta-
tion of anxiety-like behavior showed sexually divergent 
expression in mice with PC-specific Tsc2 deletion. Fe-
male Tsc2 mutant mice spent slightly less time in the 
center of an open-field arena, whereas male Tsc2 mutant 

Table 1 

Behavioral overview of autism-like phenotypes in mouse models with cerebellar-specific mutations.   

*GOF— gain-of-function mutation leading to mTORC1 hyperactivation; **En1-Cre — localized deletion to the rhombomere-1-derived brain area 
including the cerebellum; ↑, significantly higher in mutants than in WT animals; ↓, significantly lower in mutants than in WT animals; -, mutants did 
not differ significantly from WT; ∼, differences between mutant and WT mice were mixed. Numbers denote references.  
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animals were found to spend slightly more time in the 
center of the apparatus [18]. 

Cerebellar signaling is impaired in autism mouse models 
with targeted genetic mutations 
To gain deeper insights into the impact of targeted de-
letions of autism risk genes in the cerebellum, several of 
the available studies also used these mouse models to 
conduct electrophysiological recordings (Table 2). Al-
though there is sparse overlap between the exact mea-
surements analyzed, some commonalities can be found. 
For example, cerebellar-specific mutant mice for Pten, 
Bmal1, Scn8a, mTORC1, and Auts2 showed significant 
increases in (m)EPSC amplitude [12,19,21–23]. Ad-
ditionally, lower SS firing frequency was observed in 
mice with PC-specific deletion of Tsc1, Bmal1, and Scn8a  
[14,16,22,23]. Reduced evoked excitability was observed 
in mice with PC-specific mutations in the Pten, Tsc1, and 
mTORC1 genes [12,16,17,19], which could potentially be 
attributed to their shared involvement within the 
mTOR pathway [28]. Short-term plasticity was observed 
to be reduced in mice with PC-specific knockout of the 
Scn8a gene, while those with PC-specific mutations in 
the Shank2 and Tsc1 genes displayed no alterations in 
synaptic plasticity [10,16,23]. These studies show that 
cerebellar signaling abnormalities in autism mouse 
models with targeted genetic mutations can provide in-
sights into the underlying mechanisms of cerebellar 
dysfunction in autism. These findings contribute to our 
understanding of how behavioral and cognitive impair-
ments in individuals with autism might originate from 
cerebellar defects. 

Targeted cerebellar circuit manipulations and 
interventions provide a substrate for behavioral defects 
in autism 
Acute, targeted cerebellar manipulations such as lesions, 
optogenetic silencing, and stimulation, as well as rescue 
experiments, have been used in addition to genetic 
models to unravel the functional principles of the 

influence of cerebellar dysfunction on the cognitive and 
behavioral features of autism (Table 3). In PC-Tsc1 
mutant mice, continuous treatment with the mTOR 
inhibitor (rapamycin) initiated at P7 showed ameliora-
tion of all behavioral deficits and normalized PC excit-
ability [16]. A follow-up study identified a critical period 
from P7 to P35 in PC-Tsc1 mice for the onset of social 
and motor learning deficits, where rapamycin treatment 
rescued behavioral deficits as well as PC survival, tonic 
firing frequency, and intrinsic excitability [17]. However, 
no critical period was identified for stereotyped behavior 
as rapamycin treatment did not affect the repetitive 
grooming phenotype. The authors propose that the cri-
tical period for the contribution of mTOR signaling on 
repetitive behavior and behavioral inflexibility extends 
past the tested period and/or remains plastic into 
adulthood, while also being controlled by different cir-
cuitry from other autism-like impairments such as social 
behavior. This could aid in explaining the previous 
finding that the expression of stereotypical behavior 
exhibits significant variability exclusively within mutant 
mouse models with PC-specific mutations (Table 1). 
Similarly, rapamycin treatment was able to rescue social 
behavior and social novelty preference in PC-specific 
Tsc2 mutant mice [18]. 

Using selective optogenetic stimulation of cerebellar 
axons in the ventral tegmental area of WT C57BL/6 
mice showed cerebellar inputs to this area are required 
for intact social preference but cannot, on their own, 
promote social interactions [29]. In C57BL/6 mice, both 
social associative memory and social recognition were 
shown to be impaired after manipulations using neuro-
toxic lesion or chemogenetic excitation of PCs in lobule 
IV/V in a study by Chao et al. [30]. The targeted lesion 
of lobule-IV/-V PCs also induced excessive repetitive 
grooming behavior in treated animals. In an earlier 
paper, Chao et al. were able to rescue excessive 
grooming behavior in BTBR T+tf/J (BTBR) mice, by 
using the Kv1.2 agonist docosahexaenoic acid (DHA) to 

Table 2 

Overview of changes in PC activity in genetic autism mouse models with cerebellar-specific mutations.   

*GOF— gain-of-function mutation leading to mTORC1 hyperactivation; ↑, significantly higher in mutants than in WT animals; **En1-Cre — localized 
deletion to the rhombomere-1-derived brain area including the cerebellum; ISI, interspike interval; mIPSC, miniature-inhibitory postsynaptic 
currents; mEPSC, miniature-excitatory postsynaptic currents; EPSC, excitatory postsynaptic currents; SS, simple spike; CS, complex spike. ↓, 
significantly lower in mutants than in WT animals; -, mutants did not differ significantly from WT; ∼, differences between mutant and WT mice were 
mixed. Numbers denote references.  
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partially alleviate the reduced intrinsic excitability and 
firing regularity [31]. These results demonstrate the 
importance of anterior cerebellar functioning on social 
and repetitive behavior in autism. Likewise, healthy 
cerebellar functioning in lobule IV and bilateral crus I 
was shown to be essential for behavioral flexibility as 
designer receptors exclusively activated by designer 
drug (DREADD)-inhibited PCs in C57BL/6 mice led to 
strong impairments in reversal learning [32]. Similarly, a 
study by Badura et al. found that both developmental 
and acute inactivation of molecular layer interneurons 
(MLIs) in crus I, but not crus II or lobule VI, was able to 
disrupt learning during eyeblink conditioning perfor-
mance. However, while developmental DREADD 
MLI inactivation of crus I or II in juvenile C57BL/6J 
mice abolished the preference for a social stimulus over 
an object in the three-chambered test, acute inactivation 
of MLIs in lobule VI, VII, and crus I or II in adult 
C57BL/6J mice did not affect social preference [33]. 
Juvenile disruption of lobule VII caused impairments in 
repetitive self-grooming, while adult manipulations did 
not show the same effect [33]. Therefore, cerebellar 
manipulations consistently show both region-specific 
and developmental critical periods for the development 
of autism-like behavior, providing anatomical and de-
velopmental substrates for the involvement of cerebellar 
development in the behavioral repertoire in autism. 

Cerebellar development — a susceptibility window 
In humans, cerebellar development is initiated early in 
gestation, with distinguishable macrostructures identi-
fied during early fetal development, at 6 postconception 
weeks, that grow linearly with the cerebrum [34,35]. 
Between 15 and 22 weeks of gestation, the absolute 
volume of the cerebellum increases 5.3-fold, and at a 
higher rate than the supratentorial brain from week 17, 
with the anterior lobe appearing to have a faster growth 
rate than the posterior one [36]. Later, the cerebellum 
continues to grow in utero and its volume increases 5-fold 
between gestation week 24 and birth [34]. In mice, 
cerebellar development follows similar steps to that of 
humans, albeit at a disparate rate. The cerebellar pri-
mordium can be seen from embryonic days 7–8, fol-
lowed by a smooth cerebellar-like structure at E15, with 
foliation beginning at around E16.5 [37,38]. 

In both species, the cerebellum undergoes extensive 
growth after birth. In the first 90 days of human devel-
opment, the cerebellum shows the largest increase in 
overall volume compared with other areas of the brain  
[39]. This is not a constant linear growth, rather a U- 
shaped one, with a peak in volume changes found during 
infancy, at around 10–12 years of age, which appears to be 
lobule- and sex-dependent, and that continues until 
adolescence [40]. This growth is also lobe-dependent, as 

Table 3 

Overview of changes in behavior and cerebellar firing patterns as a result from targeted cerebellar manipulations and rescue experi-
ments.      

Reference # Mouse model Manipulation Result  

[16] PC- 
specific Tsc1 

Rapamycin 
P7 to adult 

Rescue of all behavioral deficits, tonic firing frequency, and 
intrinsic excitability 

[17] PC- 
specific Tsc1 

Rapamycin 
P7–P35 
P7–P63 

Rescue of social and motor deficits, tonic firing frequency, and 
intrinsic excitability 
No rescue of repetitive behaviors and behavioral inflexibility 

[18] PC- 
specific Tsc2 

Rapamycin 
P10 to adult 

Rescue of social behavior and social novelty preference 

[29] C57BL/6 Optogenetic stimulation of cerebellar axons in 
the ventral tegmental area 

Cerebellar inputs to this area are required for intact social 
preference 

[30] C57BL/6 Neurotoxic lesion or DREADD excitation of 
lobule-IV/-V PCs 

Impaired socio-associative memory and social recognition and 
induced excessive repetitive grooming behavior 

[31] BTBR Kv1.2 agonism with DHA Partially rescued reduced intrinsic excitability and firing 
regularity 

[32] C57BL/6 Acute (adults) DREADD inhibition of PCs 
[crus I bilateral, crus I left, crus I right, 
and lobule VI] 

Strongly impaired reversal learning in lobule VI and bilateral crus 
I PC inhibition 

[33] C57BL/6 Developmental (juveniles) or acute (adults) 
DREADD inhibition of MLIs 
[crus I right, crus II right, lobule VI, and 
lobule VII] 

Inactivation of crus I, but not crus II or lobule VI, impaired 
learning during eyeblink conditioning 
Developmental inactivation of crus I or II in impaired social 
preference 
Acute inactivation of lobule VI, VII, or crus I or II did not affect 
social preference 
Developmental, but not acute, inactivation of lobule VII caused 
impairments in repetitive grooming 

Numbers denote references.  
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myelin content tends to increase over time in cerebellar 
lobules involved in high-association processes, while it 
remains constant or decreases in lobules involved in 
sensory processing [40]. In addition to region- and sex- 
dependent growth variation, cerebellar white matter de-
velopment is also modulated by placental hormone pro-
duction, with structural abnormalities being found both in 
genetic models of placenta allopregnanolone reduction 
and in brain tissue from preterm infants [41]. In the 
mouse, the majority of cerebellar cell types are still un-
dergoing generation and migration during early postnatal 
development. This sequential development and the ma-
turation of distinct cell types leads to progressive mod-
ifications of firing properties and gene expression, which 
ultimately leads to the appearance of a mature cerebellum 
at around one month postnatally [42,43]. 

This long window of time during which the cerebellum 
develops, extending from the protected in utero en-
vironment to later postnatal periods, makes it a parti-
cularly sensitive structure, susceptible to developmental 
insults that can affect not only its own development but 
also the connectivity with other cerebral areas. Although 
data on connectivity during cerebellar development are 
scarce, in the mouse brain, cerebello-thalamic tract axons 
can already be seen invading the thalamic anlage from 
E17.5 and, one day later, these are also seen in layer VI 
of the developing cortex [44]. Conversely, afferent fibers 
into the cerebellum are found from E12 and these all 
seem to be established at the time of birth [45]. In in-
fants, functional connectivity between the cerebellum 
and the frontoparietal and default mode networks can be 
detected during very early postnatal stages, including in 
preterm children [46,47]. Of note, although connectivity 
with sensorimotor cortical components is more salient 
during this period, cerebello-cortical networks encom-
passing default mode, executive control, and planning 
systems become stronger during childhood, exhibiting 
representations similar to those found at later stages  
[46,48]. Ultimately, the adult brain presents with net-
works that connect distinct cortical primary motor, sen-
sory, and association areas with the cerebellum and 
cerebello-cortical connections that primarily innervate 
forebrain-associative areas [49,50]. 

The early anatomical involvement of the cerebellum with 
nonmotor areas is also reflected on the effects of cere-
bellar manipulations in preadult stages. Although murine 
studies investigating the effects of cerebellar manipula-
tion during development are very scarce, as previously 
mentioned, these have been shown sufficient to elicit 
autism-like behaviors [33]. Of note, some of these altered 
behaviors, including impaired social communication, have 
been detected at very early ages (P7) [51,52], suggesting 
an important role of the cerebellum in driving these be-
haviors before the establishment of fully mature networks 
with the cerebrum. Furthermore, given the large number 

of autism mouse models where cerebello-cortical con-
nectivity is altered [53], these early cerebellar manipula-
tions are expected to cause considerable behavioral 
impact. Accordingly, we observe significant behavioral 
changes in adult mice with the cerebellar-specific muta-
tions described above. However, whether atypical cere-
bellar development contributes to autism-like behavioral 
deficits in more genetically translatable models (i.e. in the 
presence of haploinsufficient genetic mutations) remains 
to be investigated. 

Conflicting evidence and outstanding questions 
Autism is highly complex and multifactorial, with both 
environmental and genetic factors contributing to its es-
tablishment. As a result of these heterogeneous pheno-
types, evidence from the investigation of shared features 
as possible biomarkers for autism has been highly con-
flicting. A number of reports have indicated PC loss in the 
cerebellum, and hypoplasia of the vermis in people with 
autism [54]. However, many of these studies were con-
siderably underpowered [55], particularly for cell counting 
analysis that relied on access to postmortem cerebellar 
tissue. A recent imaging study with a large cohort of 219 
controls and 274 autistic people reported no evidence for 
gross structural changes in cerebellar morphology be-
tween the two groups [56]. Notably, this study does not 
inform on putative connectivity changes, which have in-
deed been previously reported [4], nor does it have the 
cellular resolution to quantify potential cellular abnorm-
alities (i.e. cell count or migration deficits). Large long-
itudinal studies, reporting both structural and functional 
data from the same participants, will be key to resolve 
these conflicting reports and understand the contribution 
of cerebello-cortical networks to the development of au-
tistic phenotypes over time. In accordance with human 
studies, total cerebellar volume, albeit scarcely studied in 
depth in autism mouse models, also appears to be intact, 
although lobule-specific volumetric changes have been 
reported [57]. Nonetheless, a recent study using mono-
genic mouse models of autism was able to cluster 16 ge-
netic groups into 4 distinct cohorts based on functional 
connectivity patterns between distinct brain areas [53]. 
Although it remains unclear whether these multi-
parametric brain connectivity signatures can also be found 
in autistic individuals, the separation of apparent hetero-
geneous phenotypes into distinct autism subgroups could 
aid the identification of autism anatomical and functional 
biomarkers. 

In light of the phenotypic variability described in this 
review, the emergence of novel behavioral analysis tools 
could further aid the classification of heterogeneous and 
variable presentations. Methods, such as Motion 
Sequencing (MoSeq) that uses unsupervised machine 
learning to identify and group discrete mouse behaviors, 
have proven highly effective in the identification of 
behavioral patterns that are usually outside the scope of 
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traditional behavioral assays [58]. This detection and 
clustering of even subtle differences in behavior sig-
natures are crucial to advance the identification of autism 
risk genes and dissect the effects of interventions on 
behavior [27]. 

Finally, our knowledge of cerebellar circuitry develop-
ment in health and disease remains limited, particularly 
due to the lack of techniques to manipulate early cere-
bellar function during perinatal development. Recently, 
a new method for wireless light emitting diode (LED) 
implantation in newborn mice was described, potentially 
enabling optogenetic control in mice as young as 10- 
days-old [59]. The combination of novel methods for 
early cerebellar manipulation, combined with direct 
comparisons of murine and human imaging data, will 
provide a great opportunity to expand our knowledge of 
cerebellar circuitry development in health and disease  
[4,41]. The ultimate goal of future research would be to 
causally test the hypothesis stating that developmental 
injury limited to the cerebellum is sufficient to alter 
circuit formation within cortical, autism-relevant areas at 
an anatomical and/or functional level [54]. 
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