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Introduction 

The liver is a large organ found in the upper right quadrant of the abdomen.1 It is responsible for an array 

of functions that are involved in metabolism, immunity, digestion, detoxification, vitamin storage, blood 

clotting, and many other functions.2 Underlying etiologies in liver disease comprise viruses (Hepatitis A, 

B, C, D, and E), drugs, toxins, excessive alcohol drinking, metabolic and autoimmune diseases, and 

genetics 3, 4. Most of these etiologies will eventually lead to liver fibrosis and cirrhosis (end-stage liver 

disease), which is when the liver fails to maintain the above mention functions. Obesity and alcohol 

consumption are two main risk factors for fatty liver disease (FLD), and they frequently coexist.5 

Moreover, there are considerable synergistic interaction effects between hazardous obesity-associated 

metabolic abnormalities and alcohol use in the development and progression of fatty liver disease. 

Fatty liver disease includes two forms of alcoholic and non-alcoholic fatty liver disease (NAFLD). The 

latter form is closely linked to metabolic dysfunction and is the most common cause of chronic liver 

disease worldwide with a prevalence of over 33%.6-8 This indicates the ongoing extent of FLD as a global 

health care burden, especially in developing countries. FLD is a term used to describe a range of related 

disorders (Figure 1). The earliest stage is hepatic steatosis which can progress into steatohepatitis (lobular 

inflammation and hepatocyte ballooning), a subpopulation of 10-20%  of FLD individuals will further 

progress to fibrosis (scar tissue accumulation), and among them, 20% will develop to liver cirrhosis which 

in turn will cause hepatocellular carcinoma (HCC).9-11 However, of special worry is the fact that non-

cirrhotic individuals with steatohepatitis and fibrosis are also at an increased risk of developing HCC.12 

 

Figure 1. The spectrum of fatty liver disease (Figure created with https://txliver.com/patient-education/fatty-liver-

2) Abbreviation: NAFLD, non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis.  

Further complicating matter is the fact that NAFLD rarely cause the symptoms which are known to be 

liver related such as jaundice, a yellowing of the skin and the whites of the eyes, abdominal 

pain (especially on the right side), changes in the color of urine or stool, fatigue, nausea or vomiting, and 

finally easily bruising caused by impaired clotting, and swelling in the arms or legs (edema). Hence many 

https://www.kenhub.com/en/library/anatomy/right-upper-quadrant
https://www.kenhub.com/en/library/anatomy/abdomen-and-pelvis
https://www.sciencedirect.com/topics/medicine-and-dentistry/chronic-liver-disease
https://www.sciencedirect.com/topics/medicine-and-dentistry/chronic-liver-disease
https://www.science.org/doi/full/10.1126/science.1204265#F1
https://txliver.com/patient-education/fatty-liver-2
https://txliver.com/patient-education/fatty-liver-2
https://my.clevelandclinic.org/health/symptoms/4167-abdominal-pain
https://my.clevelandclinic.org/health/symptoms/4167-abdominal-pain
https://my.clevelandclinic.org/health/symptoms/21206-fatigue
https://my.clevelandclinic.org/health/symptoms/8106-nausea--vomiting
https://my.clevelandclinic.org/health/diseases/12564-edema
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techniques have been explored in the last decades to allow the diagnosis of NAFLD including blood liver 

function tests, imaging tests (including ultrasound, MRI, or CT scan), and liver biopsy. At present, no 

drugs or pharmacological agents have been approved for the long-term treatment of NAFLD, but 

Resmetirom which is a thyroid hormone receptor agonist might be the first one to be approved.13 

Therefore, adopting a healthy lifestyle such as weight loss remains the cornerstone of treatment and has 

been shown in controlled trials to improve hepatic steatosis, hepatic inflammation, and fibrosis.14 

Nomenclature of fatty liver disaese 

In 1836, The term ‘fatty liver’ was first described by Thomas Addison from Newcastle upon Tyne, 

England.15 Subsequently, in 1838 the pathologist Karl Rokitansky from Vienna, Austria documented 

hepatic fat accumulation that might be causative of cirrhosis in the autopsy specimens.16 In 1958, 

Westwater and Feiner reported the histological findings of fatty infiltration of the liver in obese patients. 

In 1980, the term NAFLD and non-alcoholic steatohepatitis (NASH) was coined by Jurgen Ludwig to 

describe the progressive form of fatty liver disease.17 

The current guidelines and consensus recommendations of NAFLD definition requires the exclusion of 

other causes of liver diseases and of a daily significant amount of alcohol, but the exact cut-offs to define 

‘significant’ remains hotly debated. The proposed thresholds of alcohol consumption have varied from ≤1 

drink (14 g/day) to 2-3 drinks (<30 g/day) in men and <20 g/day for women.7, 18, 19 

Over the last two decades, many criticisms have been voiced about the nomenclature and definition of  

NAFLD.17 Therefore, a panel recently reached a consensus that the disease should be renamed metabolic- 

associated fatty liver disease (MAFLD) and that the disease should be diagnosed by positive criteria.20 

The new inclusion-based diagnosis requires the simultaneous presence of both steatosis and metabolic 

dysfunction, and it is crucial to note that individuals with secondary causes of steatosis are not excluded 

from this diagnosis. This would open the door for efforts from the research community to update the 

nomenclature and sub-phenotype of the disease to accelerate the translational path to new treatments. 

Metabolic dysfunction was defined as a cluster of conditions that occur together including overweight, 

diabetes, or a combination of at least two minor criteria, such as increased blood pressure, high blood 

sugar, excess body fat around the waist, and abnormal cholesterol or triglyceride levels. Despite the 

increasing and strong evidence supporting the superior usefulness of the term MAFLD in clinical and 

academic practice, controversy abounds.21 

Although both MAFLD and NAFLD are highly prevalent in the general population, with considerable 

overlap between them,22 compared to NAFLD, significantly more individuals were additionally identified 

by MAFLD than were missed. Particularly, by using the MAFLD criteria, more individuals with liver 

damage were identified.  

https://my.clevelandclinic.org/health/diagnostics/4994-abdominal-ultrasound
https://my.clevelandclinic.org/health/diagnostics/4876-magnetic-resonance-imaging-mri
https://my.clevelandclinic.org/health/diagnostics/4808-ct-computed-tomography-scan
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More recently, the global community has further chosen steatotic liver disease (SLD) as a comprehensive 

term encompassing the various causes of steatosis.23 The term steatohepatitis was recognized as an 

important concept in understanding the pathophysiology and is retained within the new framework. Also, 

NAFLD has referred to as metabolic dysfunction-associated steatotic liver disease (MASLD), which 

includes patients with hepatic steatosis who also have at least one of five cardiometabolic risk factors such 

as overweight, fasting serum glucose, blood pressure, plasma triglycerides, and plasma HDL-cholesterol.  

To accommodate individuals with MASLD who consume higher amounts of alcohol, a new category 

called MetALD has been introduced. MetALD describes individuals with MASLD who consume 140 

g/week and 210 g/week of alcohol for females and males, respectively. Individuals with no metabolic 

parameters and no known cause for liver disease are categorized as having cryptogenic SLD. Additionally, 

metabolic dysfunction-associated steatohepatitis (MASH) replaces the term NASH in the updated 

classification. These updates, may provide a platform from which can increase disease awareness, reduce 

stigma and accelerate drug and biomarker development for the benefit of patients with MASLD, MASH 

and MetALD. 

The pathphysiolgy of fatty liver disease 

For many years, the so-called "two-hit model" of FLD pathogenesis has been accepted, according to which 

the disease began with simple steatosis (the first hit) and progressed to NASH through risk factors such 

as oxidative stress (the second hit).24 However, we now understand that FLD pathophysiology is 

heterogeneous, multifactorial, and unlikely to be the same in every patient.25 To understand the 

pathogenesis of FLD the most accepted hypothesis, a "multi parallel hits hypothesis", suggesting more 

sophisticated mechanisms based on the most current research, and it comprises a combination of elements 

rather than in series.26 This hypothesis proposes that lipotoxicity of adipose tissue and alterations in gut 

microbial functions contribute to the evolution of inflammation and fibrosis in NAFLD.27 

Recent insights into the pathogenesis of FLD indicate a complex interaction among environmental factors 

like obesity, changes in microbiota, and predisposing genetic variants resulting in disturbed lipid 

homeostasis and an excessive accumulation of triglycerides and other lipid species in 

hepatocytes.28 Insulin resistance also plays a role in the development of FLD by increasing hepatic de 

novo lipogenesis and inhibition of adipose tissue lipolysis, with a subsequently increased flow of fatty 

acids (FA) in the liver.29 Fat accumulates within the hepatocytes mainly as triglycerides originating from 

the esterification of glycerol and free FAs30 (Figure 2). 

Previous studies have detected that genetic factors and polymorphisms of several genes contribute to FLD 

and its results.31-33 Yet, clinical investigations exploring the epigenetic reprogramming in non-alcoholic 

steatohepatitis (NASH) are in their early stages, but among the epigenetic markers, DNA methylation and 

microRNAs (miRNAs) have been extensively studied in relation to the risk of FLD.34 
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Furthermore, gut microbiome symbiosis may play a significant role in the pathogenesis of FLD by 

dysregulating the gut–liver axis35 and is linked to a variety of extra intestinal diseases, including metabolic 

diseases such as insulin resistance and obesity.36 Alteration of the gut microbiota associated with obesity 

and insulin resistance has consequences on both the homeostasis of energy and the systemic inflammation 

secondary to endotoxemia. Excessive fat accumulation in the liver can lead to mitochondrial dysfunction 

and endoplasmic reticulum stress and activation of the unfolded protein response, which will subsequently 

lead to the activation of inflammatory responses.37, 38 

 

Figure 2. Multiple hit hypothesis for the development of fatty liver disease. (Figure created with 

ScienceDirect.com) Abbreviations: FFAs, free fatty acids; DNL, de novo lipogenesis; VLDL, very low-density 

lipoproteins; CH, cholesterol; TNF-α, tumor necrosis factor alpha; IL-6, interleukin 6; TG, triglycerides; ROS, 

reactive oxygen species; ER, endoplasmic reticulum; UPR, unfolded protein response; LPS, lipopolysaccharide; 

NAFLD, non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis. 

  

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/free-fatty-acids
https://www.sciencedirect.com/topics/medicine-and-dentistry/lipogenesis
https://www.sciencedirect.com/topics/medicine-and-dentistry/very-low-density-lipoprotein
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/triglyceride
https://www.sciencedirect.com/topics/medicine-and-dentistry/reactive-oxygen-species
https://www.sciencedirect.com/topics/medicine-and-dentistry/endoplasmic-reticulum
https://www.sciencedirect.com/topics/medicine-and-dentistry/unfolded-protein-response
https://www.sciencedirect.com/topics/medicine-and-dentistry/lipopolysaccharide
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Diagnosis of  fatty liver disease   

Currently, liver biopsy remains the gold standard for diagnosing FLD, but its widespread use is limited 

by the risk associated with an invasive procedure, cost, and sampling error.39 Non-invasive imaging 

methods such as mainly conventional ultrasonography, computed tomography, magnetic resonance 

imaging, and other newer imaging technologies, are rapidly evolving and may replace biopsy in some 

circumstances. These imaging techniques are still relatively limited in the detection of inflammation 

(NASH), which is more important than steatosis in terms of its high risk for fibrosis, cirrhosis, and 

hepatocellular carcinoma.40 Ultrasound and magnetic resonance imaging (MRI)-based markers have 

emerged as key noninvasive biomarkers in NAFLD with the ability of MRI to accurately detect hepatic 

steatosis and liver fibrosis.41, 42 Emerging data support the use of MRI-derived proton density fat fraction 

(MRI-PDFF) as a non-invasive, quantitative, and accurate measure of liver fat content.43 With regard to 

imaging of liver fibrosis, most clinical studies have been performed with transient elastography 

(FibroScan®, EchoSens).44-46 The liver stiffness measurement (LSM) interquartile range/median LSM 

>0.3 kilopascals (kPa) and LSM ≥7.1 kPa were regarded as unreliable.47  

In addition, biochemical assessment of FLD including alanine transaminase (ALT), aspartate 

aminotransferase (AST), and gamma-glutamyl  transpeptidase (GGT) has been traditionally used to 

suggest FLD after the exclusion of secondary causes of steatosis. Nowadays, several algorithms 

incorporating multiple clinical and biochemical parameters have been evaluated for the diagnosis of 

simple steatosis. These surrogate markers include fatty liver index (FLI),  an algorithm formula consisting 

of body mass index (BMI), waist circumference (WC), and serum levels of triglycerides and GGT to 

detect FLD with AUC (0.84).48 While Fibrosis-4 (FIB-4) is widely used for the detection of liver fibrosis 

with AUC (0.76) and it is variables comprised of age, AST, ALT, and platelets and has been shown to 

have the best diagnostic accuracy for advanced fibrosis when compared with other noninvasive clinical 

scores.49 

Prevalence and diagnosis of obesity 

Obesity defined as a body mass index (BMI) of above 25 kg/m2, is a global public health issue, with over 

2.2 billion people meeting the definition of overweight or obese in 2015.50 This condition is commonly 

associated with other metabolic disorders, such as type 2 diabetes, non-alcoholic fatty liver disease, 

cardiovascular diseases, and cancers.51 The pathogenesis of obesity involves regulation of calorie 

utilization, appetite, and physical activity, but have complex interactions with availability of health-care 

systems, the role of socio-economic status, and underlying hereditary and environmental factors.52 To 

manage and treat obesity, several approaches are commonly employed, including dietary modifications, 

exercise, supplementation with probiotics/prebiotics, medication, bariatric surgery, and behavioral 

interventions.53 These strategies aim to address the complex nature of obesity and promote healthier 

lifestyles to improve overall well-being. 
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Fortunately, diagnosing obesity is less complicated than the diagnosis of FLD. This is primarily due to the 

availability of more simple and commonly used anthropometric methods for assessing obesity, which 

include measuring weight, stature, abdominal circumference, and skinfold measurements.54 While more 

complex methods include bioelectrical impedance, dual-energy X-ray absorptiometry (DEXA), body 

density, and total body water estimates. BMI was calculated as weight (Kg) divided by height (m2). 

Obesity by BMI was defined as BMI ≥ 30 kg/m2.55 WC was measured at the mid-point between the lower 

border of the ribs and the iliac crest. Women with WC  ≥ 88 cm were classified as obese.55 Waist-hip ratio 

(WHR) was calculated by dividing the average WC by the average hip circumference. WHR ≥ 0.85 were 

classified as obese in women.55 In recent years, DEXA has become the reference tool in clinical routine 

to measure body composition  and fat mass (FM) distribution.56, 57 Furthermore, DEXA measurements are 

considered a strong and independent predictor of type 2 diabetes (T2D) and cardiovascular disease.58 To 

determine the fat mass index (FMI) was calculated by dividing the total fat mass (in kilograms) by height 

squared in meters (m2). FMI classified obesity if  higher than 9 kg/m2 in men and  higher than 13 kg/m2 in 

women.59 Similar to FMI, the fat-free mass index (FFMI) was calculated by dividing fat-free mass (kg) 

by the height squared in meters (m2). The values were 8.3 and 11.8 kg/m2 in men and women with obese 

BMI.60 While Android to Gynoid ratio (AGR) was defined as android fat divided by gynoid fat. An 

android/gynoid ratio greater than 1 would determine this and you may be at more risk of having a high 

visceral fat.  

Omics data  

The suffix -omics (Greek word) refers to a field of study in life sciences that focuses on large-scale 

data/information to understand life summed up in “omes” and “omics”  such as genomics, epigenomics, 

transcriptomics, proteomics, and metabolomics.61 These terms represent a comprehensive study of a 

genome, epigenome, transcriptome, proteome, and metabolome  respectively. Integrating different omics 

layers and their effect on obesity and fatty liver disease can lead to a deeper comprehension of the 

underlying mechanisms of these diseases. Consequently, this knowledge can enhance the effectiveness of 

identifying novel biomarkers for early diagnosis of obesity and FLD, and ultimately may open up 

opportunities for the development of improved diagnostic methods and potential therapeutic targets 

(Figure 3). 
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Figure 3. Multi-omics layers and the interactions with environmental factors in biological systems (Figure 

created with Br Med Bull, Volume 123, Issue 1, September 2017, Pages 159–173, 

https://doi.org/10.1093/bmb/ldx022). 

 Genetics 

In the last two decades, substantial advances in the discovery of genetic determinants of both obesity and 

FLD have been made. The genetic variants in lipid metabolism genes are currently being studied to 

decipher their role in the predisposition toward liver disease. Both genome-wide association studies 

(GWAS) and candidate gene approaches have identified a number of variants, which have enriched our 

understanding of the genetic basis of NAFLD.62 One of the most studied genes is patatin-like 

phospholipase domain-containing protein 3 (PNPLA3) that predisposes to a higher risk of fatty liver 

diseases, in particular, non-synonymous variant, rs738409 C>G (p.Ile148Met),63 in addition to the fat 

mass and obesity-associated protein (FTO), the b-Klotho (KLB) and carboxylesterase (CES1).64 The 

candidate gene approach was the predominant method used to study susceptibility to NAFLD until the 

first GWAS was published in 2008. This approach primarily focused on genes associated with various 

aspects of hepatic lipid metabolism (such as synthesis, storage, export, and oxidation), glycaemic 

metabolism, insulin signaling (including insulin resistance), as well as genes involved in immune 

responses, oxidative stress, inflammation, and fibrosis.65-69 However, the majority of this research used 

relatively small sample sizes, and due to their limitations, the reported results were frequently inconsistent. 

In recent years, GWAS is used to screen the entire genome of large numbers of individuals to look for 

associations between millions of genetic variants within those individuals and their disease outcomes. It 

is based on the common disease-common variant hypothesis. These studies have helped to define common 

gene variants (minor allele frequency >1-5 %) that could potentially contribute to NAFLD. Additionally, 

https://doi.org/10.1093/bmb/ldx022
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several large-scale GWAS on liver enzymes have been conducted, which help in our understanding of the 

mechanisms behind FLD.70-73 

Epigenomics 

Epigenome is the complete description of all the chemical modifications to DNA and histone proteins that 

regulate the expression of genes within the genome, without changing the DNA sequencing.74, 75 

Epigenetics is a reversible system that can be affected by genetic (heritable) and various environmental 

factors such as drugs and nutrition. Epigenetic marks, including DNA methylation, histone modification, 

and non-coding RNAs, are thought to influence gene expression primarily at the level of transcription; 

however, other steps in the process (for example, translation) may also be regulated epigenetically.76 A 

recent study of DNA and its alterations has considerably increased our understanding of the function of 

epigenetics in regulating energy metabolism and expenditure in obesity and metabolic diseases.77, 78 

Moreover, recent advances have been made in understanding the potential roles of miRNAs 

in epigenetic regulation of obesity and FLD.79, 80 

DNA methylation is the most widely studied epigenetic mechanism and refers to the addition of a methyl 

(-CH3) group to the DNA strand itself, often to the 5’ carbon atom of a cytosine ring. This conversion of 

cytosine bases to 5-methylcytosine is catalysed by DNA methyltransferases (DNMTs).81 These modified 

cytosine residues usually lie next to a guanine base (CpG methylation) and the result is two methylated 

cytosines positioned diagonally to each other on opposite strands of DNA. Of the roughly 28 million CpGs 

in the human genome, 60%–80% are generally methylated.82 Over the past two decades, there has been a 

substantial increase in the number of publications focusing on DNA methylation in liver disease. Through 

omics analysis of the liver, researchers have found aberrant pathways linked to obesity and diabetes. This 

is accompanied by DNA hypomethylation of genes at the ATF-motif regulatory site. The activation of 

these pathways, coupled with PRKCE activation and hypomethylation, may contribute to the development 

of hepatic insulin resistance and steatosis.83 A previous epigenome-wide association study (EWAS) 

reported associations between DNA methylation sites in SLC7A11, SLC1A5, SLC43A1, and 

phosphoglycerate dehydrogenase (PHGDH) genes with FLD.84 Experimental evidence suggests 

that SLC7A11 plays a role in lipid metabolism. 

Together with DNA methylation, histone modifications (including histone acetylation, methylation, 

phosphorylation, ubiquitination, etc.) and non-coding RNAs represent the most well-known epigenetic 

mechanisms. It was demonstrated that histone modifications (acetylation) in fatty acid synthase modulated 

by carbohydrate-responsive element binding protein are associated with NAFLD.85 In addition, changes 

in histone modification are a key component of an epigenetic network controlling adipogenesis, energy 

homeostasis, and obesity.86 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/epigenetics


General introduction 
 

21 
 

1 

There is a growing body of evidence that non-coding RNAs play an important epigenetic role in the 

pathogenesis of complex diseases. MicroRNAs are short non-coding RNA molecules that post-

transcriptionally repress the expression of genes by binding mainly to 3’ untranslated regions of their 

target mRNAs.87, 88 Emerging evidence shows that miRNAs help to distinguish NAFLD and NASH 

severity, particularly, miR-34a, miR-192, and miR-122 (Ref). In addition, miR-122 showed moderate 

accuracy (AUC 0.82) to distinguish NAFLD from healthy controls.89 Notably, miR-122 is the most 

abundant and specific miRNA in the liver.90 

Epigenomics, in particular DNA methylation, is also widely studied to understand mechanism of obesity. 

Previous EWAS on obesity traits were conducted in population-based studies, including Rotterdam Study 

and Atherosclerosis Risk in Communities (ARIC),91 the investigators reported a novel association 

between increased methylation in the MSI2 and LARS2 genes and higher BMI and WC in older adults. 

Moreover, CpG sites at BRDT and MAP1A were associated with BMI, and CpG sites at TMEM49 and 

LGALS3BP were associated with WC. In addition, this study also confirmed 3 previously identified 

methylation loci (CPT1A, ABCG1, and SREBF1) to be associated with obesity-related traits. Lastly, 

several studies have demonstrated the association of miRNAs levels with obesity and fat distribution such 

as miR-196a2  and miR-196a, by using a genetic approach.92, 93 Likewise, miR-146, miR-378, miR-143, 

miR-145, and miR-194 are shown to be involved in inflammatory processes that occur during obesity, 

while other miRNAs, including miR-196, found to be modulated during inflammatory processes in cancer, 

cardiovascular diseases or type 2 diabetes.94 In both diseases, FLD as well as obesity, DNA methylation 

is being studied the most.  

Metabolomics 

Metabolome is the study of endogenous and exogenous metabolites in biological specimens (e.g. blood, 

urine, saliva, cerebral spinal fluid) and aims to provide semi-quantitative information on metabolite 

abundances in a biological system.95 This includes fatty acids, amino acids, peptides, and carbohydrates. 

Recent improvements in metabolomics technologies reveal the unequivocal value of metabolomic tools 

in biomarker discovery, gene-function analysis, systems biology, and diagnostic platforms.96 Metabolites 

represent the downstream expression of the genome, transcriptome, and proteome, thus helping to provide 

deep insight into disease pathophysiology.97 In recent years, the development of instrumental systems, 

such as high-resolution nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS), 

ultra-performance liquid chromatography (ULC-MS), and more sophisticated bioinformatics and 

analytical techniques, have enabled more comprehensive coverage of the metabolome. Over the past two 

decades, NMR has emerged as one of the three principal analytical techniques used in metabolomics (the 

other two being gas chromatography coupled to mass spectrometry (GC-MS) and liquid chromatography 

coupled with single-stage mass spectrometry (LC-MS)).98 NMR spectroscopy plays important and 

multifaceted roles that have benefited and continue to benefit the field of metabolomics. The unique 
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characteristics of NMR are valued for being non-invasive, nondestructive, fast, and for providing highly 

reproducible results.99 MS has witnessed a very rapid growth in clinical metabolomics with targeted and 

non-targeted approaches over the past decade.100 MS has emerged as a key technology for the selective 

and sensitive analysis of metabolites in biological samples, providing the ability to quantify and identify 

metabolites.101 

NAFLD is strongly associated with well-known metabolic risk factors such as obesity and insulin 

resistance. Atherogenic dyslipidemia, characterized by plasma hypertriglyceridemia, increased small 

dense low-density lipoprotein (LDL) particles and decreased high-density lipoprotein cholesterol (HDL-

C) levels, is often observed in NAFLD patients.102 It has been shown that an increase in intrahepatic 

triglycerides (IHTG) is related to the development of steatosis in individuals with NAFLD.103-105 The 

accumulation of triglycerides (TG) in liver tissue happens when the rate of hepatic TG production is 

greater than the combined rates of TG export in very-low-density lipoprotein (VLDL) particles and 

intrahepatic oxidation of TG-derived fatty acids. Lipidomics is a new rapidly growing field that allows 

the overall and detailed investigation of the whole lipid composition in a given biological matrix. Lipid 

profiling of liver biopsies of patients with NAFLD has previously revealed several changes in 

glycerophospholipids and sphingolipids concentrations and alterations in fatty acid pattern compared to 

healthy control, which correlates with disease progression.106 New promising non-invasive biomarkers 

and techniques have been developed, evaluated, and assessed, including biochemical markers, imaging 

modalities, and the most recent multi-omics approaches.107 Nevertheless, among the “omics”,  

metabolomics/lipidomics have the best potential for leading to the development of important tools for the 

diagnosis and staging of FLD.108 Integration of metabolome and lipidome offers a complete atlas of the 

metabolic landscape,109 enabling comprehensive network analysis to identify critical metabolic drivers in 

disease pathology, facilitating the study of interconnection between lipids and other metabolites in disease 

progression. Moreover, previous studies provide evidence for changes in phospholipid and amino acid 

metabolism that may be linked to obesity based on FTO genotype.110 This may contribute to a better 

understanding of the biochemical networks underlying the development of obesity. 

Proteomics 

Proteomics is a powerful tool in the study of changes in the protein expression of proteomes of different 

populations of patients.111 Unlike genes, a variety of factors, such as the environment, the stage of the 

disease, the use of medications, and dietary habits, can affect protein levels. Since disease-related 

molecular changes are reflected at the transcriptome and proteome level, the identification of these 

proteins may have a huge impact by increasing the availability of molecular markers for early diagnosis 

and therapy and providing a better understanding of the underlying pathophysiology.112 Recent 

technological advances now make it possible to measure a large number of proteins in a large number of 

individuals.113 Two main techniques can measure the concentration of thousands human plasma proteins, 

https://www.sciencedirect.com/topics/medicine-and-dentistry/dyslipidemia
https://www.sciencedirect.com/topics/medicine-and-dentistry/hypertriglyceridemia
https://www.sciencedirect.com/topics/neuroscience/lipoprotein
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such as SomaScan and Olink technologies. Both techniques have been shown to be successful in 

identifying novel biomarkers, while a comparison of the techniques showed the synergistic nature of these 

technologies to better identify disease mechanisms. The Olink PEA technology uses a dual recognition 

DNA-coupled immunoassay that rapidly allows for protein identification and relative quantification with 

high sensitivity and specificity to provide unique, enabling tools for protein biomarker discovery and 

development.114 A current meta-analysis study demonstrated that fibroblast growth factor 21 (FGF-21) 

and cytokeratin 18 (CK-18) could be used as biomarkers to diagnose NAFLD, especially NASH.115 

Furthermore, other studies found the potential role of FGF-21 as a biomarker for NAFLD,116, 117 which is 

secreted in the liver in response to peroxisome proliferator-activated receptor (PPAR)-α activation. The 

identification of these proteins may have a huge impact by increasing the availability of molecular markers 

for early diagnosis and therapy monitoring. 

Objective of this thesis and outline 

The overall aim of this thesis is to investigate the molecular determinants and underlying pathways of 

obesity and FLD and to identify potential biomarkers for their early diagnosis. This aim was studied by 

integrating various population-based omics data as well as clinical data available in the Rotterdam Study 

and through conducting different advanced molecular epidemiological studies. In Chapter 2 I mainly 

focused on the epigenetic regulation of obesity and FLD. In Chapter 2.1, I investigated the association 

between plasma circulating miRNAs and obesity-related traits in a population-based setting; in Chapter 

2.2, I aimed to study the potential circulatory miRNAs as regulators and biomarkers for FLD; and in 

Chapter 2.3, I study the association between alcohol consumption and circulatory miRNAs, then whether 

these miRNA could mediate the association between alcohol consumption and FLD. In Chapter 3, I 

focused on the proteomic determinants of FLD. In this chapter, I aimed to identify specific plasma 

proteins associated with FLD and liver fibrosis using population-based data. Finally, in Chapter 4, I 

assessed the relationships between circulating metabolites and NAFLD. In this chapter, I used data on 

circulating metabolites and NAFLD in Rotterdam study (RS), Avon Longitudinal Study of Parents and 

Children (ALSPAC), The Insulin Resistance Atherosclerosis Family Study (IRASFS) and Study of 

Latinos (SOL) to conduct a multi-platform based meta-analysis. 

  

http://www.bristol.ac.uk/alspac/
http://www.bristol.ac.uk/alspac/
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Study population  

The Rotterdam Study  

The majority of studies described in this thesis were conducted within the Rotterdam Study, a large 

population-based cohort study, also known as "Erasmus Rotterdam Gezondheid Onderzoek (ERGO)".118 

The Rotterdam study is an ongoing prospective cohort study the first subcohort (RS-I) was initiated in 

1990 with individuals ≥55 y of age (N = 7983). The study was extended by including a second subcohort 

(RS-II) in 2000 (N = 3011, ≥55 y of age), and a third subcohort (RS-III) in 2006 (N = 3932, ≥45 y of age). 

In June 2016, the recruitment of another extension (RS-IV) began to enroll participants (N= 3005, ≥40 y 

age). All participants in the study provided written informed consent to participate and to obtain 

information from their treating physicians. The participants were examined at the baseline of the 

respective subcohort and re-examined every 3-5 years. Shortly, a home interview was conducted and the 

participants had an extensive set of examinations in the research center in Ommoord. I used miRNA 

profiling data which has been conducted in 2,000 randomly selected individuals from the fourth round of 

Rotterdam Study I (RS-I-4) and the second round of Rotterdam Study II (RS-II-2) between January 2002 

and December 2005. In addition, proteomics data was used from 3,596 individuals of the first visit of the 

third cohort (RS-III-1). Nightingale-based metabolomics data were used from the fifth visit of the first 

cohort (RS-I-5), a third visit of the second cohort (RS-II-3), and a second visit of the third cohort (RS-III-

2). While metabolon-based metabolomics data were used from the fourth visit of the first cohort (RS-I-4) 

and the second visit of the third cohort (RS-III-2). Figure 4 illustrates molecular layers across different 

cohorts of the Rotterdam Study used in this thesis.    
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Abstract 

Background: MicroRNAs (miRNAs) represent a class of small non-coding RNAs that regulate gene 

expression post-transcriptionally and are implicated in the pathogenesis of different diseases. Limited 

studies have investigated the association of circulating miRNAs with obesity and body fat distribution and 

their link to obesity-related diseases using population-based data. 

Methods: We conducted a genome-wide profile of circulating miRNAs in plasma, collected between 

2002 and 2005, in 1208 participants from the population-based Rotterdam Study cohort. Obesity and body 

fat distribution were measured as body mass index (BMI), waist-to-hip ratio (WHR), android-fat to 

gynoid-fat ratio (AGR) and fat mass index (FMI) measured by anthropometrics and Dual X-ray 

Absorptiometry. Multivariable linear regression models were used to assess the association of 591 

miRNAs well-expressed in plasma with these traits adjusted for potential covariates. We further sought 

for the association of identified miRNAs with cardiovascular and metabolic diseases in the Rotterdam 

study and previous publications.  

Results: Plasma levels of 65 miRNAs were associated with BMI, 40 miRNAs with WHR, 65 miRNAs 

with FMI and 15 miRNAs with AGR surpassing the Bonferroni-corrected P< 8.46×10-5. Of these, 12 

miRNAs were significantly associated with all traits, while four miRNAs were associated only with WHR, 

three miRNAs only with FMI, and miR-378i was associated only with AGR . The most significant 

association among the overlapping miRNAs was with miR-193a-5p, which was shown to be associated 

with type 2 diabetes and hepatic steatosis in the Rotterdam Study. Moreover, five of the obesity-associated 

miRNAs and two of the body fat distribution miRNAs have been correlated previously to cardiovascular 

disease.  

Conclusions: This study indicates that plasma levels of several miRNAs are associated with obesity and 

body fat distribution that may help us to better understand the underlying mechanisms and could have the 

biomarker potential for obesity-related metabolic diseases.  
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2.1 

Introduction 

Obesity is a growing health problem worldwide; its prevalence is increasing in both developed and 

developing countries.1 According to WHO data, 39% of the global population of adults are overweight 

and of these, 13% are obese. Obesity can contribute to the development of metabolic disorders, such as 

cardiovascular disease (CVD), type 2 diabetes (T2D) and fatty liver disease.2, 3 The pathogenesis of obesity 

involves regulation of calorie utilization, appetite, and physical activity, but has complex interactions with 

the availability of healthcare systems, and underlying genetic and environmental factors.4-8 Obesity, 

particularly abdominal obesity due to the presence of large amounts of visceral adipose tissue (VAT), 

which is highly metabolically active,9 predisposes a person to a number of other cardiovascular risk 

factors, and is an independent predictor of clinical CVD including coronary heart disease, heart failure 

and stroke.10 

Many studies have focused on the role of body fat distribution and the metabolic complication of obesity, 

one of these studies has shown that lower and upper body subcutaneous fat, and visceral fat depots have 

unique characteristics with regards to fatty acid metabolism.11 Selective dysregulation of these depots 

probably plays an important role in the metabolic complications of obesity. Anthropometric indicators 

have also been proposed to diagnose the health risks considering the increased body fat.12 The most widely 

used is still body mass index (BMI), but it has limitations.13 For example, BMI does not measure body fat 

or fluid retention,14 so the anthropometric data are relatively poor indicators for older people and athletes. 

The metabolic consequences of adiposity are dictated not only by absolute adipose tissue (AT) mass, but 

also by its distribution,15-17 to the extent that waist-to-hip ratio (WHR) is a stronger predictor of myocardial 

infarction than BMI in women.18 Besides the anthropometric measurements, Dual X-ray absorptiometry 

(DXA) parameters could indicate fat mass and adiposity. 

MicroRNAs (miRNAs) represent a class of small non-coding RNAs with the main role of regulating gene 

expression post-transcriptionally through degradation or repression of messenger RNAs.19 In recent years, 

remarkable progress has been made toward identifying the origin and function of miRNAs, focusing on 

their potential use in both the research to understand disease mechanisms and the clinic to identify 

potential biomarkers.20-22 Notably, miRNAs have been shown to regulate adipose tissue metabolism, 

insulin secretion and action. The aberrant expression of miRNAs play a role in the development of 

obesity,23 though the role of miRNAs in regulating fat distribution remains poorly understood.24 Although 

extensive research has explored the role of miRNAs in the pathogenesis of metabolic diseases, limited 

population-based studies have investigated the association of circulating miRNAs in plasma with obesity 

and body fat distribution. In the current study, we conducted a genome-wide screening to investigate the 

relationship between plasma levels of miRNAs with obesity, body fat distribution and fat mass in the 

population-based Rotterdam Study cohort. We further looked up for the correlation of obesity-related 

miRNAs with cardiovascular and metabolic diseases. 
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Methods 

Study population 

This study was embedded within the Rotterdam Study, a prospective cohort of individuals aged ≥ 45 years 

living in the Ommoord district of Rotterdam, the Netherlands. The design of the Rotterdam Study has 

extensively been described elsewhere.25 In 1990, 7983 persons aged 55 years or older were recruited to 

participate in the first cohort of the RS-I. In 2000, the second cohort RS-II was extended by 3011 

participants who moved to Ommoord or had become 55 years of age.   In the current study, we used the 

expression profiles of circulating miRNAs in plasma, collected between 2002 and 2005, from a random 

subset (n = 1000) of the fourth visit of the first cohort (RS-I-4) and a random subset (n = 999) of the 

second visit of the second cohort (RS-II-2). Among them, 1331 individuals with data on anthropometric 

measurements (BMI and WHR) and Dual X-ray absorptiometry (DXA) measurements (fat mass index 

(FMI) and android-fat to the gynoid-fat ratio (AGR) were included in our analyses. Furthermore, 123 

participants that were excluded because of missing data in covariates resulting in 1208 participants that 

were included for the statistical analysis (Figure 1). 

The Rotterdam Study has been approved by the Medical Ethics Committee of the Erasmus MC University 

Medical Center (registration number MEC 02.1015) and the Dutch Ministry of Health, Welfare and Sport 

(Population Screening Act WBO, license number 1071272-159521-PG).The participants included in the 

current study provided written informed consent. 

miRNA expression profiling  

Blood samples were collected in EDTA-treated containers and centrifuged. Plasma was then aliquoted 

and frozen at −80 °C according to standard procedures. Subsequently, Plasma levels of cell-free miRNAs 

were determined using the HTG EdgeSeq miRNA Whole Transcriptome Assay (WTA), which measures 

the expression of 2083 mature human miRNAs (HTG Molecular Diagnostics, Tuscon, AZ). Each sample 

was sequenced on an Illumina NextSeq 500 sequencer (Illumina, San Diego, CA). The whole 

transcriptome assay characterizes miRNA expression patterns and measures the expression of 13 

housekeeping genes, allowing flexibility in data normalization and analysis.  
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Figure 1. Flowchart of the study participants. Abbreviations: RS, Rotterdam study; BMI, Body mass index; 

WHR, Waist-hip ratio; FMI, Fat mass index; AGR, Android to gynoid-fat ratio; miRNAs, microRNAs. 

 

Quantification of miRNA expression was based on counts per million (CPM). Log2 transformation of 

counts per million was used as standardization and adjusted for total reads within each sample. The lower 

limit of quantification was used to select well-expressed miRNAs. The lower limit of quantification level 

was based on a monotonic decreasing spline curve fit between the means and standard deviations of all 

miRNAs in the dataset with 1999 subjects. In our definition, well-expressed miRNA levels in plasma were 

those with > 50% values above the lower limit of quantification. This includes a set of 591 miRNAs that 

were used for association analysis. 

Anthropometric and body composition measurements 

Height and weight were measured while the participants were standing without shoes and heavy 

outerwear. BMI was calculated as weight divided by height squared (kg/m2). Waist circumference was 
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measured at the level midway between the lower rib margin and the iliac crest with participants in standing 

position without heavy outerwear and with emptied pockets, breathing out gently. The waist-hip ratio 

(WHR) was calculated as waist measurement dividing waist by hip. 

Total body fat was assessed by dual-energy x-ray absorptiometry (DXA) scan with Idxa total body-fan 

beam densitometer (GE Lunar Corp, Madison, WI, USA) following manufacturer protocols, with scans 

analyzed with enCORE software V13.6 using pre-determined regions of interest. The method of body 

components measurement by DXA is described in detail elsewhere.26 We calculated FMI by dividing total 

fat mass by height squared in meters (kg/m2). Additionally, we calculated the AGR by dividing android-

fat by gynoid-fat.  

Metabolic syndrome  

To define MetS, we used the joint interim statement of the International Diabetes Federation Task Force 

on Epidemiology and Prevention; the National Heart, Lung, and Blood Institute; the American Heart 

Association; the World Heart Federation; the International Atherosclerosis Society; and the International 

Association for the Study of Obesity.27 According to this definition, an individual had MetS if three out 

of five of the following conditions are met: (1) waist circumference ≥94 cm for men and ≥80 cm for 

women; (2) triglycerides (TG) (≥150 mg/dl (1.7 mmol/l) or lipid-lowering medication use; (3) high-

density lipoprotein cholesterol (HDL-C) (< 40 mg/dl (1.03 mmol/l)) in males and < 50 mg/dl (1.29 

mmol/l) in females) or, or lipid-lowering medication use; (4) systolic blood pressure ≥130 mmHg and/or 

diastolic blood pressure ≥85 mmHg) or, blood-pressure lowering medication use; (5) fasting serum 

glucose ≥ 100 mg/dl (5.6 mmol/l) or previously diagnosed type 2 diabetes.  

Serum glucose was measured by the hexokinase enzymatic method after overnight fasting. TG was 

measured in fasting serum using the enzymatic method. HDL-C was measured by automatic enzymatic 

method from fasting serum after precipitation of non-HDL fraction. Blood pressure was measured at the 

right brachial artery using a random-zero sphygmomanometer after 5  minutes of rest with the participants 

in a sitting position. The mean of the two consecutive measurements was used. MetS was obtained from 

the fifth visit of the first cohort (RS-I-5) and the third visit of the second cohort (RS-II-3).  
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Covariates 

Covariates information on age, sex, smoking status (never, former, current) and physical activity 

(METhours per week) were obtained through questionnaires.25 Measures of physical activity were 

obtained in the third visit of the original cohort (RS-I-3) and the first visit of the extended cohort (RS-II-

1). Dietary intake was assessed in the first visit of the original cohort (RS-I-1) and the first visit of the 

extended cohort (RS-II-1), Dietary intake was assessed using validated Food-Frequency Questionnaires 

(FFQ), from which we calculated diet quality scores and energy intake, as described elsewhere.28 

Measures of total dietary scores and energy intake were gathered from the FFQ baseline. At baseline and 

during follow-up, T2D cases were ascertained using general practitioners’ records, hospital discharge 

letters, and serum glucose measurements collected from center visits. T2D was defined according to the 

World Health Organization definition as fasting glucose levels of ≥7.0 mmol/L, non-fasting glucose levels 

≥11.1 mmol/L, or the use of glucose-lowering medications. Glucose measurements were obtained during 

visits to the research center. 

Statistical analysis 

Population characteristics were represented as mean ± SD for continuous variables, and categorical 

variables were expressed as numbers and percentages. Participants with missing values on multiple 

covariates were excluded from the analysis. Analyses were performed in the total population and stratified 

by sex. We used multivariable linear regression models to investigate the associations between 591 well-

expressed miRNA (exposure) and obesity related parameters (outcome). The Bonferroni-corrected p-

value threshold was calculated based on the number of tested miRNAs (0.05/591 = 8.46 × 10−5). The basic 

model (M1) was adjusted for age, sex, and cohort. In the second model (M2), we adjusted for smoking 

status and physical activity, which is considered the main model. Sensitivity analysis was performed by 

adjusting for more variables.  

Furthermore, the association between miRNAs and FMI, AGR and WHR was further evaluated by using 

linear regression models adjusting for BMI to determine associated miRNAs independent from BMI. As 

sensitivity analysis, we also adjusted the second model for more covariates including energy intake and 

diet quality score. Next, multivariable logistic regression models were used to investigate longitudinally 

the association of the plasma levels of the miRNA with prevalence of MetS, in model 1 and model 2.  

All analyses were performed using SPSS statistical software (SPSS, version25; IBM Crop) and R 

software version 3.5.2 (The R Foundation for Statistical Computing). 
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Results 

The descriptive of the participants included in the cross-sectional study are presented in Table 1 and Table 

S1. The mean value (SD) of age was 72.17±6.9 years, and 56.6% were females. Compared to women, 

men had a higher mean value of WHR and AGR, while the mean value for FMI and physical activity were 

higher among women. In total 649 participants had a prevalence of metabolic syndrome (MetS) 

representing 53.4% of the population in our analysis. Hypertension was defined in 944 (78.1%) 

participants. The mean standard deviation (SD) value of the total serum cholesterol of the study population 

was 5.6±1.0. T2D was detected in 11.4% of participants according to the World Health Organization 

definition 29.     

 

Table 1.  Characteristics of the Rotterdam Study participants 

Characteristics Total population Men Women 

Number 1208 524 684 

Age 72.2±6.9 72.2±6.68 72.14±7.1 

Gender, F 684 (56.6) 524 (43.4) 684 (56.6) 

Obesity traits    

Body mass index, (kg/m2) 27.5±4.1 27.4 ±3.28 27.6 ±4.61 

Waist to hip ratio 0.90 ±0.09 0.97±0.07 0.85±0.07 

Fat mass index, (kg/m2) 0.96 ±0.3 0.79±0.24 1.09±0.34 

Android to gynoid-fat ratio 0.64±0.2 0.80±0.16 0.52±0.13 

Incidence diabetes mellitus, n (%) 138 (11.4) 55 (10.4) 83 (12.1) 

Smoking status, n (%)    

Never smoking 178 (14.7%) 85 (16.3) 93 (13.5) 

Ex. Smoking 687 (56.9) 376 (71.7) 311(45.5) 

Current smoking 343 (28.4) 63 (12.0) 280 (41.0) 

Physical activity (METh/wk) 87.8±43.26 74.83±41.16 97.81±42.02 

Rotterdam study cohort, n (%)    

Rs_I-4 808 (66.9) 355 (67.7) 453 (66.3) 

Rs_II-2 400 (33.1) 169 (32.3) 231 (33.7) 

The table shows characteristics of study participants (1208); Variables are represented as mean  (± standard 

deviation), or number (%). Missing values were excluded from the baseline. 

Using linear regression analysis and in the multivariable model 2, we found 65 miRNAs for BMI, 40 for 

WHR, 65 for FMI, and 15 for AGR to be significantly associated at the Bonferroni-corrected P< 8.46×10-

5 (Table S2). The overlapping miRNAs among these traits are shown in Figure 2, including 12 miRNAs 

associated with all four traits that are shown in Table 2. The miRNAs exclusively associated with each of 

the traits are highlighted in Table S2. For example, miR-378i (β= 0.07, P= 4.43×10-6) was associated only 

with AGR, while miR-1304-3p (β= 0.11, P= 3.0×10-6), miR-566 (β= 0.07, P= 1.73×10-5), and miR-324-
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3p (β= -0.10, P= 7.37×10-7) were associated only with FMI. In the sensitivity analysis adjusting for energy 

intake and diet quality score, the results were less significant, but 5 out of the 12 common miRNAs 

remained statistically significant (Table S3). In addition, we observed variation in the plasma levels of 12 

miRNAs within three BMI categories (normal weight, overweight and obesity) as shown in Figure 3.  

     

 

Figure 2. UpSet plots showing the intersections of miRNAs associated with the four traits. The bars chart 

visualized the numbers of miRNAs associated with obesity-related traits in model 2 adjusted for age, sex, 

rs_cohort, smoking status and physical activity. Dark circles in the matrix indicate sets that are part of the 

intersection. Abbreviations: AGR, Android to gynoid-fat ratio; WHR, Waist-hip ratio; BMI, Body mass index; 

FMI, Fat mass index. 
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Table 2. Circulatory miRNAs significantly associated with all four obesity related-traits  
 

BMI WHR AGR FMI 

miRNA ID Beta P-value Beta P-value Beta P-value Beta P-value 

miR-145-5p -1.41 2.28E-11 -0.02 2.74E-06 -0.03 3.36E-05 -0.11 2.07E-12 

miR-149-3p 1.38 1.23E-07 0.03 1.36E-08 0.04 2.43E-05 0.11 4.50E-08 

miR-193a-5p 1.85 2.94E-13 0.03 2.72E-12 0.06 2.18E-11 0.13 1.83E-11 

miR-345-5p -2.87 2.23E-11 -0.04 1.82E-08 -0.07 1.32E-05 -0.24 5.44E-14 

miR-3937 -1.01 2.18E-13 -0.02 2.97E-10 -0.02 8.40E-05 -0.08 1.48E-13 

miR-4433b-5p -1.65 3.06E-07 -0.02 1.88E-05 -0.05 1.57E-05 -0.11 4.92E-06 

miR-4478 1.38 5.63E-07 0.03 1.10E-07 0.04 2.13E-05 0.10 8.91E-07 

miR-6088 1.58 2.66E-11 0.03 9.70E-10 0.03 5.97E-05 0.12 2.76E-11 

miR-6799-5p 1.29 6.27E-07 0.02 2.85E-06 0.04 7.23E-05 0.09 2.67E-06 

miR-6803-5p 1.80 4.29E-13 0.03 1.06E-12 0.04 1.44E-05 0.13 4.91E-13 

miR-6821-5p 1.42 3.63E-11 0.03 1.00E-12 0.04 1.55E-07 0.11 4.29E-12 

miR-7107-5p 1.42 6.31E-12 0.02 2.74E-09 0.03 3.50E-05 0.11 2.21E-12 

The table shows 12 miRNAs that were overlapped and significantly associated with all four studied traits in model 

2. Model 2 is adjusted for age, sex, cohort, physical activity and smoking status. The P-value threshold is 8.46 × 10-

5 (after Bonferroni correction 0.05/591 miRNAs). Abbreviations: miRNA, microRNA; BMI, body mass index; 

WHR, waist to hip ratio, AGR, android to gynoid-fat ratio; FMI, fat mass index. 

The association of plasma miRNAs with AGR, FMI, and WHR adjusted for BMI and other covariates in 

multilinear regression model 2, is shown in Table S4. This analysis showed two miRNAs (miR-193a-5p 

and miR-378i) to be significantly associated with AGR and FMI. Figure 4 shows the association of 

miRNAs with AGR and FMI adjusted for BMI. Three miRNAs (miR-193a-5p, miR-6821-5p and miR-

6803-5p) were associated with WHR adjusted for BMI.  
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Figure 3. Comparison between expression levels of the identified miRNAs in 3 body mass index subgroups. 

The figure shows the comparison between expression of 12 miRNAs and BMI subgroups including normal weight 

(18.5-24.9), overweight (25-29.9) and obesity (30.0 or above) were significantly associated with obesity-related 

traits. Abbreviations: CPM, counts per million; miRNAs, microRNAs. 

 

Sensitivity analyses were also conducted to assess the association of plasma levels of miRNAs with the 

studied traits stratified by sex, using multilinear regression models. In model 2 in females, the vast 

majority of the 12 common miRNAs were strongly associated and overlapped with all traits (Table S5A), 

while in males, the 12 miRNAs were less significant (Table S5B). Moreover, we found 5 new miRNAs 

(miR-185-5p, miR-19a-3p, miR-19b-3p, miR-7150 and miR-93-5p) to be associated with the four traits 

only in females surpassing the Bonferroni-corrected p-value threshold (Table S5C).  

In the longitudinal analysis, we found 24 miRNAs to be significantly associated with the prevalence of 

metabolic syndrome using logistic regression in the multivariable model 2. Of these, 7 miRNAs (miR-

193a-5p, miR-149-3p, miR-3937, miR-6088, miR-6821-5p, miR-6803-5p and miR-4433b-5p) were 

overlapped with the 12 common miRNAs associated with all four traits (Table S6). We further searched 

in the previous literature for the association with cardiovascular and metabolic diseases of the 12 common 

miRNAs. We found evidence for 7 of the 12 miRNAs to be correlated with hepatic steatosis, T2D, 

hypertension, heart failure, stroke and myocardial infarction in previous studies (Table S7).   
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Discussion 

In this population-based study, we investigated the association of circulating miRNAs in plasma with 

obesity, body fat distribution and fat mass. We found several miRNAs associated with these traits. These 

include 12 miRNAs that were overlapped among all traits, consisting of 8 miRNAs (miR-193a-5p, miR-

149-3p, miR-4478, miR-6088, miR-6803-5p, miR-6799-5p, miR-6821-5p and miR-7107-5p) that were 

positively and 4 miRNAs (miR-145-5p, miR-345-5p, miR-3937 and miR-4433b-5p) that were negatively 

associated with the studied traits. Some of the identified miRNAs were associated with cardio-metabolic 

diseases that help us to better understand the underlying mechanisms and may serve as potential 

biomarkers for obesity-related diseases. 

Body fat distribution is an important predictor of metabolic abnormalities in obese humans, dysregulation 

of free fatty acid (FFA) release, especially from upper body subcutaneous adipose tissue, appears to 

contribute substantially to these metabolic disturbances.30 In this study, we used a new genome-wide 

RNA-seq based assay to investigate the association of plasma circulating miRNAs with both obesity and 

body fat distribution. In general, RNA-seq analysis of cell-free miRNAs can give a higher sensitivity than 

the other miRNA profiling approaches (e.g., qPCR). This measures the expression levels of miRNAs over 

a wide dynamic range with the ability to identify novel miRNAs.31 Furthermore, the stability of cell-free 

miRNAs is high in body fluids. The accessibility of blood samples in cohort studies, which is easier to 

collect than biopsy of diseased tissues, indicates the potential of circulating miRNAs as biomarkers in 

clinical traits.32 In this line, aberrant expression of miRNAs in different tissues (e.g., pancreas, liver and 

adipose tissue) have been linked with obesity 33 and metabolic diseases in previous studies.34, 35 Several 

studies have also demonstrated the association of miRNAs levels with obesity and fat distribution by using 

genetic approach.24, 36, 37 For example, the role of miR-196a in regulating human body fat distribution has 

been found by genetic association study of miRNA-related SNPs and using tissue-specific miRNAs from 

15 men (8 lean (BMI < 25) and 7 overweight (BMI > 25)). However, previous miRNA profiling studies 

have mainly used qPCR-based methods. They are also limited to a smaller number of miRNAs and sample 

sizes, while our study is conducted in a population-based setting with a much larger sample size and 

investigates hundreds of circulatory miRNAs. 

The most significant miRNA associated with all four traits in our analyses was miR-193a-5p.  Previous 

study on human has reported that surgery-induced weight loss led to a noticeable decrease of circulating 

miR-193a-5p.38 Another study on animal model has shown that miR-193a-5p could be used as a biomarker 

for adiposity, and the authors have shown by functional analysis that this miRNA could regulate 33 

pathways with two novel pathways included Glucagon signaling pathway and 

glycolysis/gluconeogenesis.39 In the present study, we observed a significant increase in circulating levels 

of miR-193a-5p in all four studies traits. Furthermore, the circulating miR-193a-5p was positively 

associated with metabolic syndrome in our cohort. This miRNA has been reported by our group recently 
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to be implicated in fatty liver disease.40 At the same time, in the most recent publication with the Rotterdam 

Study data, we found the link between miR-193a-5p and the incident of T2D.41 These findings may 

indicate a strong role of miR-193a-5p in adiposity and metabolic pathways that warrant further 

experimental validation studies. 

Our results moreover showed that circulating miR-145-5p is negatively associated with obesity traits. In 

this line, a previous study has reported that plasma levels of miR-145-5p were significantly altered 

following long-term fasting; the expression levels of miR-145-5p have changed in the opposite direction 

and negatively associated with obesity.42 Lin et al. also found that miR-145 directly targets and represses 

FoxO1 and abhydrolase domain containing 5 (ABHD5 or Cgi58) activators of lipolytic activity, and 

forced expression of miR-145 attenuates lipolysis in white adipose tissue.22, 43 Another study has 

shown that miR-145 expression is downregulated in human adipose tissue in insulin-resistant versus 

insulin-sensitive patients.44 Viesti et al., have further found that miR-145 had a reduced tendency in the 

subcutaneous adipose tissue in patients with obesity.45 All these findings support the important regulatory 

role of miR-145 in the underlying mechanisms of obesity.  

In line with our observations, Pascut et al. have found that increased circulating levels of miR-7107-5p 

was prevalently expressed in a population with obesity and steatosis.46 In addition, Liu, X et al, have 

shown that the expression of miR-345-5p decreased during adipogenic differentiation via targeting 

vascular endothelial growth factor B. They have demonstrated that overexpression of miR-345-5p reduced 

lipid accumulation in adipocytes, and the expression of adipocyte related genes is essential to lipogenic 

transcription, fatty acid synthesis and fatty acid transport.47 In addition, a previous study on the mouse 

model has revealed an important mechanism of miR-149-3p and Prdm16-dependent regulation of energy 

expenditure upon chronic high-fat feeding, indicating that SAT miR-149-3p can serve as a therapeutic 

target to defend against diet-induced obesity and metabolic dysfunctions.48 Here we also found that plasma 

levels of miR-149-3p are inversely associated with obesity and fat distribution. 

On the other hand, we found member of miR-378 family, in particular miR-378i, to be associated only 

with fat distribution. A previous study on human has demonstrated particularly miR-378 as potential 

biomarker for predicting the risk of complications, especially insulin resistance in obesity, and reported 

that miR-378 expression is influenced by free fatty acids, adiponectin, and dexamethasone, the interaction 

of which may be involved in the pathogenesis of obesity-induced insensitivity to insulin.49 Carrer et al. 

observed that mice genetically lacking miR-378 are resistant to obesity induced by a high fat diet. 

Therefore, a lowering in fat mass deposits was observed as well as a diminution of adipocyte size, raising 

the possibility that this miRNA might be necessary for efficient hypertrophy and lipid absorption in 

adipocytes.50 MiRNA-378 is known to be highly stimulated during adipogenesis. Moreover, Gerin et al. 

found that miRNA378/378* overexpression during adipogenesis increases triacylglycerol accumulation 

in adipocytes due to the increase of de novo lipogenesis.51 
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Furthermore, we found that miR-342-5p to be inversely associated with total body fat, so we are in line 

with two previous studies that demonstrated  miR-342-5p to be negatively associated with obesity.52 

Finally, the study by Yang, Zheng, et al. has proved evidence showing that derived expression miRNAs 

including miR-566 is associated with visceral adipose tissue in patients with obesity via regulation of 

fibroblast growth factor 2 (FGF2), FOS like 2 (FOSL2) and its subunit, AP-1 transcription factor, and 

adenosine monophosphate deaminase AMPD3, respectively.53 

The other seven identified miRNAs for obesity traits, including miR-3937, miR-4433b-5p, miR-4478, 

miR-6088, miR-6799-5p, miR-6803-5p, and miR-6821-5p, and miR-1304-3p associated only with fat 

mass are new, which means we are the first to report their associations with obesity and fat mass. Yet, the 

majority of these miRNAs are shown to be associated with cancer. As many studies revealed that 

approximately 20% of many common cancers are caused by excess body fat accumulation,54-56 there might 

be a role for these miRNAs in developing cancer. Future experimental studies are needed to investigate 

their potential roles in common molecular mechanisms underlying obesity and cancer. 

In our search in previous studies on the association between the obesity-related miRNAs and 

cardiovascular and metabolic diseases, we found evidence for five miRNAs. Particularly, the top obesity-

associated miRNA (miR-193a-5p), which has been shown by our group and other to be associated with 

hepatic steatosis and T2D 40, 41. In addition, the high expression of miR-145-5p has been a risk factor for 

essential hypertension.57 Another study has found the role of miR-345-5p (as part of lncRNA-mediated 

ceRNA networks) in the pathophysiological process of heart failure and its potential regulatory functions 

on programmed cell death.58 Serum miR-6803-5p has been predicted the risk of cerebrovascular disorders 

before the onset of, for instance, stroke.59 Finally, miR-4478 and soluble leptin receptor has been 

suggested to be used as predictors of non-ST-segment elevation myocardial infarction [NSTEMI].60 In 

addition, miR-378 was associated with coronary heart disease,61 while miR-566 was associated with acute 

myocardial infarction.62 

The key strengths of this study include the large sample size compared to previous studies, the availability 

of various clinical data and DXA measures from a population-based prospective cohort study, and the use 

of a new RNA-seq based assay covering hundreds of known human miRNAs. However, the results 

reported herein should be considered in the light of some limitations. First, although our findings are from 

two sub-cohorts of the Rotterdam Study, additional replication in an independent cohort with more 

stratification analyses could confirm our findings. Second, during the baseline examination of this study, 

traditional parameters such as physical activity, energy intake and total dietary score were not measured. 

Therefore, these parameters were used as proxies from previous visits and could not calculate the 

differences in disease predicted capacity between the identified miRNAs and parameters. Thirdly, as 

miRNAs are tissue-specific, it would be interesting to additionally study the expression and gene targeting 
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of the identified miRNAs in adipose tissue or relevant cell lines to identify their regulatory roles in obesity 

pathways.  

In conclusion, this study demonstrates plasma levels of several miRNAs to be associated with obesity and 

body fat distribution in a population-based setting. As circulatory miRNAs have opened a promising 

research avenue for the detection of non-invasive biomarkers for the identification of subjects at risk of 

complex diseases, the identified miRNAs may give insights into the underlying molecular pathways and 

have the biomarker potential for obesity-related diseases. Future epidemiologic studies with larger sample 

sizes and long follow-up time and functional studies are needed to confirm the role of identified miRNAs 

in the molecular pathways of obesity. 
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Abstract  

Background: Fatty liver disease (FLD) is the most common cause of liver dysfunction in developed 

countries. There is a great interest in developing clinically valid and minimally-invasive biomarkers to 

enhance early diagnosis of FLD.  

Aim: To investigate the potential of circulatory microRNAs (miRNAs) as biomarkers of FLD at the 

population level. 

Methods: Plasma levels of 2083 miRNAs were measured by RNA-sequencing in 1,999 participants from 

the prospective population-based Rotterdam Study cohort. The Hounsfield Unit (HU) attenuation of liver 

was measured using non-enhanced computed tomography (CT-scan). Logistic and linear regression 

models adjusting for potential confounders were used to examine the association of circulatory miRNAs 

with liver enzymes (n=1,991) and CT-based FLD (n=954). Moreover, the association of miRNAs with 

hepatic steatosis and liver fibrosis were assessed longitudinally in individuals who underwent abdominal 

ultrasound (n=1,211) and transient elastography (n=777) after a median follow-up of >6 years. 

Results: Cross-sectional analysis showed 61 miRNAs significantly associated with serum Gamma-

glutamyl transferase and/or Alkaline phosphatase levels (Bonferroni-corrected p-value<8.46×10-5). 

Moreover, 17 miRNAs were significantly associated with CT-based FLD (p-value<8.46×10-5), 14 of them 

were associated with liver enzymes. Longitudinal analysis showed that four of the 14 miRNAs (miR-

193a-5p, miR-122-5p, miR-378d, and miR-187-3p) were significantly associated with hepatic steatosis 

(p-value<3.57×10-3) and three (miR-193a-5p, miR-122-5p and miR-193b-3p) were nominally associated 

with liver fibrosis (p-value<0.05). Nine of the 14 identified miRNAs were involved in pathways 

underlying liver diseases. 

Conclusions: This study indicates that plasma levels of several miRNAs can be used as biomarkers of 

FLD, laying the groundwork for future clinical applications. 
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Introduction  

Fatty liver disease (FLD), is the most common cause of liver dysfunction in developed countries, that is 

also increasing in developing countries,1 is defined as an excess accumulation of fat in hepatocytes.2 

Specifically, non-alcoholic fatty liver disease (NAFLD) is characterized by fat accumulation in 

hepatocytes not due to excess alcohol consumption.3 The disorder covers a broad spectrum of underlying 

conditions, ranging from simple fatty liver to inflammation, which can progress to fibrosis, cirrhosis and 

even liver cancer.4 FLD is strongly associated with obesity, hypertension, dyslipidemia and insulin 

resistance, regarded as hepatic manifestation of the metabolic syndrome.5 Currently, liver biopsy is the 

gold standard for diagnosing and staging of FLD, but its application is limited by the invasive nature, risk 

of complications and high cost.6 Various imaging modalities, such as computed tomography (CT) scan 

and ultrasound, have also been used for detecting the presence or quantifying the severity of liver fat 

noninvasively.7 However, the limited diagnostic accuracy of detecting mild degree hepatic steatosis with 

CT and ultrasound is an issue that should be taken into consideration.7 Transient elastography is non-

invasive technique that uses both ultrasound and low-frequency elastic waves to qualify liver fibrosis. 

However, recent research suggests that steatosis may influence its diagnostic performance.8 Controlled 

attenuation parameter (CAP) is an ultrasound-based diagnostic method and added to transient 

elastography enables simultaneous assessment of steatosis and fibrosis,9 but the clinical application of 

CAP is limited by influences of covariates.10 Therefore, the development of clinically valid and 

minimally-invasive methods are required to enhance early diagnosis of FLD. 

MicroRNAs (miRNAs) are small non-coding RNA molecules of 20–25 nucleotides in length that regulate 

gene expression at the post-transcriptional level.11 Recently, the interest in miRNAs has increased 

tremendously because they offer new insights into disease mechanisms and have a great potential to be 

used in the clinic as diagnostic biomarkers and/or even therapeutic targets.12, 13 In line with this, numerous 

studies have reported increased levels of circulating miR-122 in liver diseases with different etiologies 

and suggested this miRNA as a potential biomarker and target of therapy in liver dysfunction.14, 15 

Although extensive research has explored the role of miRNAs in the pathophysiology of liver diseases, 

little is known about the potential of circulatory miRNAs as FLD biomarker in the population level. 

Moreover, the available studies have mainly used qPCR-based methods and limited to small number of 

miRNAs and sample sizes.16, 17 

The aim of this study was to systematically investigate the association of circulating miRNAs in plasma 

with FLD in a population-based setting. To achieve this aim, we conducted regression models to identify 

miRNAs that are associated with FLD and liver enzymes at the baseline in the Rotterdam Study cohort. 

Moreover, we performed subsequent analyses to check whether the identified miRNAs are linked to the 

risk of hepatic steatosis or liver fibrosis after follow-up and are involved in the known pathways 

underlying liver diseases. 
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Material and methods  

Study population 

This study was embedded within the framework of the Rotterdam Study (RS), a prospective cohort study 

of individuals aged ≥45 years living in the Ommoord district of Rotterdam, the Netherlands. The 

objectives and design of the Rotterdam Study have been described in detail elsewhere.18 In 1989, the first 

cohort of study participants (RS-I) comprised 7983 persons aged 55 years or over. In 2000, the second 

cohort (RS-II) was extended to include an additional 3011 participants who moved into the study district 

or had become 55 years of age. A further extension of the Rotterdam Study cohort (RS-III) formed in 

2006 and include 3932 participants living in the research area and aged 45 years and older. Follow-up 

examinations were scheduled periodically, approximately every 3-5 years. All participants in the study 

provided written inform consent to participate and to obtain information from their treating physicians. 

For this study, we used the expression profiles of circulating miRNA in plasma, collected between 2002 

and 2005, from a random subset (n=1,000) of the fourth visit of the first cohort (RS-I-4) and a random 

subset (n=999) of the second visit of the second cohort (RS-II-2). Among them, 1,991 participants had 

serum Gamma-glutamyl transferase (GGT) and Alkaline phosphatase (ALP) levels available at baseline 

that were included to investigate the association of miRNAs with liver enzymes. Moreover, 954 

participants who underwent CT-scan from June 2003 to February 2006 were included for investigating 

the associations of miRNAs with FLD in a cross-sectional setting (Figure 1).  

For the longitudinal analysis, 1,999 participants at the baseline were followed-up >6 years, until the fifth 

visit of the first cohort (RS-I-5) and the third visit of the second cohort (RS-II-3). Among these, 1,211 

participants who underwent abdominal ultrasound between January 2009 and June 2014 were included to 

investigate the association of miRNAs with hepatic steatosis (424 cases). Of these, 1,147 participants were 

included to investigate the association of miRNAs with NAFLD (321 cases) and alcoholic FLD (76 cases). 

Moreover, out of the 1,999 individuals, 777 participants who underwent transient elatography were 

included to investigate the association of miRNAs with liver fibrosis (33 cases). A more detailed flow 

chart for the selection of study participants is shown in Figure 1. 
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Figure 1. An overview of the study to identify circulatory miRNAs associated with FLD. Cross‐sectional studies 

at baseline were performed in participants from RS‐I‐4 and RS‐II‐2 with liver enzymes and CT‐scan data 

available. Longitudinal studies were performed in participants from RS‐I‐5 and RS‐II‐3 who underwent abdominal 

ultrasound or transient elastography. Abbreviations: AFLD, alcoholic fatty liver disease; ALP, Alkaline 

phosphatase; CT, computed tomography; FLD, fatty liver disease; GGT, gamma‐glutamyl transferase; LSM, liver 

stiffness measurement.; miRNAs, microRNAs; NAFLD, non‐alcoholic fatty liver disease; RS, Rotterdam Study; 

RS‐I‐4, the fourth visit of the first cohort; RS‐I‐5, the fifth visit of the first cohort; RS‐II‐2, the second visit of the 

second cohort; RS‐II‐3, the third visit of the second cohort 
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MiRNA expression profiling 

Plasma levels of cell-free miRNAs were determined using the HTG EdgeSeq miRNA Whole 

Transcriptome Assay (WTA), which measures the expression of 2083 human mature miRNAs. The WTA 

characterizes miRNA expression patterns, and measures the expression of 13 housekeeping genes, that 

allows flexibility in data normalization and analysis. Plasma samples, for two re-measurements that 

generally is sufficient to obtain a valid result for all samples, were sent to HTG Molecular Diagnostics 

(AZ, USA) for sequencing. Each sample was tagged individually with molecular barcodes, tagged 

samples were pooled and sequenced on an Illumina NextSeq 500 sequencer (Illumina, San Diego, CA, 

USA). Quantification of miRNA expression was based on counts per million (CPM). The log2 

transformation of CPM was used as standardization and adjustment for total reads within each sample. 

The miRNAs with log2 CPM< 1.0 were considered as not expressed in the samples. Of the 2083 miRNAs, 

591 miRNAs were expressed at good levels in plasma. These 591 well-expressed miRNAs are those with 

>50% values above Lower Limit of Quantification (LLOQ). The LLOQ level is based on a monotonic 

decreasing spline curve fit between the means and standard deviations of all miRNAs. 

Assessment of liver fat with CT scan 

As part of a larger project on the assessment of vascular calcification, ECG-gated, cardiac, non-enhanced 

CT scanning on a 16-slice (n=251) or 64-slice (n=703) multi-detector CT scanner (Somatom Sensation 

16 or 64, Siemens, Forchheim, Germany). Imaging parameters of the scans are described in detail 

elsewhere.19 

Using this cardiac scans, we evaluated the liver density (attenuation) using a standardized procedure. First, 

we placed three circular regions of interest (ROIs) in the liver and calculated the mean liver attenuation 

(LA) within these regions.20 These ROIs are delineated throughout the imaged liver tissue (including both 

the left and right liver lobes) are carefully chosen to include only liver tissue, and avoiding the large blood 

vessels, cysts, or focal lesions. Next, we calculated the mean Hounsfield unit (HU) value from these three 

measurements as a marker of total amount of liver fat, which is a reliable proxy for the mean LA value of 

the whole liver.20 All measurements were done using Philips iSite Enterprise software (Royal Philips 

Electronics N.V. 2006) and described in detail elsewhere.21 

The CT diagnosis of liver fat is made by measuring mean LA in HU or the difference between the liver 

and spleen.20 As the amount of liver fat increases, the measured LA decreases, that means low LA was 

equal to high risk of fatty liver. However, in the present study fatty liver disease was defined as mean LA< 

40 HU.22 
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Assessment of hepatic steatosis and liver fibrosis 

Hepatic steatosis was assessed by using abdominal ultrasound, which was carried out by a certified and 

skilled technician (Pavel Taimr) on Hitachi HI VISION 900.23 Images were stored digitally and re-

assessed by a single hepatologist with more than ten years of experience in ultrasonography. Diagnosis of 

steatosis was determined dichotomously as presence of a hyperechogenic liver parenchyma according to 

the protocol by Hamaguchi et al.24 

Moreover, liver fibrosis was assessed using transient elastography (FibroScan®, EchoSens, Paris, France). 

Applied implementation of this examination has been described in detail previously 25. Liver stiffness 

measurement (LSM) was performed by a single certified and experienced operator, who obtained 10 serial 

measurements using either the M or XL‐probe dependent on the thickness of the subcutaneous fat layer 

23. Moreover, LSM interquartile range/median LSM >0.3 kilopascals (kPa) and LSM ≥ 7.1 kPa were 

regarded as poorly reliable 26. In the present study, LSM ≥ 9.0 kPa was used as a cutoff suggesting 

clinically relevant liver fibrosis.8 

Assessment of covariates and liver enzymes 

Information on smoking behavior, medication use and blood sampling, was obtained during home 

interviews.18 Height and weight were measured, and the body mass index (BMI) [(weight in kg)/(height 

in m)2] was calculated. Waist circumferences was measured at the level midway between the lower rib 

margin and the iliac crest with the participant in a standing position. Smoking status was categorized into 

never, current or former and were classified (yes/no), for ever-smokers were regarded as current and 

former smokers combined. Alcohol consumption was assessed in grams of ethanol per day and were 

classified (yes/no). Excessive alcohol consumption was defined as alcohol intake >30 g/day for men and 

>20 g/day for women.23 Hypertension was defined as a systolic blood pressure (BP) ≥140mmHg or a 

diastolic BP ≥90 mmHg or the use of BP-lowering drugs prescribed for hypertension.27 Diabetes mellitus 

was defined according to recent WHO guidelines28 as fasting blood glucose ≥7.0 mmol/L or non-fasting 

blood glucose between ≥11.1 mmol/L or the use of antidiabetic medication. From the blood samples, 

concentrations high-density lipoprotein (HDL) cholesterol were determined using enzymatic 

procedures.29 Serum GGT and ALP levels were determined within 2 weeks using a Merck Diagnostica 

kit on an Elan Autoanalyzer (Merc, Darmstadt, Germany). According to local cutoffs, elevation of GGT 

was defined as >34 U/L for women and >49 U/L for men, and elevation of ALP was defined as >97 U/L 

for women and >114 U/L for men.30 
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Statistical analysis 

Continuous variables are reported as mean ± standard deviation (SD) unless stated otherwise and 

categorical variables were presented as sample sizes and percentages. To obtain a normal distribution, 

skewed variables (serum HDL cholesterol, GGT and ALP) were log transformed. In addition, the amount 

of liver fat (A) had a left skewed and we used exponential transformed values (B) using the formula 

[B=A3.5/10000].21 

The multivariable linear regression models were used to check the association of miRNA levels with 

serum GGT and ALP levels. Beta, standard error (SE), p-value were reported. The Bonferroni-corrected 

p-value threshold was calculated based on the number of tested miRNAs (0.05/591=8.46×10-5). In basic 

model (model 1), we adjusted the analysis for age and sex. The multivariable model (model 2), was 

additionally adjusted for waist circumference, ever smoking, alcohol consumption, hypertension, diabetes 

mellitus and serum HDL cholesterol. Because the missing values were likely to be missing at random and 

for avoidance of loss in efficiency, missing values on covariates (ranging from 0.1% to 1.7%) were 

imputed using a multiple imputation technique (N=5 imputations). All analyses were done using SPSS 

statistical software (SPSS, version 25; IBM Corp, Armonk) and R software version 3.5.2 (The R 

Foundation for Statistical Computing, Vienna, Austria). Sensitivity analyses were performed by adjusting 

for more variables. Model 3 was built by adding GGT and ALP to model 2. In model 4, we further adjusted 

for potential intermediator factors including in the model 2, use of lipid-lowering medication, use of bile 

and liver medications. In model 5, we adjusted for all potential intermediator factors (including model 2, 

GGT, ALP, use of lipid-lowering medication, use of bile and liver medications). 

Furthermore, multivariable logistic regression models were used to investigate longitudinally the 

association of the plasma levels of the identified miRNAs with prevalence of hepatic steatosis and liver 

fibrosis after a median follow-up of 6.4 years [interquartile range (IQR): 5.9-7.0 years]. The Bonferroni 

correction was used to set the significance threshold. 

Two databases, the Human miRNA tissue atlas (https://ccb-web.cs.uni-saarland.de/tissueatlas )31 and 

Human miRNA expression profiles (https://guanfiles.dcmb.med.umich.edu/mirmine/ index.html), 

were used to check whether the identified miRNAs are expressed in the liver. We also searched the 

literature32-35 and several web tools (e.g., miR2Diease and GWAS catalog) to see whether the identified 

miRNAs are associated with liver function and diseases. 

 

  

https://ccb-web.cs.uni-saarland.de/tissueatlas
https://guanfiles.dcmb.med.umich.edu/mirmine/%20index.html


Circulatory microRNAs as biomarker for fatty liver disease 

63 
 

2.2 

Results  

At baseline, 954 participants who had miRNA expression data and CT-based liver fat measurement were 

included to test the association of miRNAs and FLD. The mean age of the study population was 68.8±6.7 

years, and 46.6% were male. The mean LA in the population was 61.6 HU (IQR: 55.4-65.6 HU). Among 

the study participants, 14.8% were diagnosed with cancer, but none of them was diagnosed with liver 

cancer. At follow-up, 1,211 participants who had underwent abdominal ultrasound were included to test 

the association of miRNAs and hepatic steatosis. The man age of the study population was 76.3±6.5 years, 

and 42.4% were male. Lifestyle, clinical and biochemical characteristics of all study participants are 

presented in Table 1. Comparison of characteristics between healthy controls and FLD patients based on 

CT-scan and ultrasound data (in baseline and follow-up study) are shown in Table S1. The participants 

with FLD have significantly higher BMI, waist circumference and alcohol consumption than healthy 

controls. In addition, compare to healthy controls, individuals with FLD have significantly lower serum 

HDL cholesterol.  
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Table 1. Characteristics of the study population 

Characteristic 
Baseline (n=954) 

With CT-scan data 

Follow-up (n=1,211) 

With ultrasound data 

Age, years 68.8±6.7 76.3±6.5 

Male, n (%) 445 (46.6) 513 (42.4) 

Body mass index , kg/m2 27.9±4.0 27.5±4.1 

Waist circumference, cm 94.4±11.7 93.2±12.0 

Hypertension, n (%) 709 (74.3) 1,047 (86.5) 

Blood-pressure-lowering medication, 

n (%) 

385 (40.4) 644 (53.2) 

Smoking status, n (%)   

Ever 677 (71.0) 791 (65.3) 

Current 130 (13.6) 116 (9.6) 

Former 547 (57.4) 675 (55.7) 

Diabetes mellitus, n (%) 123 (12.9) 156 (12.9) 

Use of lipid-lowering medication, n 

(%) 

246 (25.8) 372 (30.7) 

Alcohol intake, grams/day 8.6 (1.4-20.0) 8.6 (1.6-8.6) 

Mean liver attenuation, HU 61.6 (55.4-65.6) − 

Serum hdl cholesterol, mmol/l 1.4 (1.2-1.7) 1.4 (1.2-1.7) 

GGT level, u/l 26.0 (18.0-39.0) 24.0 (17.0-34.2) 

ALP level, u/l 77.0 (66.0-91.0) 68.0 (57.0-80.0) 

Cancer, n (%) 141 (14.8) − 

Liver cancer, n (%) 0 (0) − 

Fatty liver, n (%) 47 (4.93) 424 (35) 

Note: The table shows characteristics of 954 participants with CT‐scan data at baseline and 1211 participants with 

ultrasound data at follow‐up. Values are represented as mean (±standard deviation), sample sizes (%), or median 

(inter‐quartile range) for characteristics with skewed distributions. Abbreviations: ALP, Alkaline phosphatase; 

BP, blood pressure; GGT, Gamma‐glutamyl transferase; HDL, high‐density lipoprotein; HU, Hounsfield unit. 

 

In the linear regression analysis with liver enzymes, 37 miRNAs were significantly associated with serum 

GGT levels and 29 miRNAs with serum ALP levels, at the Bonferroni-corrected p-value< 8.46×10-5 

(0.05/591 well-expressed miRNAs) (Table S2 and Table S3, respectively). Volcano plot showing 

differently expressed miRNAs in relation to GGT and ALP levels is depicted in Figure 2A-B.  
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Figure 2. Volcano plots showing correlation between plasma levels of miRNAs and GGT (A), ALP (B), and 

continuous Hounsfield Unit values (C). The red dots indicate miRNAs significantly associated at Bonferroni‐

corrected P < 8.46 × 10−5. The grey dots indicate miRNAs with no significant association. The name of miRNAs 

that were significantly associated with liver enzymes and the continuous Hounsfield Unit values are mentioned in 

(C). Abbreviations: ALP, Alkaline phosphatase; GGT, Gamma‐glutamyl transferase; miRNAs, microRNAs. 

Using a linear regression analysis of the continuous HU values, in the multivariable model 2, we found 

15 miRNAs to be significantly associated at Bonferroni-corrected p-value< 8.46×10-5 (Table S4). 

Volcano plot showing differently expressed miRNAs in relation to the continuous HU values is depicted 

in Figure 2C. In addition, in a logistic regression model testing the association of miRNA levels with the 

dichotomous HU values assessing FLD (mean LA ≤ or >40), 6 miRNAs were significantly associated (p-

value< 8.46×10-5) (Figure 3). In model 3, further adjusting for GGT and ALP changed slightly the 

associations and with less miRNAs significant associated, but 2 out of the 17 and 6 out of 17 miRNAs 

remained significant using dichotomous and continuous Hounsfield Unit values, respectively (p-value< 

8.46×10-5) (Table S5 and Table S6). Additional adjustment for use of lipid-lowering medication, use of 

bile and liver medications (model 4) did not change the observed associations between miRNAs and FLD 

(Table S5 and Table S6). In model 5, we added GGT, ALP, use of serum lipid reducing agents, use of 

bile and liver medications to model 2, the associations of miRNAs with FLD were similar to model 3, the 

same miRNAs remained significant (Table S5 and Table S6).  
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Figure 3. Comparison between expression levels of the top 10 miRNAs in patients with fatty liver disease and 

healthy controls.  

Of these, 6 miRNAs (miR‐193a‐5p, miR‐378a‐3p, miR‐422a, miR‐378d, miR‐320d and miR‐378e) were 

significantly associated with fatty liver disease at Bonferroni‐corrected P < 8.46 × 10−5. Abbreviations: 

CPM, counts per million; miRNAs, microRNAs. 

Collectively, our cross-sectional studies with the baseline data revealed 61 unique miRNAs associated 

with liver enzymes (GGT and/or ALP) and 17 unique miRNAs associated with CT-based FLD 

(continuous or dichotomous HU values). Of these, 14 miRNAs were common in both lists that were 

selected for further analyses (Table 2). 

The longitudinal analysis was performed for the 14 miRNAs by using ultrasound and FibroScan data. 

Using a logistic regression in the multivariable model 2, we found significant association between four of 

the 14 miRNAs (miR-193a-5p, miR-122-5p, miR-378d, and miR-187-3p) with hepatic steatosis at 

Bonferroni-corrected p-value< 3.57×10-3 (0.05/14 miRNAs) (Table 3). Moreover, we found significant 

association of miR-122-5p and miR-187-3p with NAFLD (p-value< 3.57×10-3), and miR-3937 was 

nominally (p-value< 0.05) associated with alcoholic FLD (Table S7). Using FibroScan data and in a 

multivariable logistic regression model, we found miR-193a-5p (p-value= 5.58×10-3, β= 1.11), miR-122-

5p (p-value=0.0147, β= 0.45) and miR-193b-3p (p-value= 0.0102, β= 1.19) were to be nominally 

associated with liver fibrosis (Table 3).  
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Table 2. Circulatory miRNAs significantly associated with CT-scan based fatty liver disease and serum liver 

enzymes 

 CT-based FLD Liver  enzymes 

miRNA ID Dichotomous  

HU values 

Continues  

HU values 

GGT ALP 

Beta p-value Beta p-value Beta p-value Beta p-value 

miR-193a-5p 1.86 2.02×10-10 -35.88 4.26×10-12 0.14 6.15×10-29 0.001 7.99×10-01 

miR-4484 0.71 8.33×10-4 -20.04 6.02×10-08 0.03 4.02×10-05 0.01 3.68×10-04 

miR-1306-5p -0.60 3.15×10-01 55.59 1.21×10-07 -0.09 6.45×10-05 -0.02 1.12×10-01 

miR-378a-3p 2.36 1.90×10-07 -34.61 1.95×10-06 0.09 8.45×10-08 -0.01 3.98×10-1 

miR-6803-5p 0.70 2.68×10-02 -27.96 2.01×10-07 0.05 6.31×10-05 0.01 1.03×10-02 

miR-6870-3p -0.59 1.60×10-02 25.79 3.87×10-07 -0.06 9.04×10-08 -0.02 8.00×10-05 

miR-3937 -0.54 1.83×10-03 15.02 6.59×10-07 -0.03 1.90×10-06 -0.01 3.84×10-04 

miR-122-5p 0.54 1.72×10-04 -12.74 8.05×10-06 0.14 2.39×10-116 0.01 4.73×10-04 

miR-422a 2.01 9.87×10-06 -25.07 6.09×10-05 0.06 9.71×10-06 0.002 7.37×10-01 

miR-378d 1.75 1.11×10-05 -26.00 5.87×10-06 0.06 5.55×10-07 -0.004 4.92×10-01 

miR-187-3p -1.31 2.52×10-02 48.67 1.33×10-05 -0.11 3.78×10-06 -0.03 1.80×10-02 

miR-6809-5p -0.73 5.51×10-02 34.03 1.61×10-05 -0.08 1.45×10-06 -0.01 1.11×10-01 

miR-193b-3p 1.01 2.70×10-03 -23.17 2.77×10-05 0.11 2.01×10-21 -0.001 7.85×10-01 

miR-4713-3p -0.55 1.02×10-02 16.96 2.80×10-05 -0.03 8.53×10-04 -0.01 1.13×10-02 

miR-320d 1.16 2.87×10-05 -14.30 4.54×10-03 0.02 1.72×10-01 0.004 4.10×10-01 

miR-34b-3p -0.76 8.88×10-02 30.06 6.27×10-05 -0.06 1.79×10-04 -0.01 3.41×10-01 

miR-378e 1.64 6.88×10-05 -21.54 6.86×10-04 0.06 3.13×10-05 -0.01 4.42×10-01 

Note: Model 2: adjusted for age, sex, waist circumference, ever smoking, alcohol consumption, hypertension, 

diabetes mellitus and serum HDL cholesterol. The table is sorted based on Bonferroni‐corrected P value 

association of miRNAs with dichotomous or continues Hounsfield Unit values in model 2. The Bonferroni‐

corrected significance threshold is P < 8.46 × 10−5 (0.05/591 miRNAs). The P values surpassing the significance 

threshold are “a”. Abbreviations: ALP, Alkaline phosphatase; FLD, fatty liver disease; GGT, Gamma‐glutamyl 

transferase; HU, Hounsfield Unit; miRNA, microRNA.  
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Additionally, we searched the Human miRNA tissue atlas and the miRmine database to see whether the 

14 miRNAs associated with FLD in plasma are also expressed in the liver that are shown in Table S8. 

Among them, miR-122-5p is a specifically expressed miRNA with the tissue specificity index (TSI) of 

0.97 and highly expressed in the liver. Then, we sought to find whether the 14 identified miRNAs are 

reported in previous studies to be associated with liver function or/and diseases. A summary of evidence 

for associations between 9 of these miRNAs and liver diseases are shown in Table S9. Finally, we 

extracted SNPs annotated to the 16 identified miRNAs and checked their associations with FLD and liver 

enzymes using summary statistics data from pervious GWAS.34, 35 There were 63 SNPs related to miR-

193a-5p, miR-378d and miR-193b-3p, none of them showed significant association after correcting the 

p-value for multiple testing based on  the number of tested SNPs. 

Table 3. Longitudinal study of the 14 identified miRNAs with hepatic steatosis and liver fibrosis 

Note: Model 2: adjusted for age, sex, waist circumference, ever smoking, alcohol consumption, hypertension, 

diabetes mellitus and serum HDL cholesterol. The table is sorted based on the association of 14 miRNAs with the 

continues Hounsfield Unit values in the cross-sectional study. The p-values surpassing the Bonferroni-corrected 

threshold of p-value< 3.57×10-3 (0.05/14 miRNAs) are bold and nominal associations with p-value <0.05 are 

underlined. Abbreviations: miRNA, microRNA; SE, standard error. 

  

miRNA ID 
Hepatic Steatosis Liver Fibrosis 

Beta SE p-value Beta SE p-value 

miR-193a-5p 0.54 0.16 2.02×10-10 1.11 0.40 5.58×10-03 

miR-4484 0.21 0.10 4.65×10-02 0.41 0.28 1.37×10-01 

miR-1306-5p -0.33 0.28 2.36×10-01 -1.16 -0.73 1.14×10-01 

miR-378a-3p 0.37 0.21 8.19×10-02 1.23 0.64 5.67×10-02 

miR-6803-5p 0.13 0.15 3.79×10-01 0.70 0.41 8.42×10-02 

miR-6870-3p -0.22 0.14 1.18×10-01 0.07 0.45 8.80×10-01 

miR-3937 -0.13 0.09 1.44×10-01 -0.18 0.26 4.87×10-01 

miR-122-5p 0.33 0.08 6.06×10-05 0.45 0.18 1.47×10-02 

miR-422a 0.37 0.18 4.12×10-02 0.96 0.54 7.61×10-02 

miR-378d 0.54 0.17 1.65×10-03 0.73 0.53 1.69×10-01 

miR-187-3p -1.01 0.34 2.76×10-03 -0.42 0.98 6.68×10-01 

miR-6809-5p -0.55 0.24 2.49×10-02 -0.66 -0.76 3.83×10-01 

miR-193b-3p 0.22 0.15 1.42×10-01 1.19 0.46 1.02×10-02 

miR-378e 0.50 0.18 7.25×10-03 0.94 0.60 1.14×10-01 
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Discussion  

In this study, we investigated the association between circulating miRNAs and liver enzymes in a 

population-based setting and found 61 unique miRNAs to be associated with serum GGT or ALP levels. 

Moreover, we found plasma levels of 17 miRNAs to be associated with CT-based FLD, 14 of these were 

also associated with the liver enzymes. Higher plasma levels of three and lower plasma level of one of 

these 14 miRNAs were significantly associated with hepatic steatosis after >6 years follow-up. These 

findings indicate that plasma levels of miRNAs can be considered as potential biomarkers of FLD and 

hepatic steatosis in the general population. 

Several studies have demonstrated the potential of miRNAs to be used as biomarkers for liver diseases.36-

38 However, previous studies have conducted for subset of miRNAs, using qPCR-based methods, or on 

the modest sample sizes. While our study is embedded within the Rotterdam Study with much larger 

sample size, based on RNA-sequencing method, conducted genome-wide profiling of almost all important 

cell-free miRNAs, and adjusted for a broad range of potential confounders, such as waist circumference, 

smoking status, alcohol consumption, hypertension and diabetes mellitus, which have been overlooked in 

most of previous studies.36, 39 Such a large-scale population-based study with long term follow-up data 

provided a more statistical power to detect multiple significant associations. Compared to microarray or 

qPCR-based profiling techniques, the cell-free RNA-seq analysis can provide higher sensitivity to 

measure miRNAs expression levels over a wide dynamic range and with ability to identify novel 

miRNAs.40 Additionally, due to the high stability of cell-free miRNAs in body fluids and accessibility of 

plasma compared with the target tissue, the identified miRNAs can be considered as potential easy-to-use 

biomarkers in clinical routine.41 

Previous studies on human or mouse model have demonstrated particularly miR-122-5p as potential 

biomarkers and therapeutic target for liver diseases.39, 42, 43 In line with previous studies, we found that the 

higher plasma miR-122-5p level is significantly associated with FLD and liver enzymes also in a 

population-based setting. In addition to the well-established liver-associated miR-122, we found evidence 

in previous studies for 8 of the other identified miRNAs in our study to be associated with liver diseases, 

indicating the importance of these miRNAs in pathways underlying liver function and diseases. In 

particular, the expression of miR-193a-5p, which is one of our top miRNAs associated with FLD and 

hepatic steatosis, is reported to be upregulated in HCC tissues,44 whereas miR-193a-5p can distinguish 

HCC from other non-HCC individuals43 and inhibited HCC development through targeting SPOCK1.45 

Similarly, miR-422a was related to NAFLD,46 miR-378d47 miR-187-3p,48 miR-6809-5p49 and miR-448450 

were associated with HCC. Moreover, miR-193b-3p which were significantly associated with FLD and 

nominally associated with liver fibrosis in our study, have been verified previously to be involved in the 

pathogenesis of liver fibrosis in vitro.51 Finally, the members of miR-378 family, in particular miR-378a-

3p that has been also proposed to have a therapeutic potential for liver fibrosis.52 
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Our results showed a minimal of the use of serum lipid reducing agents, use of bile and liver medications 

on the observed associations between miRNAs and FLD. We observed slightly change in the associations 

between miRNAs and FLD by adding GGT and ALP to the model. This difference may indicate that liver 

enzymes have more stronger links to FLD compared to medication use. Also, we did not find significant 

association between SNPs related to the identified miRNAs and FLD in the summary statistics from 

previous GWAS, but we need to take into consideration the sample sizes of available GWAS of liver 

diseases. To date, the GWAS on liver diseases are mainly from two studies,34, 35 Nakamura et al. conducted 

a study to identify susceptibility loci for primary biliary cirrhosis, a GWAS in 963 Japanese individuals 

and in a subsequent replication study including 1,402 other Japanese individuals. The sample sizes of this 

study is limited and the analysis conducted in Asia population, while our study was conducted in European 

population, and miRNAs expression might exhibits population differences.53 In addition, Namjou et al. 

conducted a GWAS using both adult and pediatric participants (1,106 NAFLD cases and 8,571 controls) 

from electronic medical records to identify genetic contributions to NAFLD. As the cohorts in that GWAS 

study represent many geographic area in USA, other ancestry groups are under-represented in the 

electronic medical records. Thus, it is possible that future trans-ethnic GWAS with larger samples sizes 

find association between some of the identified miRNAs and FLD. 

Our study has some limitations that should be considered. First, in the cross-sectional observational study 

the ability to assess causality or temporality is limited. We therefore assessed additionally the associations 

of the identified miRNAs as biomarkers for diagnosis hepatic steatosis after follow-up. Future studies are 

still needed to confirm our findings in longitudinal settings considering the incidence date, longer follow-

up time and in different age groups. Second, we defined the mean LA< 40 HU as FLD and found 47 cases 

out of 954 individuals (5%), which is lower than the excepted prevalence of FLD in the general population. 

A liver-to-spleen ratio< 1.0 is comparable to using a mean LA cut off ≤ 51 HU for diagnosis of mild liver 

fat.54 However, previous studies have demonstrated different cut-offs, mainly a cut-off value of 40 HU on 

non-enhanced CT as the most clinically indicator for moderate-to severe steatosis.20, 22 In our study, the 

cut-off value is 40 HU for FLD, it is relatively strict than using the mean LA≤ 51 HU, which increases the 

certainty of identifying participants with true FLD and also results in a lower prevalence. Therefore, we 

performed cross-sectional analysis at baseline with the continuous HU values and liver enzymes as well. 

The majority (14 out of 17) of the identified miRNAs with CT-scan data showed significant association 

with liver enzyme, indicating the robustness of our results. Yet, compare to the liver biopsy as the gold 

standard, but invasive method, to measure FLD, CT-based liver fat has limited diagnostic accuracy of 

detecting mild degree hepatic steatosis. Therefore, there might be some known or unknown causes for 

low density of the liver on CT scan. Also, there might be some inconsistency between CT-scans and 

ultrasound data for diagnosing FLD and hepatic steatosis. In an optimal setting, one should use the 

repeated measurement of liver fat by a similar diagnostic method for longitudinal analysis. 
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In conclusion, we found that plasma levels of several miRNAs were significantly associated with FLD 

and hepatic steatosis that can be considered as plasma disease biomarkers in this population-based study. 

Future research need to be conducted even with more sample sizes and longer follow-up times in order to 

confirm the potential of the identified miRNAs as biomarkers for early diagnosis and progression of FLD 

and also to uncover underlying molecular mechanisms by which these miRNAs may control liver fat. 
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Abstract  

Background: MicroRNAs (miRNAs) represent a class of non-coding RNAs that regulate gene 

expression and are implicated in the pathogenesis of different diseases. Alcohol consumption might affect 

the expression of miRNAs, which in turn could play a role in risk of diseases.  

Objective: We investigated whether plasma concentrations of miRNAs are altered by alcohol 

consumption. Given the existing evidence showing the link between alcohol and liver diseases, we further 

explored the extent to which these associations are mediated by miRNAs. 

Design: Profiling of plasma miRNAs was conducted using HTG EdgeSeq miRNA Whole Transcriptome 

Assay in 1933 participants of the Rotterdam Study. Linear regression was implemented to explore the link 

between alcohol consumption (glasses/day) and miRNAs levels, adjusted for age, sex, cohort, BMI, and 

smoking. Sensitivity analysis for alcohol-categories (non-, light-, and heavy-drinkers) was performed, 

where light drinkers-corresponded to 0-2 glasses/day in men; 0-1 glasses/day in women and heavy->2 

glasses/day in men; >1 glasses/day in women. Moreover, we utilized the alcohol-associated miRNAs to 

explore their potential mediatory role between alcohol consumption and liver-related traits. Finally, we 

retrieved putative target genes of identified miRNAs to gain an understanding of the molecular pathways 

concerning alcohol consumption. 

Results: Plasma levels of miR-193b-3p, miR-122-5p, miR-3937, and miR-4507 were significantly 

associated with alcohol consumption surpassing the Bonferroni-corrected P-value< 8.46×10-5. The top 

significant association was observed for miR-193b-3p (β=0.087, P-value= 2.90×10-5). Furthermore, a 

potential mediatory role of miR-3937 and miR-122-5p was observed between alcohol consumption and 

liver traits. Pathway analysis of putative target genes revealed involvement in biological regulation and 

the cellular processes. 

Conclusions: This study indicates that alcohol consumption is associated with plasma concentrations of 

four miRNAs. We outline a potential mediatory role of two alcohol-associated miRNAs (miR-3937 and 

miR-122-5p), laying the groundwork for further exploration of miRNAs as potential mediators between 

lifestyle factors and disease development. 
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Introduction  

Alcohol consumption is a modifiable lifestyle factor and a leading risk factor for the global burden of 

many diseases. Given its widespread nature, alcohol has been estimated to contribute to 2.7 million deaths 

and 4% of the global disease burden annually.1 High alcohol intake has been associated with an increased 

risk of stroke, peripheral artery disease,2 liver diseases,3-6 various cancers,7-10 overall all-cause mortality,11 

and many other diseases.12 Although numerous molecular mechanisms have been postulated to explain 

the link between alcohol consumption and the risk of various diseases, this complex etiology remains to 

be explored.13-15 The liver is the primary organ for metabolizing and detoxification of alcohol,16 while 

excessive alcohol consumption can have a severe impact on liver health, including fatty liver, alcoholic 

hepatitis, and cirrhosis.17 In addition, only 10-20% of chronic alcohol consumers will progress to advanced 

alcoholic liver disease (ALD).18 The exact molecular mechanisms involved in alcohol-related liver traits 

and diseases are still not fully elucidated.19, 20 Behavioural factors, including alcohol consumption, have 

been linked with epigenetic markers,21-23 while these epigenetic markers have also been linked to several 

diseases.20 Epigenetic mechanisms include DNA methylation, histone protein modifications, and RNA-

mediated regulation by non-coding RNAs.20, 24 

MicroRNAs (miRNAs) are small non-coding RNA molecules (around 22 nucleotides in length) that 

regulate gene expression at the post-transcriptional level. As such, miRNAs are estimated to regulate the 

expression of more than half of the protein-coding genes in our genome.25 They are considered as a type 

of epigenetic regulation whose mechanism of action relies on the degradation of messenger (m)RNAs and 

translational repression.26 An extensive body of research has demonstrated that dysregulation of miRNAs 

is associated with disease risk.27-32 Moreover, recent studies have indicated an influence of modifiable 

lifestyle factors (such as smoking and diet) on miRNA expression levels.33 Two before-after studies with 

small sample sizes (n=16-18)34, 35 showed differential expression of miRNAs following exposure to 

alcohol consumption, including miR-122-5p, a highly expressed liver miRNA. However, limited studies 

were conducted to explore the association between expression levels of miRNAs and alcohol consumption 

in larger sample sizes.33 As identifying alcohol-associated changes in miRNAs expression might help to 

elucidate the mechanism of action between alcohol consumption and health outcomes, it is of crucial 

importance to explore this niche. In this study, we aimed to investigate the association of plasma miRNAs 

with alcohol consumption and to explore whether there is a mediating effect for the alcohol-associated 

miRNAs in the cross-sectional association of alcohol consumption with liver function and disease, using 

data from the large population-based prospective Rotterdam Study cohort.36 
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Methods 

Study population 

This study was conducted in the Rotterdam Study, which is an ongoing prospective population-based 

cohort study. In brief, the Rotterdam Study consists of four sub-cohorts. The first subcohort (RS-I) was 

initiated in 1990 with individuals ≥55 years of age (n=7983). The study was extended by including a 

second sub-cohort (RS-II) in 2000 (n=3011, ≥ 55 years of age), a third sub-cohort (RS-III) in 2006 

(n=3932, ≥ 45 years of age), and the most recent fourth sub-cohort (RS-IV) in 2016 (n=3005, ≥ 40 years 

of age). In addition to these baseline examinations, the participants were re-examined during follow-up 

every 3 to 5 years. More in-depth details regarding the design of the Rotterdam Study can be found 

elsewhere.36 

For the present study, 1000 participants were included from the fourth visit of Rotterdam Study-I (RS-I-

4) and 1000 participants from the second visit of Rotterdam Study-II (RS-II-2), for whom we had miRNA 

expression data measured (in total n=2000). These visits of the Rotterdam Study occurred between 2002 

and 2005. From the 2000 unique individuals, 1 participant was excluded due to missing profiling data for 

all miRNAs, while 66 were excluded due to missing data on alcohol consumption. In total, 1933 non-

overlapping participants were included in our analysis. The Rotterdam Study has been approved by the 

Medical Ethics Committee of the Erasmus MC and by the Dutch Ministry of Health, Welfare, and Sport.36 

MiRNA expression profiling 

Blood samples were collected in EDTA treated containers and centrifuged, followed by plasma 

aliquotation, and stored at -80°C, according to the standard procedures. Plasma samples were then used 

for miRNA expression profiling using the HTG EdgeSeq miRNA Whole Transcriptome Assay (WTA) 

(HTG Molecular Diagnostics, Tuscon, AZ, USA). The WTA measured the expression of 2083 human 

miRNAs using the Illumina NextSeq sequencer (Illumina, San Diego, CA, USA). The assay characterizes 

miRNA expression patterns and hereby measured the expression of 13 housekeeping genes- providing 

flexibility in data analysis and normalization. The miRNA expression quantification was based on counts 

per million (CPM), which were log2 transformed and used as standardization, adjusting for total reads 

within each sample. Furthermore, the miRNAs showing log2 CPM <1.0 were referred to as low expressed 

and the well-expressed miRNAs were defined as those with >50% of values above the lower limit of 

quantification (LLOQ), resulting in a total of 591 miRNAs, which were used in our analysis. The LLOQ 

was used for the selection of well-expressed miRNAs (n=591), which was based on a monotonic 

decreasing spline curve fit between the means and standard deviations of all miRNAs in the whole study 

participants. 
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Assessment of alcohol consumption 

Participants were administered interviews at home by research assistants, where they were asked about 

their alcohol consumption. The first question asked whether participants ever drank alcohol. If the answer 

was confirmative, it was later followed by more extensive questions on the type of alcohol (e.g., beer, red 

wine, white wine, moderately strong spirits such as Campari, Martini, sherry, and strong spirits such as 

rum, brandy, whisky) and frequency of consumption per week. This information was collected and used 

to calculate the average alcohol consumption in glasses/day. The glasses/day information could be used 

to estimate grams of alcohol, assuming that one glass of alcohol would roughly correspond to 10 grams 

of alcohol.37 As our study population also included a percentage of current non-drinkers of alcohol (n=307, 

15.88%), the alcohol consumption variable was right-skewed. To satisfy the assumption of normality of 

residuals in linear regression, we applied transformation of (log(glasses/day +1)), according to the 

approach reported by Liu et al.38 Furthermore, alcohol consumption was categorized in non-drinkers 

(glasses/day=0), light drinkers (0<-≤2 glasses/day in men and 0<-≤1 glasses/day in women), and heavy 

drinkers (>2 glasses/day in men and >1 glasses/day in women). 

Assessment of covariates  

Questionnaires were used to assess the participant's age, sex, and smoking status (classified as current, 

former, and never smokers). Furthermore, the height and weight of participants were measured with the 

participants standing without heavy garments or shoes. Body mass index (BMI) was computed as weight 

in kilograms divided by height in meters squared.  

Assessment of fatty liver and hepatic steatosis using CT-scan and ultrasound 

Multidetector CT scanner (Somatom Sensation 16 or 64, Siemens, Forchheim, Germany) was acquired as 

part of a larger project on vascular calcification. For the current project, the ECG-gated, non-contrast 

cardiac scan was used to assess the density of the liver, as a proxy for fatty liver disease. Detailed imaging 

parameters are described in detail elsewhere.39 We assessed the density of the liver using a standardized 

strategy that included drawing three circular regions of interest (ROIs) in liver tissue in which the mean 

liver attenuation (LA) was calculated.40 The ROIs were carefully chosen to include solely liver tissue 

(avoiding disruptive tissue such as focal lesions, cysts, or large blood vessels). Next, we determined the 

mean Hounsfield unit (HU) value from the retrieved three measurements as an indicator of the total liver 

fat amount. As the amount of liver fat is increased, the measured liver attenuation (LA) is decreased; 

therefore, a lower LA indicates a higher risk of fatty liver. All measurements were computed using Philips 

iSite Enterprise software (Royal Philips Electronics N.V. 2006), described in depth elsewhere.41 In 

addition, we transformed liver fat (A) using exponential values (B) [B=A3.5/10000] as it was left-skewed.41 

Beyond the CT assessment, hepatic steatosis was determined by using the abdominal ultrasound data, 

generated via Hitachi HI VISION 900 by an experienced and certified technician (Supplemental Table 
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1). Steatosis was diagnosed by dichotomizing the data into the presence of hyperechogenic liver 

parenchyma, as reported previously.42 More details on liver steatosis and non-alcoholic fatty liver disease 

(NAFLD) within the Rotterdam study can be found elsewhere.43 

Measuring liver enzymes  

Serum gamma-glutamyltransferase (GGT) and alkaline phosphatase (ALP) levels were determined within 

2 weeks of collecting and stored with non-fasting and fasting blood samples at -20°C. Kit Merck 

Diagnostica (Merck, Whitehouse Station, NJ, USA) was used on Elan Autoanalyzer (Merck). 

Furthermore, considering local cut-offs, elevated GGT was defined as >34 U/L for women and >49 U/L 

for men, while ALP was considered elevated at >97 U/L for women and >114 U/L for men, more details 

can be found elsewhere.44 To satisfy the assumption of normality of residuals, as GGT and ALP were 

right-skewed, we applied log transformation. 

Statistical analyses 

Alcohol consumption in association with alterations in miRNAs levels 

Multivariable linear regression models were implemented to explore the association between alcohol 

consumption as the main exposure (log(glasses/day+1) and plasma miRNA levels (log2 CPM) as the 

outcome. For a more detailed overview of the inclusion criteria and the analysis workflow, see Figure 1. 

We tested three different models. The first model was adjusted for age, sex, and cohort, the second model 

was further adjusted for BMI, while in the final model we additionally adjusted for smoking status. The 

main results were reported from the fully adjusted model. The Bonferroni-corrected P-value threshold  

<0.05/591=8.46×10-5 (after adjustment based on the number of miRNAs tested) was set for our 

hypothesis-free approach. The assumptions of linear regression analysis including normality of residuals, 

normality of random effects, multicollinearity, linear relationship, and homogeneity of variance were 

assessed using the “performance” package in R. 

Furthermore, for the alcohol-associated miRNAs, we performed a sensitivity analysis, where we treated 

alcohol exposure as a categorical variable. The non-drinker category was included as the reference group, 

where it was compared to the light- and heavy-drinkers. 

Moreover, as alcohol consumption might have sex-specific differences  due to differential drinking 

patterns45 or alcohol metabolism,46 we performed a sex-stratified analysis to explore potential changes in 

alcohol-associated miRNAs. 
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Figure 1. Overview of the study design. An overview of the flowchart summarizing sample sizes for the different 

analysis. The main analysis investigating the association between alcohol consumption and miRNA expression was 

performed on participants from RS-I-4 and RS-II-2 within Rotterdam Study, who had data available on miRNA 

levels and alcohol consumption (N=1933). Non-drinkers: 0 glasses/day, light drinkers: 0-2 glasses/day in men and 

0-1 glasses/day in women, heavy drinkers: >2 glasses/day in men and >1 glasses/day in women. Abbreviations: 

miRNAs: microRNAs, ALP: Alkaline phosphatase, CT: computed tomography, GGT: gamma-glutamyl transferase, 

NAFLD: non-alcoholic fatty liver disease, RS: Rotterdam Study.   

Participants RS-I-4 
and RS-II-2   
(N=6604) 

non-drinkers   
(N=307) 

Eligible participants for 
many analysis   
( miRNAs and 
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light-drinkers   
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(N=630) 

Mediation analysis on 
liver related traits   

(N=705) 
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US based 
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Mediation analyses with liver traits 

In our secondary objective, we performed mediation analyses, where our exposure was always alcohol 

consumption, the mediators were miRNAs associated with both alcohol consumption and liver disease, 

and the outcomes were liver-related traits, including CT-based liver attenuation, liver enzymes (GGT and 

ALP), ultrasound-based hepatic steatosis, and NAFLD. For the continuous outcomes (CT-based liver 

attenuation, GGT, and ALP), we used linear regression, while for binary outcomes (steatosis and 

NAFLD), we used logistic regression. The selection criteria of potential mediators was based on a seminal 

paper by Baron and Kenny, stating that in order to define a variable as a mediator, there should be a 

significant relationship between the mediator (miRNAs) and the outcome (liver-related traits).47 In that 

line, three of the alcohol-associated miRNAs (miR-193b-3p, miR-122-5p, and miR-3937) were 

previously associated with liver-related traits within the Rotterdam Study,48 hence they were included as 

mediators in our analyses. Our mediation analyses were implemented using two-way decomposition 

assessing the direct and indirect effects, meaning that the overall effect of alcohol consumption on liver-

related traits with miRNAs as mediators were decomposed into two main components: 1) the direct effect 

of alcohol consumption on liver-related traits (i.e., liver attenuation, GGT, ALP, steatosis, and NAFLD) 

in the absence of mediator (i.e. miR-193b-3p, miR-122-5p, or miR-3937) and 2) indirect effect. Models 

were adjusted for the same confounders as in the main analysis, including age, sex, cohort, BMI, and 

smoking status.  In addition, we also assessed if there was a potential interaction effect between the 

exposure and the mediator. For the models that showed the presence of interaction effect (P<0.05), we 

implemented exposure and mediator interaction terms in mediation analyses. The conceptual diagram 

depicting the relationship between the exposure (alcohol consumption), outcomes (liver-related traits), 

and mediators (miRNAs) is depicted in Figure 2. All the confounders included in the statistical analyses 

were obtained at the same time point as miRNA expression data, as well as data on CT-based liver 

attenuation and liver enzymes (RS-I-4 and RS-II-2), while the data based on ultrasound (steatosis and 

NAFLD) are collected during a follow-up visit and analyzed in the longitudinal setting. We used the 

“mediate” function from the mediation package49 to obtain the Average Causal Mediation Effect (ACME), 

Average Direct Effect (ADE), the total effect, and the proportion mediated per model. Mediation results 

were based on quasi-Bayesian approximation with 1000 simulations. 
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Figure 2. Conceptual diagram illustrating the relationship between alcohol consumption and liver health, 

and the potential mediatory role of alcohol-associated miRNAs. The conceptual diagram that depicts the 

relationship between exposure (alcohol consumption), outcome (liver related traits including CT-based liver 

attenuation, liver enzymes (GGT and ALP), and ultrasound-based hepatic steatosis and NAFLD) and the 

mediators (miRNA expression level). CT, computed tomography; miRNA, microRNA. 

Furthermore, the mediation analyses performed assumes no unmeasured confounding. As such, we 

included bias analyses using the “medsens” function from the mediation package49 to determine the ρ at 

which ACME is 0 per model. A value of ρ close to 0 reflects that the assumption of no additional 

unmeasured confounding is sensitive to violations and likely does not hold. We implemented 

recommended AGReMa Statement guidelines when reporting the results,50 including reporting baseline 

characteristics as well as potential confounders in Supplemental Table 1.  
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Mendelian Randomization 

We investigated the causal relationship between the alcohol-associated miRNAs and liver-related traits 

by utilizing the two-sample mendelian randomization (MR) approach. Instrumental variables (IVs) for 

each of the alcohol-associated miRNAs were extracted using different resources, including a genome-

wide association studies (GWAS) conducted in the Rotterdam Study (n=1687), (data not shown), and 

publicly available GWASs on miRNAs.51-53 We identified 10 cis-miR-eQTLs for miR-193b-3p,53 while 

miR-193b-3p and miR-122-5p only had trans-miR-eQTLs.51 The trans-eQTLs were excluded from our 

further analysis due to the assumption of no horizontal pleiotropy.53, 54 Next, the cis-miR-eQTLs of miR-

193b-3p were pruned at R2<0.01, to remove correlated SNPs. This left us with a single SNP (rs30227) to 

be used as an IV. IVs on liver traits were extracted from the IEU GWAS database release 

(https://gwas.mrcieu.ac.uk/), where we included the following traits: liver fat percentage,55 NAFLD 

(https://finngen.gitbook.io/documentation/) and liver enzymes.56 MR was performed using the 

“TwoSampleMR” package in R, by implementing the Wald ratio as a single SNP was available to be used 

as IV.   

Our analyses were performed using R software, version (V) 4.1.1. (R Core Team, 2021). Moreover we 

used following packages for different utilities within R, including rio (V 0.5.27)57 for data 

importing/exporting, tidyverse (V 1.3.1 ),58 janitor (V 2.1.0),59 and lubridate (V 1.7.10)60 for data 

manipulation and handling, stats (V 4.1.1),61 broom (V 0.7.9),62 performance (V 0.9.1),63 and purrr (V 

0.3.4)64 for modelling, ggplot2 (V 3.3.5)65 for visualization, mediation (V 4.5.0)49 for mediation analyses, 

TwoSampleMR (V 0.5.6) for MR analysis,66 and tableone (V 0.13.0)67 for clinical characteristics. 

In silico analyses of alcohol-associated miRNAs 

We explored if the alcohol-associated miRNAs are expressed in the liver by using the Human miRNA 

tissue atlas (https://ccb-web.cs.uni-saarland.de/tissueatlas).68, 69 More details regarding the tissue 

specificity index can be found elsewhere.69 As an additional analysis, we utilized three universally used 

miRNA target gene prediction databases: TargetScan,70 miRTarBase,71 and miRDB72 to identify putative 

target genes of the alcohol-associated miRNAs. Applying a cut-off based on a total context score of ≤ -

0.60, we selected target genes using TargetScan, while for miRDB we applied selection on target score ≥ 

60. The scores of the two databases are explained in detail elsewhere.70, 73 In addition, we used 

miRTarBase71 to select the target genes that were proven by experimental validation methods, such as 

reporter assay, qPCR, and western blot. We focused on genes that were available in either two out of the 

three above-mentioned databases. Furthermore, we investigated if any of these predicted target genes have 

been associated previously with alcohol consumption and/or alcohol use disorder by either a review, a 

genome-wide association study, an epigenome-wide association study, or a transcriptome-wide 

association study on alcohol consumption.33, 38, 74, 75 Finally, the putative target genes we obtained from 

the analysis described above were used for gene ontology analysis to explore the biological processes 

https://gwas.mrcieu.ac.uk/
https://finngen.gitbook.io/documentation/
https://ccb-web.cs.uni-saarland.de/tissueatlas
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these genes might be involved in,76 by utilizing the publically available web tool PANTHER 

(http://www.pantherdb.org/).77 

Results  

Characteristics of the study population (N=1933) are presented in Table 1. The mean (SD) age of the 

study population was 71.62 (±7.5 years), with a BMI of 27.65 (±4.13) kg/m2, and the median (IQR) 

alcohol consumption of 0.71 glasses/day (0.07-2.00). Out of the 1933 individuals, 56.8% were women. 

 

Table 1. Participant characteristics of the study population from RS-I-4 and RS-II-2 within the Rotterdam Study 

cohort 

Variable N= 1933 

Age (years) 71.62 (±7.5) 

Female sex (%) 1098 (56.8) 

BMI (kg/m2) 27.65 (±4.13) 

Smoking  

Current (%) 260 (13.5) 

Former (%) 1069 (55.3) 

Never (%) 604 (31.2) 

Alcohol (glasses/day) 0.71 (0.07-2.00) 

Non-drinkers (%)a 307 (15.9) 

Light-drinkers (%)b 996 (51.5) 

Heavy drinkers (%)c 630 (32.6) 

Variables are reported in mean (standard deviation (SD)) for continuous data and numbers (percentages) for 

categorical data, apart from alcohol (glasses/day) which is reported in median (IQR) due to the distribution of the 

variable. Alcohol categories were defined as follows: anon-drinkers:glasses/day=0, blight drinkers:0<-≤2 

glasses/day in men and 0<-≤1 glasses/day in women, and cheavy drinkers:>2 glasses/day in men and >1 

glasses/day in women. 

Plasma miRNAs associated with alcohol consumption 

We found four miRNAs to be significantly associated with alcohol consumption (as continuous variable) 

surpassing the significance threshold (P-value < 8.5×10-5). Of these, miR-193b-3p, miR-122-5p, and miR-

3937 showed a positive association, while miR-4507 was inversely associated with alcohol consumption, 

Table 2 and Figure 3. The results of our sensitivity analysis, where we explored alcohol consumption as 

categorical exposure, are presented in Table 2 and Figure 4. The categorization of the alcohol 

consumption reduced the power, yet the association of miR-3937 remained statistically significant for 

http://www.pantherdb.org/
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heavy drinkers (P-value= 3.02 × 10-6) in comparison to the non-drinkers. In addition, mean expression of 

miR-3937 in light-drinkers increased by 0.142 compared to the mean of non-drinkers in the reference 

category, while it almost doubled (0.273) in heavy-drinkers. In contrast, the mean expression of miR-4507 

in light-drinkers decreased by -0.029 in comparison to the mean of non-drinkers (reference), while for 

heavy-drinkers this drops by -0.155 (Table 2 and Figure 4).  

Furthermore, in the sex-stratified analysis, we observed that all the effect size estimates were in the same 

direction. However, most of the alcohol-associated miRNAs had stronger effect size estimates in men, 

except miR-4507 which showed more decrease in women in comparison to men (Supplemental Table 

2).  

Table 2. Association between MiRNAs and alcohol consumption as continuous variable (glasses/day) and 

categorical variable (never drinkers vs. light or heavy drinkers) 

 

miRNA ID 

 

Alcohol in glasses/day    

(N=1933) 

aNever drinkers (N=307) VS. blight (N=996) or cheavy 

drinkers (N=630) 

β SE P-value Category β SE P-value 

miR-193b-3p  0.087 0.020 2.90×10-5 

light drinkers 0.026 0.031 4.07 × 10-1 

heavy drinkers 0.086 0.033 1.02 × 10-1 

miR-122-5p 0.151 0.037 4.31×10-5 

light drinkers 0.015 0.056 7.77 × 10-1 

heavy drinkers 0.125 0.060 3.75 × 10-2 

miR-3937 0.145 0.036 5.71×10-5 

light drinkers 0.142 0.054 8.64 × 10-3 

heavy drinkers 0.273 0.058 3.02 × 10-6 

miR-4507 -0.110 0.027 8.36×10-5 

light drinkers -0.029 0.042 4.85 × 10-1 

heavy drinkers -0.155 0.045 6.26 × 10-4 

On the left side of the table are the results from the linear regression with continuous data on alcohol consumption 

as main exposure transformed to (log(glasses/day +1)), where the analyses were adjusted for age, sex, cohort, 

BMI, and smoking status. Right side of the table depicts alcohol consumption stratified to categorical variable 

(where non-drinkers were treated as a reference) and used as main exposure for linear regression analysis, adjusted 

for age, sex, cohort, BMI, and smoking status. In all the analysis presented, miRNA expression levels were 

outcome variables, effect size reported are beta coefficients from regression analysis. Abbreviations: β:beta 

coefficient, SE: standard error, anon-drinkers: 0 glasses/day, blight drinkers: 0-2 glasses/day in men and 0-1 

glasses/day in women, cheavy drinkers: >2 glasses/day in men and >1 glasses/day in women. miR; miRNA; 

miRNA, microRNA. 
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Figure 3. Plasma miRNAs associated with alcohol consumption in glasses/day(N=1933). The volcano plot 

depicts the measure of effect size versus magnitude of significance for the linear regression model testing the 

association between of miRNA expression levels and alcohol consumption, adjusted for age, sex, cohort, BMI 

and smoking. The dots indicate each tested miRNAs and represents the beta coefficients obtained from each linear 

regression analysis. Red dots indicates positively associated miRNAs, while the blue dots indicate negatively 

associated miRNAs, and black dots represent miRNAs that were not significantly associated. miR; miRNA; 

miRNA, microRNA. 
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Figure 4. Distribution of the significantly associated miRNAs in the three alcohol consumption categories. 

In this figure, X-axis depicts significantly associated miRNAs with alcohol consumption, Y-axis depicts miRNA 

expression levels in log2 CPM, displaying a boxplot of median miRNA expression levels. The horizontal line 

within each boxplot represents the median, while the whiskers depict minimum (corresponding to Q1-1.5*IQR) 

and maximum value (corresponding to Q3+1.5*IQR) in the data. Different colors indicate different categories of 

alcohol consumption where non-drinkers are green (glasses/day=0, N=307), light-drinkers yellow (0<-≤2 

glasses/day in men and 0<-≤1 glasses/day in women, N=996) and heavy-drinkers are red (>2 glasses/day in men 

and >1 glasses/day in women, N=630). Abbreviations: miRNA: microRNA, CPM: counts per million.   
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Mediation analyses for alcohol consumption, miRNA expression, and liver 

disease 

We tested the potential mediatory role of three miRNAs previously shown to be associated with fatty liver 

disease (miR-193b-3p, miR-122-5p, and miR-3937)47, 48 in the association between alcohol and liver 

function and disease. The descriptive characteristics of this subset of participants (N=705) are presented 

in Supplemental Table 1. We performed mediated interaction terms for all the models, of which one 

model suggested an interaction effect between mediator and exposure, miR-122-5p and alcohol on ALP 

(P=0.04) (Supplemental Table 3). For this model, we included interaction terms in the main analysis, 

while for the other models we did not include any interaction terms (Table 3). Out of all the mediation 

analyses performed, we identified a mediatory role of miR-3937 in the association between alcohol and 

CT-based fatty liver as well as GGT, while miR-122-5p showed a mediatory role between alcohol and 

CT-based fatty liver disease, GGT, and US-based steatosis (Table 3). We tested the bias analysis of 

violating the assumption of unmeasured confounding in the mediation analyses. We conducted ρ at which 

ACME is 0, where we obtained ρ’s in the range between -0.1 and 0.4 (Table 3). A value of ρ close to 0 

indicates that the assumption of unmeasured confounding was sensitive to the violation. 
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Table 3. Mediation analysis of three alcohol-associated miRNAs with alcohol consumption and liver-related traits 

(CT-based liver attenuation, liver enzymes (GGT and ALP), and ultrasound-based hepatic steatosis and NAFLD) 

in Rotterdam Study participants (N=705)  

The table depicts results from mediation analysis where alcohol consumption was treated as the exposure, the 

outcomes were liver-related traits including CT-based fatty liver, liver enzymes (GGT and ALP), US-based 

steatosis and NAFLD, and miRNAs were the mediators. ACME reflects proportion of alcohol exposure on liver-

related traits mediated through miRNA of interest, while ADE reflects the direct effect of alcohol consumption 

on liver-related traits. Prop. Med. reflects proportion mediated which cannot be calculated when the indirect and 

direct effects are in opposite directions, ρ at which ACME is 0, depicting how sensitive the tested model is to 

violating of unmeasured confounding. Abbreviations: β: beta coefficient, SE: standard error, ACME: Average 

Causal Mediation Effect, ADE: Average Direct Effect.

miRNAs 

Liver-related 

traits 

(N=705) 

ACME (95%CI) 
ADE  

(95%CI) 

Total effect 

(95%CI) 

*Prop. Med. 

(95%CI) 

𝛒 at 

which 

ACM

E is 0 

miR-3937 

CT - based 

fatty liver 

1.630 

(0.114; 3.490) 

-24.80 

(-34.72; -15.66) 

-23.17 

(-33.25; -14.14) 

-0.070  

(-0.187; -0.004) 
0.1 

GGT 
-0.009 

(-0.024; -0.0001) 

0.287 

(0.209; 0.375) 

0.277 

(0.199; 0.362) 

-0.035  

(-0.094; -0.0006) 
-0.1 

ALP 
-0.003 

(-0.009; 0.00005) 

-0.028 

(-0.065; 0.009) 

-0.031 

(-0.068; 0.005) 

0.117 

(-0.351; 0.852) 
-0.1 

US - based 

steatosis 

-0.006 

(-0.017;-0.0001) 

0.063 

(-0.0009;0.127) 

0.057  

(-0.008;0.121) 

-0.108  

(-0.779;0.454) 
-0.1 

US - based 

NAFLD 

-0.004 

(-0.014;0.0006) 

0.255 

(0.189;0.317) 

0.251 

(0.184;0.310) 

-0.019  

(-0.061;0.002) 
-0.1 

miR-122-

5p 

CT - based 

fatty liver 

-1. 394 

(-3.115; -0.194) 

-21.77  

(-31.39; -10.92) 

-23.17  

(-32.77; -11.88) 

0.060  

(0.007; 0. 166) 
-0.1 

GGT 
0.036 

(0.004; 0.071) 

0.241 

(0.166; 0.314) 

0.277 

(0.197; 0.360) 

0.131  

(0.017; 0.238) 
0.4 

ALP 
0.002 

(-0.0008; 0.006) 

-0.032 

(-0.069; 0.009) 

-0.028 

(-0.067; 0.073) 

-0.080 

( -0.875; 0.644) 
0 

US - based 

steatosis 

0.008 

(0.001; 0.020) 

0.047 

(-0.016; 0.109) 

0.056 

( -0.006; 0.117) 

0.155  

(-0.702; 1.188) 
0.1 

US - based 

NAFLD 

0.005 

(-0.0001; 0.014) 

0.244 

(0.175; 0.305) 

0.250 

(0.183; 0.310) 

0.022  

(0.000; 0.062) 
0.1 

miR-

193b-3p 

CT - based 

fatty liver 

-1.116 

(-2.842; 0.344) 

-22.05 

(-31.35; -12.09) 

-23.17 

(-32.39; -13.49) 

0.048 

(-0.016; 0.144) 
-0.1 

GGT 
0.011 

(-0.004; 0.031) 

0.265 

(0.188; 0.343) 

0.277 

(0.194; 0.363) 

0.042 

(-0.016; 0.114) 
0.2 

ALP 
-0.001 

(-0.004; 0.0008) 

-0.030 

(-0.065; 0.004) 

-0.031 

(-0.067; 0.004) 

0.038 

(-0.079; 0.348) 
0 

US - based 

steatosis 

0.004  

(-0.001; 0.012) 

0.053 

(-0.008; 0.117) 

0.058 

(-0.004; 0.121) 

0.071 

(-0.194; 0.467) 
0.1 

US - based 

NAFLD 

0.003 

(-0.001; 0.011) 

0.246 

(0.177; 0.309) 

0.250 

(0.181; 0.314) 

0.013 

(-0.005; 0.044) 
0.1 
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Mendelian randomization 

We investigated the causal relationship between the alcohol-associated miR-193-5p  and liver fat 

percentage, NAFLD, and liver enzymes (https://finngen.gitbook.io/documentation/).51-53, 55, 56, 78 The 

results of the MR analysis are presented in Supplemental Table 4. There was no statistical evidence for 

a causal relationship between alcohol-associated miRNAs and liver-related traits tested. 

Liver expression and target genes of alcohol-associated miRNAs 

Publicly available tools were utilized to assess the expression of alcohol-associated miRNAs across a wide 

range of tissues (Supplemental Table 5). Among these, the miR-122-5p had the highest tissue specificity 

index (TSI) of 0.97 (where a higher score indicates miRNA is expressed in a single tissue) (Supplemental 

Table 5). In addition, miR-122-5p and miR-4507 displayed the highest expression in the liver tissue, while 

miR-193b-3p showed the highest expression in muscle and miR-4507 in the stomach. 

Potential target genes of the alcohol-associated miRNAs are shown in Supplemental Table 6. Only miR-

193b-3p and miR-122-5p had validated target genes by experimental methods as reported in miRTarBase 

(Supplemental Table 6).71 By performing a literature review, we identified that several putative target 

genes of miR-193b-3p, miR-122-5p, and miR-3937 have been previously associated with alcohol-related 

traits (Supplemental Table 7). These include FLI and SMAD3, both putative targets of miR-193b-3p, 

which were previously identified in an epigenome-wide association study (EWAS) on alcohol 

consumption.38 In addition, putative target genes of miR-122-5p (XPO6 and SLC7A11) were identified in 

the same EWAS study, along with C7orf50 a putative target gene of miR-3937, Supplemental Table 7.38 

Furthermore, DCLK2, one of the miR-3937 putative target genes, was previously associated in a trans-

ethnic genome-wide association analysis of Alcohol Use Disorder Identification Test-Consumption 

(AUDIT) (rs4423856, P-value=1.48×10−8).74 Also, miR-122-5p putative target gene- RAC1, was 

previously associated with alcohol use during pregnancy.33, 79 While FOXP1, another putative target gene 

of miR-122-5p, was previously reported in a transcriptome-wide association study on alcohol intake 

frequency (http://twas-hub.org/traits/).80, 81 

Our biological processes’ overrepresentation analysis with the putative target genes of alcohol-associated 

miRNAs is presented in Supplemental Table 8. The top pathways for the biological process were the 

following: biological regulation, biological process, and transmembrane receptor protein serine/threonine 

kinase signaling pathway (Supplemental Table 8).  

  

https://finngen.gitbook.io/documentation/
http://twas-hub.org/traits/
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Discussion 

In this study, we investigated the link between plasma miRNA expression and alcohol consumption in a 

population-based setting. We identified plasma levels of four miRNAs to be significantly associated with 

alcohol consumption, including three miRNAs positively and one miRNA inversely associated. Among 

these, we observed a potential mediatory role of miR-122-5p and miR-3937 between alcohol consumption 

and liver-related traits. The identified miRNAs lay the groundwork for further investigation of miRNAs 

as potential mediators between modifiable lifestyle factors and disease risk.  

MiRNAs could modulate gene expression in response to external influences, such as lifestyle factors (e.g. 

smoking, alcohol consumption, and diet).33 It has been shown that miRNA expression was altered 

following exposure to maternal alcohol consumption during human embryogenesis.82-84 Similarly, Lewohl 

et al.23 have identified differential expression of 35 miRNAs in human postmortem brains between 14 

alcoholics and 13 controls. However, most of the previous studies exploring the association between 

alcohol consumption and miRNA expression were performed on animal models.85-87 In addition, past 

research has been conducted either on a subset of miRNA or had relatively modest sample sizes (with the 

largest sample size reported N=68).33 Our study benefits from a greater statistical power to detect 

significant associations between miRNAs and alcohol consumption due to the larger sample size 

embedded in the population-based Rotterdam Study cohort. In addition, the RNA-sequencing method was 

used to measure a large number of miRNAs, enabling us to investigate a more comprehensive miRNA 

landscape.88 

The most prominent association with alcohol consumption was observed for miR-193b-3p. Previous 

studies have identified miR-193 as a regulator of ALDH2 gene expression across different species,89 where 

the ALDH2 gene encodes alcohol aldehyde dehydrogenase 2, a key enzyme in alcohol metabolism.90 This 

miRNA has several other putative target genes, including FLI and SMAD3, previously identified in an 

EWAS on alcohol consumption.38 The same study overlapped with other putative target genes of our 

newly identified alcohol miRNAs, including XPO6 and SLC7A11 of miR-122-5p and C7orf50- of miR-

3937.38 In addition, miR-122-5p expression has been shown to increase with moderate ethanol 

consumption in healthy individuals.35 In line with this, two target genes of miR-122-5p were linked with 

alcohol consumption, including RAC1 with alcohol use during pregnancy33, 79 and FOXP1- in a 

transcriptome-wide association study on alcohol intake frequency (http://twas-hub.org/traits/).80, 81 

DLCK2 is a target gene of miR-3937, linked with the AUDIT (rs4423856, P-value=1.48x10-8).74 The last 

alcohol-associated miRNA (miR-4507) identified in our study, was previously reported by Gardiner et 

al.79 when comparing alcohol consumption to alcohol abstinence during pregnancy. Multiple target genes 

of alcohol-associated miRNAs were linked to alcohol consumption through other omics analyses 

(Supplemental Table 7).33, 38, 74 In addition, most of the identified miRNAs were previously implicated 

in liver diseases, which is unsurprising as the liver is a primary organ for alcohol metabolism and 

http://twas-hub.org/traits/
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detoxification.16, 91, 92 For instance, miR-193b-3p, miR-3937, and miR-122-5p were linked with fatty liver 

disease in the Rotterdam Study.48 In addition, miR-122-5p is firmly recognized as a liver-specific 

miRNA93 with an undeniably established role in liver function and related diseases.93-95 These results 

corroborate well with the findings linking the newly identified miRNAs to alcohol consumption. When 

we explored the alcohol consumption as categorical exposure (non-, light-, and heavy-drinkers), despite 

the smaller samples size, the effect estimates were almost doubled for the alcohol-associated miRNAs 

when comparing heavy-drinkers and light-drinkers to the non-drinkers group (Table 2). In our sensitivity 

analysis, we identified that most of the alcohol-associated miRNAs had stronger effect estimates in men, 

perhaps due to the higher consumption of alcohol.   

Our mediation analyses showed a potential mediatory role of miR-122-5p in the association of alcohol 

consumption and CT-based fatty liver disease, GGT, and US-based steatosis. Moreover, we observed a 

mediating effect of miR-3937 in the association between alcohol consumption and CT-based fatty liver 

and GGT. This may indicate a significantly estimated indirect effect of alcohol consumption on liver 

function or disease that is mediated partly through miR-3937 and miR-122-5p. In addition, we did not 

find any statistical evidence for causality between alcohol-associated miRNAs and liver-related traits. 

However, we believe that these results might have been hampered by the lack of strong instrumental 

variables (IVs), as we only found a single SNP as a valid IV. This warrants future studies to perform large-

scale genome-wide association studies (GWASs) on a broad landscape of miRNAs, providing stronger 

IVs for estimating causal relationships. 

This study has strengths as well as limitations that should be considered when interpreting the results. The 

strengths of our study include the large sample size, availability of clinical outcomes, and using a new 

RNA-sequencing-based assay with high sensitivity. Yet, it is plausible that several limitations could have 

influenced the results presented. First, mediation analysis requires strong assumptions whose violations 

might lead to spurious results, such as unmeasured confounding. In line with this, implementing mediation 

analysis in cross-sectional observational studies and notably in genomic studies is challenging and adds a 

layer of complexity.96 We implemented bias analyses to explore if the assumption of unmeasured 

confounding holds. Given the cross-sectional nature of the data used for the presented study, we cannot 

rule out reverse causality. In line with this, data on miRNAs, alcohol consumption, fatty liver, and liver 

enzymes were measured at the same time point, while ultrasound data are analyzed in a longitudinal 

setting. Although we adjusted for potential confounders, there might still be residual confounding due to 

the dynamic nature of epigenetic markers - which might partially explain some of the ρ values close to 0 

we obtained from bias analyses within mediation analyses. Future analyses are warranted to replicate the 

findings from our study and explore these findings in a longitudinal setting. In addition, future studies are 

needed to explore the dynamic nature of epigenetic markers such as miRNAs and explore reverse 

causation, especially in the context of mediation analysis. Another source of bias might have occurred 

from the CT scan used for liver attenuation,97 however, we also included data on ultrasound-based 
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measurements. In addition, the FibroScan is currently an often used method in the clinic to determine liver 

fat and fibrosis while we used CT scans in the current study. Nevertheless, large cohort studies are more 

likely to use CT scans due to their broad implications, making it possible for direct replication of our 

obtained results by other studies. Also, since miRNAs are tissue-specific, we might have missed important 

miRNAs in relevant tissue such as liver. Though, the accessibility of plasma compared to the other tissues 

provides a potential benefit for identified miRNAs to serve as indicators for alcohol exposure.98 In 

addition, we utilized the Tissue Atlas database  (https://ccb-web.cs.uni-saarland.de/tissueatlas) 68, 69 in 

order to explore the expression of the alcohol -identified miRNAs across a wide range of tissues.  

In addition, it is important to address the potential limitation coming from the data on alcohol 

consumption, as it was collected by home-administered interviews and not by food frequency 

questionnaires (FFQs) or other validated self-reports, such as AUDIT (https://auditscreen.org/).99 

Although the FFQs are more detailed and AUDIT is more effective in screening individuals with 

unhealthy alcohol use, we did not have data derived from FFQ or AUDIT on this wave of participants. In 

addition, participants might have underestimated their true alcohol consumption due to social desirability 

bias. Finally, it is important to acknowledge the potential risk of introducing the type I error in our 

additional analysis as we did not correct for multiple testing. Given the nature of high correlation of omics 

data, we believe the potential risk of introducing type I error in our additional analysis is accounted for, to 

a certain extent. Further studies are needed to replicate our findings in larger sample sizes and longer 

follow-up time as well as experimentally confirm the role of identified miRNAs in molecular pathways 

underlying alcohol-related diseases. 

In conclusion, we showed in a population-based setting that alcohol consumption was associated with 

plasma levels of four miRNAs, two of which show a potential mediatory role on liver-related traits. This 

might provide a better understanding of the mechanism of action involved between alcohol consumption 

and alterations in gene expression in alcohol-related diseases.  
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Abstract  

Background & Aims: Fatty liver disease (FLD) is caused by excess fat in the liver and its global 

prevalence exceeds 33%. The role of protein expression on the pathogenesis of FLD and accompanied 

fibrosis and its potential as disease biomarker is currently not clear. Hence we aimed to identify plasma 

proteomics associated with FLD and fibrosis using population-based data. 

Approach & Results: Blood samples were collected in 2578 participants from the population-based 

Rotterdam study cohort. The proximity extension assay reliably measured plasma levels of 171 

cardiometabolic and inflammatory-related proteins (Olink Proteomics). FLD was assessed by ultrasound 

and fibrosis by transient elastography. Logistic regression models quantified the association of plasma 

proteomics with FLD and fibrosis. Additionally, we aimed to validate our results in liver organoids. Cross-

sectional analysis identified 27 proteins significantly associated with FLD surpassing the Bonferroni-

corrected P<2.92×10-4. The strongest association were observed for FGF-21 (β=0.45, P=1.07×10-18) and 

CES1 protein (β=0.66, P=4.91×10-40). Importantly, 15 of the 27 proteins significantly associated with 

FLD were also associated with liver fibrosis. Finally, consistent with plasma proteomic profiling, we 

found the expression levels of IL-18R1 and CES1 to be upregulated in a fatty liver disease model of 3D 

culture human liver organoids. 

Conclusions: Among the general population, several inflammatory and cardiometabolic plasma proteins 

were associated with FLD and fibrosis. Particularly plasma levels of FGF-21, IL-18R1 and CES1 were 

largely dependent on the presence of FLD and fibrosis, and may therefore be important in their 

pathogenesis.  
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Introduction  

Fatty liver disease (FLD) has become increasingly prevalent in the past decades with over 33% of the 

world’s population currently affected.1 This worrisome rise in prevalence has followed an increase in 

obesity and other metabolic disorders.2 FLD is a spectrum disease ranging from simple steatosis to more 

severe consequences like steatohepatitis, cirrhosis, and even hepatocellular carcinoma.3-5 Despite the high 

prevalence and enormous disease burden, the understanding of protein expression in FLD and fibrosis is 

limited as well as their potential as biomarkers to facilitate early detection.6, 7 

Proteomics is a powerful tool for examining differences in protein expression. Promising results have 

been obtained previously by using sophisticated techniques to quantify protein expression. Recently, a 

range of proteins has been identified that were crucial for the presence and severity of alcoholic liver 

disease.8 This indicates that proteomic signatures may act as potential biomarkers to predict FLD at early 

stage. Indeed several small studies already showed its value using the SomaScan assay to define protein 

expression in patient cohorts with advanced FLD.9, 10 

Given the potential of proteomics, we performed plasma profiling of inflammatory and cardiometabolic-

related proteins among a large cohort of community-dwelling individuals and thereby aimed to increase 

the understanding of protein expression in FLD and liver fibrosis as well as assess their potential as disease 

biomarkers.  

Methods 

Participants 

This study was conducted within the prospective Rotterdam Study cohort targeting community-dwelling 

individuals aged ≥ 45 years living in Ommoord, a suburb of Rotterdam. The design, aims and recent 

achievements of the Rotterdam Study have extensively been described elsewhere.11 For the current study, 

we included participants from the third Rotterdam Study extension (RS-III), collected between February 

2006 and December 2008 with available data on the plasma levels of inflammatory (n=3456) and 

cardiometabolic-related proteins (n=3502). Exclusion criteria were missing data on FLD or covariates 

included in the final models (Figure 1). The final sample size for the inflammatory panel was 2578 and 

for the cardiometabolic panel 2595.  

https://www.sciencedirect.com/topics/medicine-and-dentistry/steatohepatitis
https://www.sciencedirect.com/topics/medicine-and-dentistry/liver-cirrhosis
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Figure 1. Flow chart of the study participants. Abbreviations: RS-III indicates the third cohort of Rotterdam 

Study; FLD, fatty liver disease. 
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Assessment of FLD and liver stiffness 

FLD was defined as hyperechoic liver parenchyma compared to the kidney cortex which was assessed by 

abdominal ultrasonography between 2009 and 2014, 5.5 [P25-P75: 5.4-5.7] years after plasma sample 

collection.12 A single experienced sonographer performed all the examinations on a Hitachi HI VISION 

900. In addition to FLD, we defined NAFLD and MAFLD for sensitivity analysis. NAFLD was defined 

as the presence of FLD in the absence of the following secondary causes of FLD: (1) excessive alcohol 

consumption (>30 g/day for men and >20 g/day for women), (2) presence of viral hepatitis, and (3) use of 

steatogenic drugs. MAFLD was defined as FLD combined with metabolic dysfunction, comprising 

overweight (BMI ≥  25 kg/m2),  type  2  diabetes mellitus or two minor metabolic dysfunction criteria 

such as hypertension, high waist circumference, or dyslipidemia.13 Moreover, liver stiffness measurement 

(LSM) was performed using transient elastography  (FibroScan; Echosens, Paris, France). At least 10  

measurements were obtained with the M or XL probe. In case of an interquartile range of >30%, 

measurements exceeding 7.1 kPa were considered unreliable and discarded.14 Fibrosis was defined as 

reliable liver stiffness measurement ≥ 8.0 kPa.15 Plasma proteomic profiling was performed before the 

assessment of FLD and fibrosis. 

Assessment of plasma proteomic profiling  

Plasma protein levels were measured using the proximity extension immunoassay (PEA) technology 

(Olink Proteomics ®, Uppsala, Sweden) on the ProSeek Multiplex Inflammation (version 3021) and 

Cardiometabolic (version 3602) 96-plex panels. The Olink PEA technology uses a dual recognition DNA-

coupled immunoassay that rapidly allows for protein identification and relative quantification with high 

sensitivity and specificity. The method of proteomics level measurement has been described in detail 

previously.16 

Olink-generated proteomics data were background corrected,  log2-transformed, and normalized to a 

Normalized Protein Expression (NPX) scale. NPX values represent relative quantification, meaning that 

protein values can be compared for the same protein across samples.  

Sample-based Quality Control (QC) of the proteomics data was done as previously published17 based on 

Olink reported QC warnings, i.e. samples that deviate more than +/- 0.3 NPX from the plate median. In 

this study, there were a total of 76 QC warnings. For assay-based QC, we excluded proteins with a high 

proportion of samples (>90%) with NPX values below the Limit of Detection (LOD). For the 

Inflammation panel, nine proteins were removed, including interleukin-1 alpha (IL-1α), interleukin-2 (IL-

2), interleukin-24 (IL-24), interleukin-20 (IL-20), interleukin-33 (IL-33), leukemia inhibitory factor (LIF), 

thymic stromal lymphopoietin (TSLP), neurturin, NRTN, and beta-nerve growth factor (NRTN). While 

four proteins were removed from the cardiometabolic panel, including lysosomal Pro-X carboxypeptidase 

(PRCP), latent transforming growth factor-beta binding protein 2 (LTBP2), Lithostathine-1-alpha 
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(REG1A), and superoxide dismutase (SOD1). NPX values below LOD were treated as missing values. 

After QC, we retained  83 proteins from the inflammation panel and 88 proteins from the cardiometabolic 

panel. 

Assessment of covariates 

Information on age, sex, and smoking status (three categories current/former/ never), alcohol consumption 

(measured in grams of ethanol per day) were obtained from questionnaires.11 Body mass index was 

calculated based on weight in kilograms divided the by height in meters squared. Prevalent diabetes 

mellitus type 2 was identified according to the World Health Organization criteria: fasting glucose levels 

of ≥7.0 mmol/L, nonfasting glucose levels ≥11.1 mmol/L or the use of glucose-lowering medication.18 

Fasting blood samples of participants were obtained during each visit to the research center. Full blood 

count measurements were performed directly after the blood sample was drawn using the COULTER® 

Ac·T diff2™ Hematology Analyzer (Beckman Coulter, Brea, CA, US). Laboratory measurements 

included absolute granulocyte, platelet, lymphocyte, and monocyte counts in 109 per liter. All covariates 

included for statistical analysis were obtained at baseline examination. 

Validation in human liver organoids 

A database was designed and recently published by our NAFLD/NASH group containing results on 

genome-wide transcriptomic profiling on human liver organoids mimicking FLD, compared to controls. 

Detailed information on the procedures are available elsewhere.19 Within this database, we aimed to 

validate our results with the genome-wide transcriptomic profiling from this experimental model. 

Statistical analysis 

We used multivariable linear and logistic regression models to quantify the association between plasma 

levels of proteins as exposure and (1) FLD and (2) liver stiffness (continuous and categorical) as outcome. 

The associations were adjusted for age and sex (Model 1) and in addition for blood cell counts (RBCs, 

granulocyte, lymphocyte, monocyte, and platelet), BMI, alcohol, diabetes, and smoking (Model 2). In 

sensitivity analysis, we replaced FLD with NAFLD and MAFLD. Additional sensitivity analysis was 

performed using a fatty liver index (FLI) based on definition of FLD. The FLI comprised BMI, waist 

circumference, gamma-glutamyltransferase and triglycerides,20 which was collected at the same time of 

plasma sample collection.  

Further analysis focused on the potential of protein expression as a biomarker for FLD and fibrosis. The 

area under the curve (AUC) was calculated including the confidence intervals for the set of significantly 

associated proteins in the prediction of FLD and fibrosis, based on a logistic regression model including 

the significantly associated proteins previously identified. The diagnostic accuracy of proteins were then 

compared to common non-invasive markers for the prediction of FLD and fibrosis. These include FLI as 
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marker for FLD and the fibrosis-4 index (FIB-4), comprised of age, AST, ALT and platelets, as marker 

for fibrosis. Finally, proteomics were combined either with FLI or FIB-4 to assess the added value of 

proteins for already existing and commonly used scores. 

All analyses were performed using SPSS statistical software (SPSS, version25; IBM Corp) and R software 

version 3.5.2 (The R Foundation for Statistical Computing). To account for multiple testing, the 

Bonferroni adjusted p-value for our primary aim (protein expression with FLD) was 2.92×10-4  based on 

the number of tested proteins (n = 171) and set as the threshold for statistical significance. The PANTHER 

(v.17.0) (protein annotation through evolutionary relationship) classification system 

(http://www.pantherdb.org/) was used to check the Reactome-pathways of the identified proteins in both 

inflammatory and cardiometabolic panels. 

Results 

Participant characteristics 

The baseline characteristics of study participants are illustrated in Table 1 and S1. A total of 2578 

participants with available data on plasma protein levels and abdominal ultrasound were included. In 

general, the mean age was 56.3±5.9 years, 56.6% were female and metabolic comorbidity was highly 

common, illustrated by the mean BMI of 27.6 kg/m2 ± 4.4 and diabetes prevalence of  8.8%. The overall 

prevalence of FLD was 35.2% and 4.6% had fibrosis. 

 

  

http://www.pantherdb.org/
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Table 1. Characteristics of the Rotterdam Study participants  

 
FLD-US Liver fibrosis-TE 

Characteristics Case Control Case Control 

N 907 1671 105 2157 

Age 56.72±5.68 56.14±5.94 57.85±7.03 56.05±5.63 

Sex,f n(%) 465(51.3) 994(59.5) 31(29.5) 1235(57.3) 

Body mass index (kg/m2) 29.68±4.40 26.51±3.96 29.62±4.77 27.21±4.03 

Alcohol consumption (g/day) 9.89±10.65 8.08±8.53 11.52±10.24 8.90±9.23 

Type 2 diabetes n(%) 136(15.0) 92(5.5) 27(25.7) 147(6.8) 

Smoking status n(%) 
    

Never 262(28.9) 589(35.2) 25(23.8) 727(33.7) 

Current 183(20.2) 357(21.4) 27(25.7) 452(21.0) 

Former 462(50.9) 725(43.4) 53(50.5) 978(45.3) 

Blood cells counts, 109/l 
    

Red blood cells  5.09±0.35 4.80±0.37 5.07±0.38 4.87±0.37 

Granulocyte 4.17±1.40 4.01±1.46 4.19±1.33 4.05±1.46 

Lymphocyte 2.45±0.66 2.46±0.72 2.50±0.70 2.44±0.69 

Monocyte 0.43±0.22 0.43±0.23 0.43±0.16 0.43±0.23 

Platelets 0.46±0.03 0.44±0.03 0.46±0.03 0.44±0.03 

Note: The characteristics of study participants in both inflammatory and cardiometabolic proteomics panels; 

Variables are represented as mean (± standard deviation), or number (%). Abbreviations: US, ultrasound; TE, 

transient elastography; N, Sample size. 

Plasma proteins associated with FLD 

We found 8 out of 83 inflammatory-related proteins to be significantly associated with FLD in fully 

adjusted models, taking into account multiple testing correction (P<2.92×10-4). Among them, 5 proteins 

(FGF-21, HGF, CDCP1, TNFSF14, and IL-18R1) were positively associated, whereas 3 proteins 

(CX3CL1, SCF, and TWEAK) were negatively associated with FLD (Table 2A and Figure 2A). 

Regarding the cardiometabolic panel, we identified 19 out of 88 proteins to be significantly associated 

with FLD. Of these, 12 proteins (CES1, F7, SERPINA5, THBS4, PROC, FCN2, ICAM1, CNDP1, 

MEGF9, LILRB1, TGFBI, and SERPINA7) were positively associated and 7 proteins (MET, KIT, PLTP, 

PTPRS, CHL1, TGFBR3, and REG1A) were negatively associated with FLD (Table 2B and Figure 2B). 

Importantly, 25/27 proteins significantly associated with ultrasound defined FLD could be validated using 

FLD based on FLI which was calculated at the same time point as the proteomic data (Table S2).   
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Plasma proteins associated with fibrosis 

Our analysis showed 7 out of the 8 inflammatory proteins significantly associated with FLD to be also 

associated with fibrosis (on a categorical scale ≥ 8.0 kPa) and liver stiffness (on a continuous scale). For 

the cardiometabolic panel, 8 out of the 19 proteins significantly associated with FLD were associated with 

fibrosis, and 10 out of the 19 proteins were associated with liver stiffness on a continuous scale in fully 

adjusted models (Table 2 and Table S3). 

 

 

Table 2 Plasma proteins significantly associated with FLD and liver fibrosis 

 Fatty liver disease liver fibrosis 

Proteins ID Beta SE P-value Beta SE P-value 

A- Inflammatory-related proteins    

FGF-21 0.45 0.051 1.07 × 10-18 0.31 0.112 6.09 × 10-03 

HGF 0.34 0.055 1.27  ×  10-09 0.50 0.113 8.58 × 10-06 

CX3CL1 -0.23 0.048 1.63  × 10-06 -0.06 0.111 6.02 × 10-01 

SCF -0.23 0.049 3.01  × 10-06 -0.31 0.098 1.78 ×10-03 

CDCP1 0.23 0.05 3.50 × 10-06 0.42 0.101 4.06 × 10-05 

TNFSF14 0.22 0.049 4.80  × 10-06 0.26 0.107 1.42 × 10-02 

TWEAK -0.23 0.051 5.64  × 10-06 -0.31 0.115 7.46 × 10-03 

IL-18R1 0.23 0.051 7.25  × 10-06 0.26 0.116 2.58 ×10-02 

B- Cardiometabolic-related proteins    

CES1 0.66 0.05 4.91 × 10-40 0.37 0.090 3.33 × 10-05 

F7 0.37 0.046 1.19 × 10-15 0.08 0.106 4.36 × 10-01 

MET -0.32 0.044 4.62 × 10-13 -0.02 0.108 8.34 × 10-01 

SERPINA5 0.30 0.046 5.62 × 10-11 -0.08 0.112 4.86 × 10-01 

KIT -0.29 0.045 1.72 × 10-10 -0.15 0.108 1.64 × 10-01 

THBS4 0.25 0.044 1.99 × 10-08 0.33 0.103 1.39 × 10-03 

PLTP -0.23 0.044 1.64 × 10-07 -0.01 0.107 9.16 × 10-01 

PROC 0.22 0.044 6.19 × 10-07 0.05 0.105 6.62 × 10-01 

FCN2 0.22 0.045 6.22 × 10-07 0.41 0.106 1.23 × 10-04 

ICAM1 0.22 0.045 1.65 × 10-06 0.24 0.112 3.38 × 10-02 

CNDP1 0.22 0.047 3.33 × 10-06 -0.16 0.107 1.34 × 10-01 

MEGF9 0.20 0.043 4.52 × 10-06 -0.22 0.099 2.64 × 10-02 

LILRB1 0.20 0.044 8.02 × 10-06 0.27 0.101 7.78 × 10-03 

TGFBI 0.19 0.045 2.03 × 10-05 0.42 0.110 1.31 × 10-04 

PTPRS -0.18 0.043 2.28 × 10-05 0.11 0.101 2.80 × 10-01 

CHL1 -0.18 0.043 3.03 × 10-05 0.31 0.121 1.05 × 10-02 

SERPINA7 0.18 0.047 1.16 × 10-04 -0.07 0.105 5.16 × 10-01 
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TGFBR3 -0.16 0.042 1.30 × 10-04 -0.06 0.106 5.89 × 10-01 

REG1A -0.17 0.046 2.21 × 10-04 -0.12 0.113 3.03 × 10-01 

Note: A and B are sorted based on Bonferroni-corrected P-value association of proteins with FLD and nominal P-

value with liver fibrosis. Model 1 is adjusted only for age and sex and Model 2 is further adjusted for RBCs, 

granulocyte, lymphocyte, monocyte, platelets, body mass index, smoking status, alcohol consumption and type 2 

diabetes. The Bonferroni-corrected significance threshold is P < 2.92×10-4 (0.05/171 proteins) for hepatic 

steatosis, and the nominal association with P < 0.05 for liver fibrosis. Abbreviations: FLD, fatty liver disease; SE, 

standard error. 

 

 

 

Figure 2. Heatmap visualization of protein  profiles of FLD and liver fibrosis in (A) Inflammatory-related 

protein, (B) Cardiometabolic-related protein based on the multi-logistic regression model. Model 2 is adjusted for 

age, sex, blood cells count (RBCs, granulocyte, lymphocyte, monocyte, platelets), body mass index, smoking status, 

alcohol consumption and type2 diabetes. The color in columns represent the standardized effect estimates (betas) red 

color– positive relationship, blue color– negative relationship. *Significant relationship of proteins with FLD after 

adjusting for Bonferroni-correction (P < 2.92×10-4) and with liver fibrosis at the P-value <0.05. Abbreviations: 

NAFLD, nonalcoholic fatty liver disease; MAFLD, Metabolic  associated fatty liver disease. P-value< 10-5(*), P-

value between 10-5-10-9 (**), and P-value> 10-9 (***). 
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Association of plasma proteins with MAFLD and NAFLD 

In our sensitivity analysis, consistent results were obtained when MAFLD replaced FLD. Additionally, 

despite a drop in the sample size, after replacing FLD with NAFLD the result remained significant 

(P<2.92×10-4) in all 8 inflammatory proteins while the result for 4 of the 19 cardiometabolic-related 

proteins lost the statistical significance (Table S4 and S5). It should be noted that despite the loss of 

statistical significance, similar direction of effects were observed in these 4 proteins as well.  

Pathway analysis for proteins associated with FLD 

We then performed the Reactome-pathways analysis, which aims to extract information on proteins 

through data mining and literature enrichment analysis. We arranged the pathways by fold-enrichment 

values and selected for further analysis with fold changes >9.5. We found TWEAK and TNFS14 proteins 

to be involved in the non-canonical NF-kB pathway (Table S6A). Additionally, F7, SERPINA5 and 

PROC proteins were involved in the Formation of Fibrin Clot (Clotting Cascade) (Table S6B). 

Validation of associations in liver organoids 

Additionally, we aimed to validate the results regarding protein expression and FLD using our in-vitro 

data on gene expression frequency in 3D human liver-derived organoids. Of the investigated proteins, 25 

out of 27 were tested in the liver organoids and 16 could be detected in our model. Interestingly, the 

expression levels of IL-18R1 and CES1 were upregulated in the organoids mimicking FLD. The other 

inflammatory and cardiometabolic-related proteins could not be replicated in this FLD model (Table S7).  

Plasma proteins and their potential as FLD biomarkers 

Finally, we performed AUC-analysis to test if the identified proteins have the biomarker potential and 

could improve the prediction model of FLD. All prediction models demonstrated fair to good diagnostic 

performance for FLD: AUC 0.763 (95%CI 0.745 – 0.781) for proteomics alone, 0.788 (95%CI 0.771 – 

0.805) for FLI alone and 0.806 (95%CI 0.790 – 0.822) for FLI combined with proteomics. Although 

proteomics alone had inferior diagnostic accuracy compared to the FLI, adding proteomics to the FLI 

algorithm slightly improved the AUC from 0.788 to 0.806 Figure 3A, but this was not statistical 

significant. Regarding fibrosis, proteomics alone (AUC 0.758, 95%CI 0.720 – 0.796) significantly 

outperformed the FIB-4 (AUC 0.634, 95%CI 0.584 – 0.684) and combining proteomics with FIB-4 

yielded the best results (AUC 0.779, 95%CI 0.743 – 0.815 [Figure 3B]), but not significantly better than 

the proteomics alone.  

In order to link our findings to protein cascades, we also performed pathway analysis. These results 

indicated that TWEAK and TNFSF14 belong to the non-canonical NF-κB signaling pathway, which 

regulates inflammation and host immune response.21 In an animal model, both fibroblast growth factor-
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inducible 14 (Fn14) and TWEAK in knockout mice and wild-type mice showed proliferation in 

hepatocytes and cholangiocytes after partial hepatectomy, indicating that the proteins signal is essential 

for mouse liver regeneration after hepatectomy.21, 22 It has also been  shown that TNFSF14, which 

increases adipose tissue inflammation, responds through its interaction with HVEM (herpes simplex virus 

glycoprotein D for herpes virus entry mediator).23 

 

Figure 3. Area under the receiver operator characteristics (AUC-ROC curve) of each prediction model for 

predicting fatty liver disease (A) and fibrosis (B).  





 

 

Discussion 

We investigated the association between 171 plasma proteins and FLD among a large population-based 

cohort study. We found 8 inflammatory and 19 cardiometabolic-related proteins to be significantly 

associated with FLD, of which FGF-21, CES1, and IL-18R1 will be discussed to a greater extent here, 

while the remaining proteins are briefly discussed in Table S8. Several of the proteins associated with 

FLD were also associated with fibrosis. These findings are important for further unraveling of the 

pathophysiology of FLD and the progression towards fibrosis. Moreover, these findings imply that plasma 

protein levels may have the potential to be used as biomarkers. 

Higher plasma level of FGF-21 was associated with increased risk of FLD and liver fibrosis, and therefore 

may play a crucial role in the pathophysiology of disease and its progression towards fibrosis. FGF-21 is 

known for its role in many metabolic processes, including insulin sensitivity, glucose and lipid 

metabolism, and energy homeostasis.24 Key aspects are increased with GLUT1 expression through 

stimulation of FGF-21, which induces glucose absorption in adipocytes.25 Despite we could not validate 

this finding in liver organoids (due to not being able to reach the detection limit in FLD mimicking 

organoids and controls), it is supported by various previous studies that explored the association of plasma 

inflammatory and cardiometabolic proteins with FLD. For example, the expression of FGF-21 was an 

independent predictor of NAFLD and plasma levels of FGF-21 reflect fat accumulation and dysregulation 

of metabolic pathways in the liver.26, 27 Interestingly, FGF-21 has been shown previously to be associated 

with fatty liver disease progression. For example, FGF-21 was related to lobular inflammation in patients 

with NAFLD, independent of steatosis grade and BMI.28 Moreover, serum FGF-21 expression increased 

with the severity of liver fibrosis.29 Overall, there is emerging evidence showing that FGF-21 is an 

important link to FLD and fibrosis. Our study highlights the relevance of these concepts in the general 

population. 

Another important protein is CES1, for which upregulation was significantly associated with a higher risk 

of FLD and fibrosis. In liver organoids, we also demonstrated upregulation of CES1 in the models 

mimicking FLD, aligning our main outcomes. CES1 is involved in catalyzing the hydrolysis of esters, 

amides, thioesters, and carbamates, through which CES1 is important in drug metabolism.30 Despite few 

studies being available that investigated the correlation between CES1 protein and FLD, the expression 

of CES1 gene has been linked to FLD in humans.31 This finding aligns with the results obtained in mouse 

models that demonstrated CES1 might be a potential treatment target for hyperlipidemia and NAFLD 

management.32 Further research is warranted to unravel the role of CES1 in the pathogenesis of NAFLD 

and fibrosis and whether it could improve current non-invasive assessment of fibrosis. 
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Moreover, we found that upregulation of IL-18R1 is associated with FLD and fibrosis, which was further 

validated in our experimental study with liver organoids. IL-18R1 specifically binds interleukin 18 (IL-

18) and is essential for IL-18-mediated signal transduction.33 IL-18 is an important inflammatory cytokine 

which initiates a signaling complex by binding to the IL-18 alpha chain (IL-18Rα) and co-receptor, termed 

IL-18 receptor beta chain (IL-18Rβ),  forming a high-affinity complex.34 Many studies have primarily 

focused on the role of ligand (IL-18) in FLD rather than the receptor, however, a previous study in humans 

found that IL-18R1 was significantly correlated with a specific pattern of fat depots in the liver.35 

Moreover, in an animal model, IL-18R-dependent signaling was identified as a modulator of early liver 

damage among subjects with fatty liver disease. Interestingly, this could already be detected preceding the 

development of histologic NASH through activation of the NLR family pyrin domain containing- 3 

(NLRP3).36 Together with IL-12, IL-18 may cause impairment of the hepatic microcirculation, creating 

an ischemic state in the liver, and inhibiting oxidative phosphorylation.37 It has also been shown that IL-

18 could predict advanced FLD in children.38 Validation of these results is warranted and further 

investigation is required on the interactions between IL-18 and its receptor (IL-18R1) in FLD and their 

potential as disease biomarkers.  

In order to link our findings to protein cascades, we also performed pathway analysis. These results 

indicated that TWEAK and TNFSF14 belong to the non-canonical NF-κB signaling pathway, which 

regulates inflammation and host immune response.21 In an animal model, both fibroblast growth factor-

inducible 14 (Fn14) and TWEAK in knockout mice and wild-type mice showed proliferation in 

hepatocytes and cholangiocytes after partial hepatectomy, indicating that the proteins signal is essential 

for mouse liver regeneration after hepatectomy.21, 22 It has also been  shown that TNFSF14, which 

increases adipose tissue inflammation, responds through its interaction with HVEM (herpes simplex virus 

glycoprotein D for herpes virus entry mediator).23 

Moreover, we found F7, SERPINA5, and PROC to be involved in Fibrin Clot Formation pathways. 

Among them, SERPINA5 protein is involved in the common Fibrin Clot Formation pathways through 

inactive complexes with protein C inhibitor that inhibits thrombin in complex with thrombomodulin.39 F7 

is a vitamin K-dependent glycoprotein formed by the liver, which can initiate the extrinsic pathway of 

blood coagulation.40 The vitamin K-dependent protein C (PROC) pathway exerts its anticoagulant  

circulation properties as a proenzyme to an anticoagulant serine protease and is activated by thrombin.41 

Although clearly related to the liver, these identified pathways warrant further explanation as it remains 

unclear how exactly these protein cascades are linked to FLD and disease progression. 

Finally, our AUC-analyses illustrated that proteomics has the potential to improve currently available non-

invasive markers (FLI and FIB-4) in the prediction of FLD or fibrosis. Although we identified a slight 

improvement in the prediction models, the illustrated potential of proteomics in non-invasive tests aligns 

with previous studies in small cohorts.9, 10 



 

 

This study has several important strengths, including the large sample size, use of proximity extension 

assay technology and availability of liver stiffness data in addition to ultrasound, yet the following 

limitations need to be considered for the interpretation of our findings. First, collecting data on FLD was 

5.54 [p25-p75: 5.4-5.7] years after the plasma sample collection for the proteomic assessment. However, 

the impact on our results might be limited, as the time gap would result in ‘dilution towards the null’ and 

would make it increasingly difficult to demonstrate associations. Nonetheless, this may have resulted in 

missing out on some proteins associated with FLD and fibrosis. Reassuringly, an additional analysis using 

an FLI-based definition of FLD could confirm 25 out of 27 proteins that were identified in the main 

analysis. Second, we used surrogate markers for fatty liver disease and fibrosis, since it is unethical to 

perform liver biopsy in apparently healthy volunteers exposing them to risk of serious complications. 

Third, our results warrant validation in future studies as only few studies with different study designs are 

available to relate to our current findings. Aiming at validation we used liver organoids,  however, not all 

identified proteins could be validated. This may partially be attributed to differences in protein assessment, 

but also due to the fact that liver organoids cannot entirely mimic the total protein expression in humans 

as was measured in our cohort study. Despite the differences, it was reassuring that CES1 and IL-18R1 

were validated providing strong evidence that these proteins play an important role in FLD and its 

progression to fibrosis. Fourth, due to the nature of this study, we could not address causality. Lastly, this 

study did not contain longitudinal analysis because multiple measurements of the proteomics and outcome 

were not available in the follow-up visits.  

In conclusion, we demonstrate that plasma levels of several inflammatory and cardiometabolic proteins 

are significantly associated with fatty liver disease and fibrosis at a population level. Our findings may 

help better understanding of the pathophysiology of FLD and the disease progression into fibrosis. In 

particular FGF-21, CES1 and IL-18R1 seem to contribute to the pathogenesis of FLD and also fibrosis. 

Moreover, given an unmet need for accurate and widely available non-invasive tools for risk stratification 

and referral strategies, our findings may improve the algorithms currently under development. 
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Obesity has become a major epidemic in the 21st century, leading to an increased risk of various health 

conditions such as dyslipidemia, hypertension, type 2 diabetes, and fatty liver disease (FLD).1 FLD is 

believed to be involved in the pathogenesis of common disorders such as of type 2 diabetes and 

cardiovascular disease (CVD), and the global burden of FLD parallels the increase in obesity rates across 

the world.2 Non-alcoholic fatty liver disease (NAFLD) is currently the leading cause of chronic liver 

disease in Western countries and represents an alarming global health crisis, affecting >33% of the 

population,3-5 To complicate matters further, it is also predicted to become also the most frequent 

indication for liver transplantation by 2030.6 

In recent years, the advent of the “omics revolution” has enabled population-based studies to adopt multi-

omics approaches, integrating data from different omics levels to gain a better understanding of 

mechanisms underlying complex diseases. In this thesis I used multi-omics data mainly from the 

population-based Rotterdam Study cohort to further investigate the etiology of obesity and FLD. In 

particular, transcriptomics, proteomics, and metabolomics were used to elucidate the molecular 

mechanisms underlying these metabolic diseases and to identify new non-invasive biomarkers for their 

early diagnosis. Leveraging large-scale omics data and applying advanced molecular epidemiological 

approaches could help to a deeper understanding of the molecular aspects of obesity and FLD, paving the 

way for improved diagnostic methods and potential therapeutic targets. 

Main finding  

Epigenetic of obesity and fatty liver disease  

Recent advances in the study of epigenetic modifications have considerably increased our understanding 

of the function of genes and epigenetic mechanisms in regulating energy metabolism and expenditure in 

obesity and other metabolic diseases.7, 8 These epigenetic modifications, unlike genetic variation, involve 

dynamic changes and are potentially reversible, this reversibility makes them modifiable to modification 

through lifestyle changes and other therapeutic interventions. 

In Chapter 2.1 of this thesis, I conducted a genome-wide profile of circulating miRNAs in the plasma of 

1208 participants from the population-based Rotterdam Study cohort (RS-I-4 and RS-II-2) to investigate 

the association of circulating miRNAs with obesity, body fat distribution, and fat mass. I found plasma 

levels of 65 miRNAs to be associated with body mass index (BMI), 40 miRNAs with waist to hip ratio 

(WHR), 65 miRNAs with fat mass index (FMI), and 15 miRNAs with android fat to gynoid fat ratio 

(AGR), after correcting for multiple testing. Notably, a total of 12 miRNAs showed significant 

associations with all the traits examined. In addition, 4 miRNAs were specifically associated with WHR, 

3 miRNAs with FMI, and miR-378i showed an association with AGR. Among these overlapping 

miRNAs, the most significant association was observed with miR-193a-5p. This particular miRNA has 

previously been linked to the risk of developing type 2 diabetes and FLD. These associations were 
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identified through independent studies conducted using miRNA data from the Rotterdam Study.9, 10 

Additionally, five of the obesity-associated miRNAs and two of the body fat distribution miRNAs have 

been correlated previously to cardiovascular diseases.11-15 In females,  the vast majority of the 12 common 

miRNAs were strongly associated and overlapped with all traits, whereas in males, these 12 miRNAs 

were less significant. Interestingly, we identified five new miRNAs (miR-185-5p, miR-19a-3p, miR-19b-

3p, miR-7150, and miR-93-5p) that were specifically associated with the four traits only in females, 

surpassing the Bonferroni-corrected p-value threshold (P < 8.46 × 10-5). Moreover, our study identified 

seven previously unreported miRNAs, namely miR-3937, miR-4433b-5p, miR-4478, miR-6088, miR-

6799-5p, miR-6803-5p, miR-6821-5p, and miR-1304-3p, that showed associations with all obesity-

related traits, with miR-1304-3p specifically linked to fat mass. To our knowledge, our study is the first 

to report these associations with obesity and fat mass. It is noteworthy that several of these identified 

miRNAs have also been associated with cancer, as previous studies have indicated that approximately 

20% of common cancers can be attributed to excessive body fat accumulation.16, 17 Furthermore, in the 

longitudinal analysis, we found 24 miRNAs to be significantly associated with the prevalence of metabolic 

syndrome, of these, 10 miRNAs overlapped with the 12 common miRNAs associated with all four traits. 

In Chapter 2.2, plasma levels of circulating miRNAs in the Rotterdam Study participants was used to 

investigate the association between miRNAs and FLD diagnosed by CT scan and liver enzymes. To 

understand if the miRNAs are involved in the pathways underlying liver diseases, we performed 

subsequent analysis and linked the identified miRNAs with the risk of FLD based-ultrasound and 

FibroScan-based liver fibrosis. In the cross-sectional analysis, I found significant associations between 61 

miRNAs and serum levels of gamma-glutamyl transferase and/or alkaline phosphatase (P < 8.46 × 10-5 

after Bonferroni correction). Additionally, among these miRNAs, 17 were significantly associated with 

CT-based fatty liver disease (P < 8.46 × 10-5), with 14 of them overlapping with miRNAs associated with 

liver enzymes. In the longitudinal analysis, I found that 4 out of the 14 identified miRNAs (miR-193a-5p, 

miR-122-5p, miR-378d, and miR-187-3p) were significantly associated with hepatic steatosis (P < 3.57 × 

10-3), while three miRNAs (miR-193a-5p, miR-122-5p, and miR-193b-3p) showed nominal associations 

with liver fibrosis (P < 0.05). Furthermore, nine out of the 14 identified miRNAs were involved in 

pathways related to liver diseases. Additionally, I conducted a search in the Human miRNA tissue atlas 

and the miRmine database to examine the expression of the 14 plasma-associated miRNAs in the liver. 

Among these miRNAs, miR-122-5p was identified as a highly expressed miRNA in the liver and exhibited 

a high tissue specificity index (TSI) of 0.97, indicating its specific expression in this tissue. 

Notably, miR-193a-5p that was the most significant miRNA associated with obesity-related traits in 

Chapter 2.1, was also associated with FLD in Chapter 2.2. This may indicate miR-193a-5p as a common 

miRNA to be involved in regulating metabolic pathways. This finding might be promising to be explored 

further in other population studies and in experimental settings to elucidate the pathophysiology of 

obesity-related FLD.  
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In Chapter 2.3, a genome-wide screening was conducted to investigate the association of plasma miRNAs 

with alcohol consumption, and to explore whether there is a mediating effect for the alcohol-associated 

miRNAs with liver function and disease. Recent studies have reported a vital role for epigenetic factors, 

which modulate gene expression in the absence of changes in DNA sequence, in the onset and progression 

of liver disorders toward hepatic fibrogenesis and cirrhosis.18 Mounting findings have also delineated that 

alcohol consumption extensively modulates liver epigenetics, thus, prompting the etiology of alcoholic 

liver disease (ALD). In addition, increasing evidence suggests that miRNAs are involved in inflammation, 

lipid metabolism, and oncogenetics are affected by excessive alcohol administration in mouse models of 

ALD.19 Our study explained in Chapter 2.3 found plasma concentrations of miR-193b-3p, miR-122-5p, 

miR-3937, and miR-4507 to be significantly associated with alcohol consumption surpassing the 

Bonferroni-corrected P < 8.46 × 10−5. Notably, I also found that effect size estimates of alcohol-associated 

miRNAs were nearly doubled when comparing the mean consumption of heavy drinkers to non-drinkers. 

Most of the alcohol-associated miRNAs exhibited stronger effect sizes in men, except for miR-4507, 

which showed a more significant decrease in women with alcohol consumption. With the liver being 

primarily responsible for alcohol detoxification and metabolism, the study delved deeper into 

investigating the potential role of alcohol-associated miRNA levels as mediators in liver-related diseases. 

Among the four alcohol-associated miRNAs, miR-3937 and miR-122-5p demonstrated a potential 

mediating role in the association between alcohol consumption and CT-based fatty liver disease, GGT, 

and US-based steatosis. However, the Mendelian randomization (MR) analysis did not provide sufficient 

statistical evidence to establish a causal relationship between alcohol-associated miRNAs and liver-related 

traits. This could potentially be attributed to the lack of robust instrumental variables (IVs). After pruning 

the trans-miR-QTLs and correlated single-nucleotide polymorphisms (SNPs), only one SNP (rs30227) of 

miR-193bp remained as an instrumental variable. Consequently, the limited evidence of causality may 

have been hindered by the scarcity of strong IVs, particularly considering that only a single miRNA had 

a cis-expression quantitative trait locus (eQTL) available. This emphasizes the need for future studies to 

conduct genome-wide association studies (GWAS) on larger sample sizes and explore a broader landscape 

of miRNAs to generate more robust instrumental variables for estimating causal relationships.  

Our research in Chapter 2.2 revealing a significant association between miR122-5p and miR193b-3p 

with FLD are in line with our findings regarding miRNAs linked to alcohol consumption in Chapter 2.3. 

Furthermore, in Chapter 2.3, we discovered that miR-3937, which was previously identified as an 

overlapping miRNA in relation to obesity-related traits in Chapter 2.1, may play a mediating role between 

alcohol consumption and liver function. These findings further highlight the interconnected nature of 

miRNAs, alcohol consumption, and liver-related conditions, emphasizing the need for deeper 

investigation into their mechanisms and potential implications in future studies.
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Proteomics and fatty liver disease  

The advancement of proteomics analysis has provided us with powerful tools for studying FLD 

mechanisms and the opportunity for discovering novel biomarkers. Previous proteomics studies detected 

changes in the plasma proteome of patients with cirrhosis and NAFLD that are clearly linked to the 

underlying disease manifestations and clinical observations.20 Furthermore, other studies reported several 

plasma and tissue specific proteins in FLD which have been identified as important diagnostic biomarkers 

for patients with cirrhosis and hepatocellular carcinoma.21, 22 However, it is important to note that these 

studies often had relatively small sample sizes, which can increase the risk of missing relevant biomarkers 

in addition to the lack of disease stratification particularly, in the early stage of FLD (e.g. steatosis). In the 

Rotterdam Study, however, there was a large-scale plasma profiling of 171 proteins (two Olink panels, 

cardiometabolic and inflammatory-related proteins) with long-time follow-up for FLD available. 

Therefore in Chapter 3.1, I used these plasma proteomics data from 2,578 participants to identify proteins 

associated with FLD-based ultrasound and liver fibrosis. In our analysis, I found 27 proteins significantly 

associated with FLD surpassing the Bonferroni-corrected P < 2.92×10-4, the strongest association was 

observed for FGF-21 and CES1 proteins. Importantly, 15 of the 27 proteins significantly associated with 

FLD were also associated with liver fibrosis. In the Reactome pathway analysis, I found TWEAK and 

TNFS14 proteins to be involved in the non-canonical NF-kB pathway. While, F7, SERPINA5, and PROC 

proteins were involved in the formation of fibrin clots (clotting cascade). Interestingly, our in vitro 

experiments confirmed that the gene expression levels of IL-18R1 and CES1 were upregulated in 3D 

cultured primary liver organoids mimicking FLD. Finally, the area under the curve (AUC) analysis 

illustrated that proteomics has the potential to improve currently available non-invasive markers (FLI and 

FIB-4) in the prediction of FLD or fibrosis. The findings of this study could help towards a better 

understanding of the pathophysiology of FLD and the disease progression into fibrosis. In particular, FGF-

21, CES1 and IL-18R1 seem to contribute to the pathogenesis of FLD and also fibrosis. Moreover, given 

an unmet need for accurate and widely available non-invasive tools for risk stratification and referral 

strategies, our findings may improve the algorithms currently under development. 
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Metabolites and risk of fatty liver disease  

The burden of obesity and NAFLD is rising globally, but little is known about the metabolic pathways 

underlying these diseases at the population level.23 Recent developments in high-throughput analysis, 

curation, and robust statistical analysis have allowed investigators to understand the changes in cellular 

and tissue metabolism based on metabolomics data.24 In Chapter 4.1, I used both nuclear magnetic 

resonance (NMR) spectroscopy from the Nightingale platform (almost 250 metabolites) and mass 

spectrometry (MS) from the Metabolon platform with more metabolites (>1000), to investigate the 

association of plasma metabolites with NAFLD and liver enzymes. I used data from four population-based 

cohorts including the Rotterdam study, Avon Longitudinal Study of Parents and Children (ALSPAC) 

from the UK, and two USA based cohorts called The Insulin Resistance Atherosclerosis Family Study 

(IRASFS) and Study of Latino (SOL). Numerous metabolites from both platforms were significantly 

associated and overlapping with NAFLD and liver enzymes after adjusting for potential confounders and 

multiple testing corrections (FDR < 0.05) . Of these, 21 metabolites were jointly associated with NAFLD 

(diagnosed by ultrasound and CT-scan) and liver enzymes (ALT, AST, and GGT), among them 7 

metabolites within Nightingales platform such as phenylalanine, triglycerides in (HDL, IDL, and small 

LDL), fatty acids (FAs) ratios of (18:2 linoleic acid to total FA, omega 6 FA to total FA, and 

polyunsaturated FA to total FA. In the Metabolon platform, I also found 14 common metabolites including 

glutamate and sphingomyelin to have the strongest association with both NAFLD and liver enzymes. 

Other associated metabolites were mainly involved in lipid, amino acid, carbohydrates, and peptide 

metabolism. A previous Finnish study (n=2,002) conducted based on young and middle age participants, 

using Nightingale platforms (N=68), has shown numerous metabolites to be significantly associated with 

fatty liver disease based on ultrasound. These metabolites included lipoprotein particles, triglycerides, 

fatty acids, amino acids, and glycolysis-related metabolites.25 Our findings align closely with these 

associations, demonstrating consistent results in terms of metabolite associations with fatty liver disease. 

Furthermore, our results based on the Metabolon platform are also consistent with previous studies that 

have identified several metabolites associated with fatty liver disease as diagnosed by ultrasound and CT-

scan.26-29 Importantly, the majority of these metabolites are implicated in various known metabolic 

pathways, including lipid, amino acids, carbohydrate, and peptide metabolism. This convergence of 

results across studies further supports the relevance of these metabolic pathways in the development and 

progression of fatty liver disease. As a result, my study revealed a wide range of plasma metabolites 

associated with NAFLD, providing valuable insights into the underlying mechanisms of the disease.  

 

  

http://www.bristol.ac.uk/alspac/
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Methodological considerations  

Study design 

The studies in this thesis were conducted mainly in the Rotterdam Study, a prospective population-based 

cohort study consisting of participants aged 45 years or older.30 Population-based cohort studies play a 

crucial role in epidemiological research, allowing for the study of disease incidence, etiology, and long-

term health outcomes in representative populations. A notable advantage of cohort studies, in general, is 

the ability to study multiple exposures and multiple outcomes within a single cohort.31 Despite the 

advantages, it is important to note that population-based cohort studies might subject to certain biases that 

should be considered (including selection bias, information bias, and confounding bias).32 Selection bias 

occurs when selection of exposed and unexposed subjects is not independent of outcome being studied. 

Information bias occurs when there is a distortion in the measure of association due to inaccurate 

measurements of key study variables. While confounding bias occurs when the relationship between an 

exposure and an outcome is influenced by a third variable. It is therefore important for researchers to be 

aware of these potential biases and take steps to minimize or account for them in their study design, data 

collection, and analysis. Additionally, critical evaluation of study findings should always consider the 

potential sources of bias to assess the reliability and generalizability of the results. Nevertheless, the 

Rotterdam Study is a widely recognized and established cohort study which has gained a significant 

reputation in the field of epidemiology and medical research. With its rigorous methodology, relatively 

large samples size, and long-term follow-up, the Rotterdam Study has become a cornerstone in 

population-based research. Its robust design and comprehensive data collection make it a reliable and 

trusted source for investigating various health outcomes and informing evidence-based healthcare 

practices. 

In this thesis, the majority of the studies are of cross-sectional study design, which is generally considered 

less informative for testing causal inference when the exposure is not an inherent trait but one that 

developed over time. Nonetheless, despite its limitations, cross-sectional studies can provide strong 

evidence for and show the strength of an association between a disease and putative causative factors. 

This especially refers to Chapter 3.1 and Chapter 4.1, in which I detected the relationships of plasma 

metabolites and proteins with FLD. However, I believe that epidemiologic research work complementary 

in revealing possibly new relationships that can further be studied in more details by experimental or 

fundamental studies. 
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Precision of outcome  

Liver biopsy is currently considered the gold standard for the diagnosis and histological assessment of 

FLD. In this thesis, we used CT scan, ultrasound, and liver enzymes as measurements for liver health and 

disease. Although liver biopsy remains the gold standard for diagnosing FLD, it is invasive and may cause 

adverse risks.33 Moreover, due to ethical concerns and the unneglectable risk of complications, it will be 

unacceptable to expose several thousand of apparently healthy individuals to liver biopsy. Abdominal 

ultrasound is a rather accurate marker for the presence of fatty liver disease, especially when steatosis 

affects >20% of the hepatocytes. A meta-analysis demonstrated an 84.8% sensitivity to detect moderate 

to severe steatosis (compared to liver biopsy).34 In the Rotterdam Study, liver fibrosis was assessed by 

using transient elastography. In Chapter 2.2, we used liver stiffness measurement (LSM) ≥9.0 kPa as a 

cut-off suggesting clinically relevant liver fibrosis, while previous studies preferred the threshold of 8.0 

kPa in the general population to select participants at high risk of fibrosis.35, 36 For this reason, In Chapter 

3.1 and Chapter 4.1, I used 8.0 kPa as a cut-off value of significant fibrosis. To come back to Chapter 

2.2 and Chapter 4.1, FLD was based on CT with a cut-off value of less than 40 Hounsfield Unit (HU) 

attenuation, which is somewhat stricter than other studies utilizing mean liver attenuation ≤ 51 HU.37 This 

would decrease the prevalence of FLD, but improve the accuracy of identifying participants with FLD. 

Although earlier studies have shown various cut-offs, the most clinical indication for moderate-to-severe 

steatosis is a cut-off value of 40 HU on non-enhanced CT.38, 39  

On the other hand, we used BMI, waist-to-hip ratio (WHR), android-fat to gynoid-fat ratio (AGR), and 

fat mass index (FMI) measured by anthropometrics and Dual X-ray Absorptiometry as parameters of 

obesity and fat distribution. BMI is the simplest and the most widely used parameter for measuring 

obesity.40 It is calculated by dividing body weight in kilograms by height in meters squared ( kg/m2). BMI 

is widely used as a risk factor for the development of or the prevalence of several health conditions.41 

According to the World Health Organization (WHO), a BMI of greater than or equal to 25 is classified as 

overweight and a BMI of greater than or equal to 30 is classified as obese.42 This is the most useful 

population-level measure of overweight and obesity. However, it is increasingly clear that BMI is a rather 

poor indicator of the percent of body fat.43 Importantly, the BMI also does not capture information on the 

mass of fat in different body sites. While WHR, a measure of central obesity and visceral fat, may be a 

better indicator of obesity than other anthropometric measures,44 it looks at the proportion of fat stored on 

your body around your waist and hip. It is found to be associated with CVD, particularly in women.45 

Furthermore, dual-energy X-ray absorptiometry (DEXA) is considered the gold standard method for 

measuring body composition,46 it provides an in-depth analysis of body fat composition. It has the 

advantages of low cost, low radiation, and quick scan times, making it a quick and practical method for 

assessing body composition in large longitudinal studies.47 FMI is defined as the total DEXA fat mass 

normalized by height squared (Fat mass/ Hight2), it has a distinct advantage over BMI for defining obesity 

status since it is independent of lean mass status,48 while the AGR is the ratio between abdominal, or 
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android fat pattern, and lower limb fat percentage, or gynoid fat pattern.49 Moreover, previous studies have 

shown important relationships between AGR with metabolic and CVD risks in healthy adults.50, 51 DEXA 

measurements of fat mass can play a vital role in predicting cardiometabolic diseases including CVD and 

T2D. In this line, in Chapter 2.1, we found some of the identified miRNAs with DEXA parameters (FMI 

and AGR) were also associated with cardiovascular and metabolic diseases reported in previous studies.9, 

14, 15 

Precision of exposure 

MicroRNA profiling 

In recent years, the link between regulatory miRNAs and diseases has been the object of intensive 

research. Intriguingly, it has recently been discovered that a number of miRNAs regulate the development 

and metabolism of adipose tissue, as well as insulin secretion and action. As a result, an imbalance in these 

miRNAs may contribute to the development of obesity and its associated metabolic complications.52-54 

Previous genetic association studies have demonstrated the association of SNPs in miRNAs with obesity 

and fat distribution.55, 56 Furthermore, miRNA profiling studies based on qPCR assay has investigated the 

link between miRNA levels and metabolic diseases but with a limited number of miRNAs and a small 

sample size. My research in Chapter 2. was conducted in the Rotterdam study with much larger sample 

sizes, based on a new genome-wide miRNA-seq based assay (HTG EdgeSeq miRNA whole 

Transcriptome Assay), which measured the expression of 2083 mature human miRNAs and demonstrated 

higher accuracy, sensitivity, and specificity compared to qPCR method. Although the use of the small 

RNA sequencing method in epidemiological studies is still limited, it has been shown to measure the 

expression levels of miRNAs over a wide dynamic range with the ability to identify novel miRNAs with 

the least bias detection.57, 58 Despite the absence of defined guidelines for the use of miRNAs in current 

clinical practice, there is promising evidence that they represent a reliable tool for use in the future as a 

biomarker.59 The intriguing aspect of miRNAs in biomarker discovery is their stability in human fluids, 

even after multiple freeze-thaw cycles.60  

Proteome 

The proteome analysis offers a compelling goal for the identification of therapeutic and biomarker targets 

for complex diseases. The easiest tissue to collect and the one with the most comprehensive human 

proteome is blood. Interestingly, several studies have identified protein expression in blood by using 

sophisticated techniques (e.g. Olink panels or SomaScan assay) to discover potential biomarkers in a 

number of metabolic and inflammatory diseases including FLD,61-63 using disease stratification with small 

sample sizes. In Chapter 3.1, the research was embedded within the Rotterdam Study with a large sample 

size, based on the high-throughput Proximity Extension Assay (PEA) technique (Olink Proteomics AB, 

Uppsala, Sweden). The Olink technology combines the best of antibody- and DNA-based methodologies 
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to provide unique, enabling tools for protein biomarker discovery and development.64 The Olink platforms 

offer several key advantages that set them apart from other techniques like SomaScan. Firstly, they 

demonstrate high sensitivity and specificity, enabling accurate measurement of low-abundance proteins. 

This is particularly valuable for detecting subtle changes in protein expression levels. Additionally, Olink 

platforms require small sample volumes, making them well-suited for working with precious or limited 

samples, in contrast to other techniques. Furthermore, it provides a diverse range of panels designed to 

analyze protein biomarkers specific to various research areas and disease conditions, including 

cardiovascular disease, oncology, neurology, and immunology. This targeted approach enhances the 

relevance and applicability of the platform in different fields. Overall, Olink platforms serve as valuable 

tools for biomarker discovery, validation, and research, offering a comprehensive and multiplexed 

approach to protein analysis. In our study, the utilized assay reliably measured plasma levels of 171 

cardiometabolic and inflammatory-related proteins after excluding proteins that were below the limit of 

Detection during the quality control procedures.  

Metabolomics 

Metabolomics has been widely used for investigating the biological functions of disease expression and 

has the potential to discover biomarkers in circulating biofluids or tissue extracts that reflect in phenotypic 

changes.65 Mass spectrometry (MS) and nuclear magnetic resonance (NMR) are the two main analytical 

technologies for the analysis of metabolite pools, the former in combination with separation techniques 

such as gas and liquid chromatography, and has contributed to the discovery of recent disease biomarkers. 

These methods enable the generation of large amounts of data, and sophisticated chemometric analysis 

provides details on the wide range of metabolites.66 Both targeted and untargeted mass spectrometry 

approaches are among the most commonly used in metabolome analysis and it has become the 

indispensable tool in metabolome analysis.67 Moreover, MS is intrinsically a highly sensitive method for 

the detection, quantitation, and structure elucidation of upwards of several hundred metabolites in a single 

measurement.68 Likewise, NMR plays a valuable tool that can be used for quantitative fingerprinting to 

identify different metabolites within tissue engineering scaffolds.69 Moreover, NMR can also be exploited 

for targeted and untargeted human metabolic phenotype diversity. Proton (1H)-NMR-

based metabolomics profiling first became a popular technology because it could be used to identify 

organic compounds within biological fluids.70 In addition, MS and NMR methods are both supplementary 

and complementary to one another. In Chapter 4.1, I used both the Nightingale and Metabolon platforms 

for linking metabolites to FLD and liver enzymes. Nightingale platform is valued for being non-invasive, 

non-destructive, fast, and for providing highly reproducible results.71 As well, the Metabolon platform 

provides a snapshot of the metabolic state of the entire organism as well as individual tissues, by using 

technologies able to detect a wide number of metabolites.72 So, the results of our study using these two 

platforms able to generate a more comprehensive understanding of the metabolic profiles linked to FLD 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/metabolomics
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and liver enzyme activity. This combined approach shed light on the underlying metabolic pathways 

involved in the development and progression of the disease, leading to valuable insights in the field. 

Potential implications and future directions 

In this section, I describe the future directions of using population-level omics data in obesity and FLD, 

which may open new avenues for understanding the risk and pathophysiology of these diseases and also 

potential biomarkers. As explained in this thesis, it has been established that genetic predispositions play 

an essential role in the unbalanced energy metabolism associated with obesity. Emerging evidence 

suggests that epigenetic modifications including miRNAs have emerged as key mediators of metabolic 

processes, playing crucial roles in maintaining/altering physiological processes, including energy balance 

and metabolic homeostasis.54 Dysregulation of miRNAs may affect the status and functions of different 

tissues and organs, possibly contributing to metabolic abnormalities associated with obesity and obesity-

related diseases. More recently, the discovery of circulating miRNAs easily detectable in plasma and other 

body fluids has emphasized their potential as both endocrine signaling molecules and disease indicators. 

In Chapter 2.1, despite having a comprehensive global profile of 591 well-expressed miRNAs obtained 

through RNA sequencing-based assay, studying the relationship between miRNAs and obesity-related 

traits presents several challenges. Firstly, the complex nature of obesity, influenced by a combination of 

genetic, environmental, and lifestyle factors, introduces difficulties in discerning the specific role of 

miRNAs in obesity and its associated traits. Moreover, miRNAs exhibit tissue-specific expression 

patterns, making it intricate to determine their significance in specific tissues implicated in obesity, such 

as adipose tissue or liver. To capture the dynamic changes in miRNA expression associated with obesity 

and its progression, longitudinal studies with repeated measurements are required. It is crucial to have 

well-characterized and diverse study populations encompassing individuals from different ethnicities and 

age groups to understand the generalizability of miRNA-obesity associations. Additionally, conducting 

long-term follow-up studies is necessary to explore the causality and temporal relationships between 

miRNAs and obesity-related traits, as well as to assess their potential as therapeutic targets or biomarkers. 

Overall, addressing these challenges is crucial for advancing our understanding of the involvement of 

miRNAs in obesity-related traits and their potential as therapeutic targets or biomarkers. 

Among the identified miRNAs, miR-193a-5p was the top miRNAs associated with obesity-related traits 

in Chapter 2.1 and also associated with FLD in Chapter 2.2. Currently, one study based on biopsies that 

confirmed NAFLD and assessed 2083 serum miRNAs in a discovery cohort indicated that serum miR-

193a-5p levels substantially related with NAFLD activity grade and fibrosis stage. Additionally, miR-

193a-5p may contribute to the liver's response to oxidative stress and may be a therapeutically useful 

circulating biomarker for progressive NAFLD.73 Therefore, further research is warranted on the role of 

miR-193a-5p throughout the body, particularly to establish its direct effects on certain target genes and to 
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identify the cells and potential extrahepatic tissues where these interactions and subsequent consequences 

might be seen. 

Considering the strong association between FLD and obesity, adiposity, as determined by obesity 

parameters such as waist circumference and waist-to-hip ratio, has been identified as the most influential 

predictor of NAFLD risk on a global scale.74-76 Consequently, further investigation is warranted to better 

understand the underlying mechanisms linking adiposity and NAFLD, as well as to explore potential 

interventions targeting this relationship. Extensive research has been conducted on the mechanisms 

underlying the close relationship between obesity and NAFLD, including chronic inflammation, oxidative 

stress, and insulin resistance.74, 75, 77 However, the specific mechanisms by which metabolic imbalances 

resulting from obesity contribute to FLD development remain unclear. Therefore, future studies should 

focus on investigating the role of epigenetic factors, such as miRNAs, in metabolic dysfunction and their 

connection to NAFLD/MAFLD. It is still unclear why only a certain population with metabolic 

dysfunction will develop FLD while others with similar metabolic dysfunctions do not. This aspect 

deserves particular attention, with a focus on identifying factors that might induce the chronic 

inflammatory state, which is a key determinant of advanced fibrosis. 

In Chapter 2.3, we explored the potential impact of lifestyle factors, specifically alcohol consumption, 

on the alteration of plasma miRNA concentrations and their association with liver disease. However, we 

encountered some challenges throughout this study. Firstly, as mentioned previously, it is important to 

note that the majority of our research followed a cross-sectional design, which inherently introduces the 

limitation of potential reverse causality. Additionally, the application of Mendelian randomization (MR) 

presents a promising approach to establish a causal connection between lifestyle factors, like alcohol 

consumption, and the risk of developing illnesses through epigenetic markers. Nevertheless, unlike 

chronic diseases, lifestyle factors have a limited genetic component, which resulted in the identification 

of inadequate instrumental variables (IVs) in many genome-wide association studies (GWAS) 

investigating lifestyle factors.78 Consequently, the utilization of the MR methodology to elucidate the 

causal pathway between lifestyles and epigenetics can present challenges. Furthermore, we collected data 

on alcohol consumption through home-administered interviews rather than employing validated self-

reporting methods like food frequency questionnaires (FFQs) or other reliable measures. This introduces 

the possibility of participants underestimating their true alcohol consumption due to social desirability 

bias. To address this limitation, Further studies are needed by using larger sample sizes and longer follow-

up times with alcohol consumption collected by FFQs as well as in to experimentally confirm the role of 

identified miRNAs in molecular pathways underlying alcohol-related diseases. Finally, tissue specificity 

poses another challenge when translating our findings into clinical practice. The majority of available data 

are derived from easily accessible tissues such as blood or plasma, but conducting miRNA association 

studies on different tissues may yield divergent results. It is therefore crucial to strive for a more 

comprehensive collection of epigenetic data across various tissues.  



 Chapter 5 

140 
 

Proteomics is a powerful tool for studying changes in the protein expression levels in diverse patient 

populations, providing a robust and impactful tool for understanding disease mechanisms. In particular, 

the liver, as a key secretory organ in the human body, is responsible for synthesizing and producing the 

majority of plasma proteins that may play a direct role in circulation.20 Among these proteins, Albumin is 

the most abundant protein in the blood and accounts to approximately 60% of all plasma proteins.79 In 

Chapter 3.1, I performed a cross-sectional study to assess the protein expression in hepatic steatosis and 

fibrosis and the possibility to use it as a biomarker for disease diagnosis. The gap between protein 

measurement and FLD diagnosed by ultrasounds, which makes conclusions regarding dynamic changes 

of fatty liver difficult would result in ‘dilution towards the null’. Recently, several small studies define 

protein levels in patient cohorts with advanced FLD by using sophisticated techniques (e.g. SomaScan 

assay or Olink).61, 63 Variability in research design, sample selection, storage and processing, instrumental 

analysis, data analysis, and most critically, might result in inconsistent and conflicting results. Future 

large-scale proteomics studies of FLD would benefit from a cross-sectional design measuring proteins in 

blood and FLD diagnosed by ultrasound collected at the same time point. In addition, a follow-up study 

design of the same people at multiple time points. 

Finally, metabolomics offers new opportunities for biomarker discovery in complex diseases and may 

provide a pathological understanding of diseases beyond traditional technologies.80 Several studies have 

assessed the associations of metabolomics with NAFLD or liver fat content.81 These studies have 

identified several pathways underlying the development of NAFLD. However, the majority of these 

studies have variability in study design, involved a small number of cases, and measured a limited set of 

metabolomic biomarkers.24, 82 In Chapter 4.1. I used comprehensive metabolomics profiling with two 

well-established platforms (Nightingale and Metabolon) measured in several population-based studies. In 

addition, different modalities were used to evaluate FLD (CT scan and ultrasound). Currently, few studies 

have systematically detected metabolites associated with FLD at the population level. Therefore, my 

findings in this chapter may help for elucidating metabolic pathways involved in NAFLD etiology and 

the identified metabolites might be considered as potential biomarkers for early diagnosis of the disease. 

Though future research is warranted to include more population-based cohorts from different ethnicities 

and age groups to assess better metabolites profiling in FLD. 
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Conclusions  

In this thesis, I conducted comprehensive analyses of different omics data (incl. transcriptomics, 

proteomics, and metabolomics) from population-based studies to elucidate the underlying molecular 

mechanisms of obesity and fatty liver disease and to identify potential biomarkers for the early diagnosis 

of these diseases. Particularly, the results of my studies may contribute to better understanding of the 

pathogenesis of FLD, yet much more clinical and experimental research need to be conducted in order to 

effectively prevent and treat FLD. FLD is a growing concern with increasing awareness, and I believe that 

significant progress will be made in unraveling its pathophysiology in the upcoming decade, through 

advancements in research techniques, collaborative efforts, access to large-scale datasets, and the pursuit 

of innovative therapeutic strategies. 
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English summary  

Fatty liver disease (FLD) and its associated complications, such as type 2 diabetes (T2D), obesity, 

hypertension, and dyslipidemia, impose a significant burden on global health, leading to illness and 

mortality. Over the past few decades, the prevalence of FLD has been on the rise, affecting more than 

33% of the world's population, largely due to the increasing rates of obesity. Among individuals with 

FLD, the majority develop non-alcoholic fatty liver disease (NAFLD), which stands as the most prevalent 

form of chronic liver disease worldwide. Although NAFLD often presents with little or no symptoms, a 

subset of patients can progress to advanced stages of liver disease, including end-stage liver disease and 

even liver cancer. Recently, an international panel of experts recommended a name change for NAFLD 

to metabolic dysfunction-associated fatty liver disease (MAFLD) to reflect its broader metabolic 

implications beyond alcohol consumption. Furthermore, in recent development, the global community 

chose steatotic liver disease (SLD) as an overarching term to encompass the various etiologies of steatosis. 

However, the underlying mechanisms of obesity-related diseases and FLD and early diagnostic strategies 

remain poorly understood. Gaining a comprehensive understanding of the pathophysiology of FLD is 

crucial for advancing prevention and treatment approaches. In this thesis, I aim to provide new insights in 

to the molecular mechanisms of obesity-related traits and FLD by employing various omics approaches 

and integrating multiple types of omics data, with a particular focus on transcriptomics, proteomics, and 

metabolomics. 

Chapter 2, focused on exploring the epigenetic regulation of obesity-related traits and FLD. In Chapter 

2.1, I conducted a genome-wide screening using data from the Rotterdam Study to explore the  relationship 

between plasma levels of miRNAs and obesity, body fat distribution, and fat mass. Notably, my findings 

revealed the association of several miRNAs with obesity-related traits, with 12 miRNAs overlapping 

across all traits, including BMI, WHR, FMI, and AGR. It is worth mentioning that among these miRNAs, 

miR-193a-5p, the most prominent miRNA associated with obesity, was also found to be significantly 

associated with FLD in Chapter 2.2. 

In Chapter 2.2, I investigated the association between miRNA plasma levels and the prevalence of fatty 

liver disease. I examined the relationships between miRNAs and both fatty liver disease and liver 

enzymes, specifically gamma-glutamyl transferase and alkaline phosphatase. The results of my analysis 

revealed that 61 miRNAs exhibited associations with liver enzymes. Additionally, 17 miRNAs were 

found to be associated with fatty liver disease, out of which 14 miRNAs overlapped with the ones 

associated with liver enzymes. Notably, one of the identified miRNAs was miR-122-5p, a well-established 

miRNA in liver tissue. 

In Chapter 2.3, I explored the relationship between plasma miRNA expression levels and alcohol 

consumption. I found that miR-193p, miR-122-5p, and miR-3937 were positively associated with alcohol 
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consumption, while miR-4507 showed a negative association. When comparing different alcohol 

consumption categories (non-drinkers, light drinkers, and heavy drinkers), the mean expression levels of 

heavy drinkers were almost double those of light drinkers, with non-drinkers as the reference category.  

Furthermore, some of the miRNAs associated with alcohol consumption were found to target genes that 

have been previously linked to alcohol consumption through GWAS, EWAS, TWAS, or reviews on 

lifestyle factors and miRNAs. Pathway analysis of these target genes revealed their involvement in 

biological regulation and cellular processes. Additionally, miR-3937 and miR-122-5p, among the 

identified miRNAs, showed potential mediatory roles in liver-related traits. 

In Chapter 3, I explored the association between plasma proteomic and FLD and liver fibrosis. In 

Chapter 3.1, I found 27 inflammatory and cardiometabolic plasma proteins were associated with FLD, 

the strongest association was observed for FGF-21 and CES1 proteins. Importantly, 15 of the 27 proteins 

significantly associated with FLD were also associated with liver fibrosis. Through pathway analysis, I 

identified the involvement of TWEAK and TNFS14 proteins in the non-canonical NF-kB pathway, while 

F7, SERPINA5, and PROC proteins were found to play roles in the clotting cascade, specifically in the 

formation of fibrin clots. Interestingly, the expression levels of IL-18R1 and CES1 were upregulated in 

the organoids mimicking FLD. Finally, the AUC analysis illustrated that proteomics has the potential to 

improve currently available non-invasive markers (FLI and FIB-4) in the prediction of FLD or fibrosis. 

Finally, in Chapter 4, I explored the association of circulating metabolites with NAFLD and liver 

enzymes using data from multiple population-based cohort studies. In Chapter 4.1, I found significant 

associations between several metabolites from both platforms and NAFLD, as well as liver enzymes. 

Notably, there were 21 metabolites that exhibited joint associations with both NAFLD and liver enzymes, 

including phenylalanine, triglycerides in HDL, IDL, and small LDL, and various ratios of fatty acids such 

as linoleic acid to total fatty acid, omega 6 fatty acid to total fatty acid, and polyunsaturated fatty acid to 

total fatty acid within the Nightingale platform. Within the Metabolon platform, glutamate and 

sphingomyelin (d18:0/18:0, d19:0/17:0) displayed the strongest associations with both NAFLD and liver 

enzymes. Additionally, the remaining metabolites that significantly correlated with the presence of 

NAFLD were involved in lipid, amino acid, and peptide metabolism.
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Nederlandse samenvatting 

Leververvetting (FLD, fatty liver disease) en daaraan gerateerde metabole ziekten, zoals diabetes type 2, 

obesitas, hypertensie en dyslipidemie, vormen een aanzienlijke belasting voor de wereldwijde 

gezondheid, wat leidt tot ziekte en sterfte. In de afgelopen decennia is de prevalentie van FLD toegenomen 

en treft het meer dan 33% van de wereldbevolking. Dit gaat parallel aan de wereldwijde obesitas epidemie.  

Van de mensen met FLD ontwikkelt de meerderheid niet-alcoholische leververvetting (NAFLD), de 

meest voorkomende vorm van chronische leverziekte is. Hoewel NAFLD vaak weinig of geen 

symptomen vertoont, kan een subgroep van patiënten zich ontwikkelen tot gevorderde stadia van 

leverziekte, wat kan leiden tot eindstadium leverfalen en zelfs leverkanker. De terminologie van 

leververvetting staat onder discussie. Onlangs adviseerde een internationaal panel van experts een 

naamswijziging door te voeren van NAFLD naar metabole disfunctie-geassocieerde leververvetting 

(MAFLD) om de bredere metabole implicaties weer te geven zonder het woord alcohol te gebruiken. 

Nadien koos de wereldwijde gemeenschap in recente ontwikkelingen de naam steatotische leverziekte 

(SLD) als een overkoepelende term om de verschillende etiologieën van steatose te omvatten. De 

onderliggende pathofysiologie die ten grondslag ligt aan obesitas en daaraan gerelateerde ziekten (zoals 

FLD) en vroege diagnostische strategieën blijven echter slecht begrepen. Het tot in de details begrijpen 

van de pathofysiologie van FLD is cruciaal voor het bevorderen van preventie- en 

behandelingsbenaderingen. In dit proefschrift probeer ik nieuwe inzichten te verschaffen in de moleculaire 

mechanismen van aan obesitas gerelateerde ziekten en FLD door verschillende omics-benaderingen toe 

te passen en meerdere soorten omics-gegevens te integreren. In het bijzonder focus ik me op 

transcriptomics, proteomics en metabolomics. 

Hoofdstuk 2, gericht op het verkennen van de epigenetische regulatie van aan obesitas gerelateerde 

fenotypen en FLD. In Hoofdstuk 2.1 heb ik een genoombrede screening uitgevoerd met behulp van 

gegevens van de Rotterdam Study om de relatie tussen miRNA's plasmaspiegels en obesitas, 

lichaamsvetverdeling en vetmassa te onderzoeken. Verschillende miRNA’s bleken geassocieerd te zijn 

met obesitas gerelateerde kenmerken waarvan 12 miRNA’s overlappend zijn met alle waaronder BMI, 

WHR, FMI en AGR. Het is vermeldenswaardig dat van deze miRNA's, miR-193a-5p het meest 

prominente miRNA geassocieerd met obesitas, ook significant geassocieerd bleek te zijn met FLD in 

Hoofdstuk 2.2. 

In Hoofdstuk 2.2 heb ik het verband onderzocht tussen miRNA spiegels in plasma en de prevalentie van 

leververvetting. Ik onderzocht de relaties tussen miRNA's zowel leververvetting als leverenzymen, met 

name gamma-glutamyltransferase en alkalische fosfatase. De resultaten van mijn analyse onthulden dat 

61 miRNA's associaties vertoonden met leverenzymen. Bovendien bleken 17 miRNA's geassocieerd te 

zijn met leververvetting, waarvan 14 miRNA's overlapten met die geassocieerd waren met leverenzymen. 

Een van de geïdentificeerde miRNA's was met name miR-122-5p, een bekend miRNA in leverweefsel. 
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In Hoofdstuk 2.3 onderzocht ik de relatie tussen miRNA-expressie in plasma en alcoholgebruik. Ik 

ontdekte dat miR-193p, miR-122-5p en miR-3937 positief geassocieerd waren met alcoholgebruik, terwijl 

miR-4507 een negatief verband vertoonde. Bij het vergelijken van verschillende 

alcoholconsumptiecategorieën (niet-drinkers, lichte drinkers en zware drinkers), waren de gemiddelde 

expressieniveaus van zware drinkers bijna het dubbele van die van lichte drinkers, met niet-drinkers als 

referentiecategorie. Bovendien bleken sommige van de miRNA's die verband houden met alcoholgebruik 

zich te richten op genen die eerder in verband werden gebracht met alcoholgebruik via GWAS, EWAS, 

TWAS studies. Pathway analyse van deze target genen onthulde hun betrokkenheid bij biologische 

regulatie en cellulaire processen. Bovendien vertoonden miR-3937 en miR-122-5p potentiële 

bemiddelende rollen in de lever. 

In Hoofdstuk 3 onderzocht ik de associatie tussen plasma proteoom met FLD en leverfibrose. In 

Hoofdstuk 3.1 vond ik dat 27 inflammatoire en cardiometabole plasma-eiwitten geassocieerd waren met 

FLD, de sterkste associatie werd waargenomen voor FGF-21 en CES1 eiwitten. Belangrijk is dat 15 van 

de 27 eiwitten die significant geassocieerd waren met FLD ook geassocieerd waren met leverfibrose. Door 

middel van pathway-analyse identificeerde ik de betrokkenheid van TWEAK- en TNFS14-eiwitten in de 

niet-canonieke NF-kB-route. Verder speelden F7, SERPINA5 en PROC-eiwitten een rol speelden in de 

stollingscascade, met name bij de vorming van fibrinestolsels. Interessant is dat de expressieniveaus van 

IL-18R1 en CES1 werden opgereguleerd in de organoïden die FLD nabootsen. Ten slotte illustreerde de 

AUC-analyse dat proteomics de potentie hebben om de momenteel beschikbare niet-invasieve markers 

(FLI en FIB-4) te verbeteren bij de voorspelling van FLD of fibrose. 

Ten slotte onderzocht ik in Hoofdstuk 4 de associatie van circulerende metabolieten met NAFLD en 

leverenzymen met behulp van gegevens uit meerdere cohortstudies op populatie niveau. In Hoofdstuk 

4.1 vond ik significante associaties tussen verschillende metabolieten en NAFLD, evenals leverenzymen. 

Ik vond in totaal 21 metabolieten die gezamenlijke associaties vertoonden met zowel NAFLD als 

leverenzymen. Binnen het Nightingale platform vond ik fenylalanine, triglyceriden in HDL, IDL en klein 

LDL, en verschillende verhoudingen van vetzuren zoals linolzuur tot totaal vetzuur, omega 6-vetzuur tot 

totaal vetzuur en meervoudig onverzadigd vetzuur tot totaal vetzuur. Binnen het Metabolon-platform 

vertoonden glutamaat en sfingomyeline de sterkste associaties met zowel NAFLD als leverenzymen. 

Bovendien waren de resterende metabolieten die significant correleerden met de aanwezigheid van 

NAFLD betrokken bij het metabolisme van lipiden, aminozuren en peptiden.
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