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Abstract 

Background  Each mother–child dyad represents a unique combination of genetic and environmental factors. This 
constellation of variables impacts the expression of countless genes. Numerous studies have uncovered changes 
in DNA methylation (DNAm), a form of epigenetic regulation, in offspring related to maternal risk factors. How these 
changes work together to link maternal-child risks to childhood cardiometabolic and neurocognitive traits remains 
unknown. This question is a key research priority as such traits predispose to future non-communicable diseases 
(NCDs). We propose viewing risk and the genome through a multidimensional lens to identify common DNAm pat-
terns shared among diverse risk profiles.

Methods  We identified multifactorial Maternal Risk Profiles (MRPs) generated from population-based data 
(n = 15,454, Avon Longitudinal Study of Parents and Children (ALSPAC)). Using cord blood HumanMethylation450 
BeadChip data, we identified genome-wide patterns of DNAm that co-vary with these MRPs. We tested the pro-
spective relation of these DNAm patterns (n = 914) to future outcomes using decision tree analysis. We then tested 
the reproducibility of these patterns in (1) DNAm data at age 7 and 17 years within the same cohort (n = 973 and 974, 
respectively) and (2) cord DNAm in an independent cohort, the Generation R Study (n = 686).

Results  We identified twenty MRP-related DNAm patterns at birth in ALSPAC. Four were prospectively related to car-
diometabolic and/or neurocognitive childhood outcomes. These patterns were replicated in DNAm data from blood 
collected at later ages. Three of these patterns were externally validated in cord DNAm data in Generation R. Com-
pared to previous literature, DNAm patterns exhibited novel spatial distribution across the genome that intersects 
with chromatin functional and tissue-specific signatures.

Conclusions  To our knowledge, we are the first to leverage multifactorial population-wide data to detect patterns 
of variability in DNAm. This context-based approach decreases biases stemming from overreliance on specific sam-
ples or variables. We discovered molecular patterns demonstrating prospective and replicable relations to complex 
traits. Moreover, results suggest that patterns harbour a genome-wide organisation specific to chromatin regulation 
and target tissues. These preliminary findings warrant further investigation to better reflect the reality of human con-
text in molecular studies of NCDs.
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Graphical Abstract

Background
Identifying the impact of maternal risk factors on foetal 
health and child outcomes is challenging because each 
mother–child dyad represents a unique combination of 
genetic, environmental, and random chance effects. This 
complexity accounts for why identical twins demonstrate 
differences in health outcomes or why foetal alcohol 
exposure can have a broad spectrum of features rather 
than a single phenotype. Moreover, the range and com-
plexity of maternal risk factors that impact the foetus go 
beyond direct in utero effects and can include intergen-
erational effects [1].

Regardless of the sources or types of risk, research 
suggests that such multifactorial risk exposures set off 
a ripple effect across the human genome, impacting the 
regulation of a multitude of biological pathways [2]. It is 
believed that risk exposure leads to disease in offspring 

due to “foetal programming”, a concept arising from the 
developmental origins of disease hypothesis (DOHaD) 
[3]. Epigenetic modifications of the genome are mecha-
nisms through which risk exposure may dysregulate 
foetal programming [4, 5]. These non-genetic molecular 
changes to the genome modify the DNA’s physical 3D 
organisation and its interaction with nuclear machin-
ery [6, 7]. The readiness of genes to be expressed is thus 
altered. Epigenetic modifications can work together to 
change the gene expression patterns of the entire cell. The 
best-studied epigenetic mechanism in humans is DNA 
methylation (DNAm). DNAm describes the addition 
of a methyl group to a cytosine base located upstream 
of a guanine base in a DNA sequence, which together is 
known as a CpG site.

Most research attempts to pinpoint single or neigh-
bouring clusters of CpG sites associated with a given risk 
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or outcome, such as smoking or birth weight. Research-
ers now venture to connect these points across multiple 
sites on different chromosomes. For instance, Elliott and 
colleagues (2014) generated a smoking methylation score 
in adults that combined 183 CpG sites to distinguish 
never and former smokers from current smokers. This 
methylation score separated these two categories with 
100% sensitivity and 97% specificity in a male population 
of European descent. When multiple sites are linked, the-
oretical and empirical evidence suggests that DNAm can 
provide insight into an individual’s past experiences.

Epigenetic analyses that focus on discrete risk expo-
sures and molecular sites create models that are easier 
to understand and analyse, but these models do not 
reflect the clinical reality of non-communicable diseases 
(NCDs). Each person experiences a unique array of risks 
whose genomic targets are interactive and multidimen-
sional in nature. Hence, we propose to view risk exposure 
and the genome as interconnected parts of an engine 
that drives the trajectory of health. This proof-of-concept 
study tests this idea of integrating context into statistical 
models using basic multidimensional methods.

To begin, we asked how to address the challenge of 
examining the phenomenon of unique risk exposures 
in each individual across a population. We decided to 
develop a maternal risk profile (MRP) centred around 
the maternal behaviour of smoking while pregnant. This 
health behaviour is a telling marker of stress among 
physical, mental, and social determinants of disease [8]. 
Smoking during pregnancy is often linked to other life-
style risk factors (e.g. drug and/or alcohol abuse) and 
stressors (e.g. lower socioeconomic status [9]). It also 
has known direct effects on the foetal environment and 
physiology [10]. Lastly, it is a common foetal exposure 
linked to a broad range of NCDs in later life [11–16]. By 

anchoring foetal risk to the multifactorial phenomenon 
of maternal smoking, we hope to capture a risk profile 
that intersects health domains as would occur in clini-
cal reality.

From a physiological perspective, exposure to MRP 
may behave like other stresses and have a normative 
range within the general population. Therefore, we used 
multiple variables related to maternal smoking in previ-
ous literature to generate a population-based MRP. This 
reduces the chance of drawing conclusions that only 
pertain to a subset of the population.

Next, we considered how to view the molecular com-
ponents. A multivariate model of associated DNAm 
changes may be particularly applicable in the study of 
NCDs. These diseases are etiologically distinct from 
processes like cancers that typically can be traced to 
single molecular events. NCDs tend to arise from many 
small and dynamic cellular changes that lead to an 
overall shift in the cellular and physiological state of the 
whole person. These multiple small changes reflect the 
interplay of genes, environment, and random chance.

We theorise that coordinated shifts in genome-wide 
DNAm (gwDNAm) could be the common mechanis-
tic link between individuals who encounter different 
maternal influences yet share similar phenotypic traits. 
We tested this by seeking recurring patterns of gwD-
NAm in cord blood that relate to population-based 
MRPs. In this way, gwDNAm patterns represent pop-
ulation-normalised molecular signatures of risk expo-
sure. We investigated how these gwDNAm patterns 
may relate to the development of NCDs by observing 
their relation to anthropometric and neurodevelop-
mental child outcomes. We repeated this analysis over 
time as children aged and in an independent cohort. 
We outline our analysis workflow in Fig. 1.

Fig. 1  Analysis workflow schematic. Part 1 (aqua) involves component-based analysis to integrate two multidimensional data sets, risk and DNAm. 
We obtain a new set of variables representing variability in methylation at birth that reflect risk exposure, which we call genome-wide DNAm 
patterns (gwDNAm patterns). Part 2 (purple) involves observing the interaction of variables and covariates that could lead to a given outcome using 
decision tree analysis. This is directly compared to relations to outcomes that could arise through random chance alone. In this way, this analysis can 
inform us of robust relations between heterogeneous risks and complex traits
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Methods
Discovery cohort—ALSPAC
Participants
Model discovery was conducted in the population-based 
ALSPAC longitudinal cohort. This initial cohort col-
lected data on 14,541 pregnancies and 14,676 foetuses in 
the former county of Avon, United Kingdom (UK) with 
expected delivery dates from 1 April 1991 to 31 Decem-
ber 1992. This cohort has been extensively described [17, 
18] with specific details regarding variables pertinent to 
our analysis available in Additional file 1.

Exposure variables: maternal risk profiles
To develop a multidimensional risk profile from the 
viewpoint of foetal programming, we apply a context-
based approach that uses population-based data to inte-
grate multiple MRP-related variables. The normative 
values for blood pressure in children exist as continuous 
ranges that are based on sex, age, and height percentiles. 
Similarly, we regard to foetal risk exposure as a continu-
ous and interdependent variable. The risk factors traverse 
gestational (e.g. maternal smoking in pregnancy, preg-
nancy factors, foetal health and growth, etc.), family (e.g. 
smoking in the father, grandparents, other household 
members, etc.), and social effects (e.g. education, voca-
tion, etc.). These data were gathered from maternal self-
reports and linked clinical records.

Outcomes: child physical and mental development
We selected outcomes based on their relevance to mater-
nal smoking exposure (Table  1) as identified in previ-
ous literature [14, 19–21]. All cardiometabolic outcome 
values were converted to internal z-scores (sex-specific) 
using data from the entire ALSPAC cohort unless other-
wise specified. To control for the impact of early weight 
and length accrual on later life physical outcomes, indi-
vidual infant growth trajectories calculated for this 
cohort using multilevel modelling were included in rele-
vant models [22]. At age 18, study children were sent “fair 
processing” materials describing ALSPAC’s intended use 

of their health and administrative records, and they were 
given clear means to consent or object via a written form. 
Data were not extracted for participants who objected or 
who were not sent fair processing materials.

DNA methylation data
ARIES is a sub-study of ALSPAC child-mother pairs with 
available DNAm data. Blood samples were collected at 
three time points: birth (cord blood) and at ages 7 and 
17  years [24]. At later ages, DNA was extracted from 
either the buffy coat or whole blood samples. DNAm data 
measurements were performed using the Illumina Infin-
ium HumanMethylation450 BeadChip (450K BeadChip). 
The technical details of data normalisation, filtering 
unreliable or low variance probes, and managing batch 
effect, blood cell type composition, and confounders are 
available in Additional file 1. This left 185,466 CpG sites 
remaining. DNAm beta values were used in all analyses.

Validation cohort—Generation R Study
The Generation R Study (GenR) is a population-based 
prospective pregnancy cohort study. It included 9778 
women and their children born between April 2002 
and January 2006. We used cord blood 450K BeadChip 
DNAm data from a subgroup consisting of 969 children 
of European descent described in detail [25]. In total, 686 
children had complete data for these analyses. Besides 
detailed pregnancy data, this cohort collected substantial 
offspring data, including anthropometric data at birth, in 
infancy, and at ages 6, 10, and 13 years.

Statistical analysis
In part one of the study (see Fig.  1, aqua), we needed 
to link the multifactorial effect of risk to thousands of 
DNAm sites across the genome. We employed com-
ponent-based analysis, a widely used technique to 
analyse “big data” where the number of subjects is far 
exceeded by the number of data points. Component 
analysis makes “big data” more manageable by repre-
senting numerous variables using a far smaller number 

Table 1  Methods for measuring child outcomes

Methods

Neurocognitive Development • Child development was measured using parental report at 6, 18, and 30 months using a ques-
tionnaire adapted from the Denver Developmental Screening Test—II [23]

Academic Performance • UK Department of Education scores from standard assessment tests linked to ALSPAC subjects 
for ages 5–7, 8–11, and 12–14 years

Cognitive Development • Researcher-administered Wechsler Intelligence Scale for Children-III UK at age 4 and 8 years

Cardiometabolic Body Composition • Dual-energy x-ray absorptiometry measured fat, lean, and bone mass at 9, 11, and 13 years

Anthropometric/Blood Pressure • Weight, waist circumference, and blood pressure were measured throughout infancy and in 1–2-
year intervals from ages 7 to 13 years
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of variables, usually 100- to 1000-fold fewer. How vari-
ables select a single variable to represent them varies, 
but it remains that using fewer representative variables 
can increase study power. Also, it can attenuate false-
positive results driven by the reliance on single points 
of data which can suffer from known and unknown 
sources of error and bias [26]. Bias arising from genetic 
ancestry- or cohort-specific characteristics at individual 
sites of DNAm is particularly challenging in this field 
[5]. Component-based analysis also allowed us to lever-
age population-based data to assign a unique risk profile 
to each child that is “normalised” in the context of the 
whole population. In other words, the MRP positions 
each child relative to other children.

Much like the clinical observation of a patient, com-
ponent-based analysis enables us to view prenatal risk 
exposure as multifactorial and existing on a continuous 
normal distribution. Since we link gwDNAm patterns to 
MRPs, inferences about DNAm are made relative to the 
whole population. This diminishes the risk of drawing 
statistically flashy results that only exist in the subset of 
individuals with DNAm data.

In part two of the study (Fig.  1, purple), we aim to 
model the reality of complex interactions between mul-
tiple biological inputs that lead to a given phenotype. We 
used decision tree-based analysis, a family of methods 
that gained popularity in medicine during the COVID-
19 epidemic as a resource allocation tool to identify 
patients most likely to suffer serious morbidity or mor-
tality. Decision tree-based methods complement a clini-
cian’s intuitive integration of numerous patient features 
to draw a clinical conclusion. The goal is to discover 
patient features that are relevant to the patient’s outcome, 
regardless of their effect size. The decision tree structure 
enables it to detect non-linear and complex interactive 
effects that may reveal novel yet relevant relations. This 
ability helps to account for “atypical” individuals, where 
a feature that typically predicts one outcome is modified 
by other patient characteristics and leads to an alternate 
outcome.

Random forests (RFs) are a type of decision tree anal-
ysis that generates thousands of trees through an algo-
rithm that randomly shuffles data values. The collation 
of these results is akin to the consensus of thousands 
of doctors who have each encountered thousands of 
unique patients. This inherent property of RF dimin-
ishes overfitting to a specific subset of a population. 
Further details on Parts 1 and 2 of our analysis are 
discussed below and in Additional file  1. All statisti-
cal analyses were performed using R software (version 
4.0.0) [27]. Multiple testing corrections and power cal-
culations are unsuitable for this study design since we 

are not conducting multiple independent tests or seek-
ing differences between groups.

Part 1: Component‑based analysis—connecting risk 
to molecular context using multidimensional data (Fig. 1, 
aqua)
We used component-based analysis to extract MRP-
related DNAm patterns  in three steps. We summarise 
these steps (1-A, 1-B, and 1-C) below.

Step 1‑A: Generating population‑based MRPs using fac‑
tor analysis  We used the Factor Analysis for Mixed 
Data (FAMD) method, a principal component-based 
technique, as described in the FactoMineR R-package 
[28]. We refer to these mathematical representations of 
MRPs as “dimensions”, as the package authors did. We 
performed model-based missing value imputation with 
the built-in imputeFAMD function. The best-fit model 
included eight variables: birth weight, maternal smoking 
during pregnancy, household smoking, maternal grand-
father’s history of smoking, maternal partner’s smok-
ing history, maternal grandmother’s history of smoking, 
maternal history of smoking, and grandmother’s smok-
ing while pregnant with mother, hereafter referred to as 
MRP-related variables (Table  2). The details regarding 
sampling adequacy, variance captured, and variable con-
tributions are available in Additional file 1.

Step 1‑B: Training models of genome‑wide patterns of 
DNAm related to MRPs using partial least squares (PLS) 
analysis  The MRPs served as “bait” to capture relevant 
DNAm patterns in cord blood using the sPLS function in 
the sgPLS R-package. The objective of PLS modelling is 
to predict MRP with DNAm data (depicted as Y and X, 
Additional file 2, Figure S1, inset). The PLS output repre-
sents sources of variability within the DNAm data using a 
small number of components that best represent MRPs. 
Components are extracted such that they are uncor-
related. In this paper, we refer to “components” as the 
mathematical representation of the molecular variation 
we refer to as gwDNAm patterns.

Step 1‑C: Testing gwDNAm patterns on different data 
sets  The PLS weightings among CpG sites trained 
from our cord blood model were the “template” to test 
the same patterns in different DNAm data sets while 
blinded to their corresponding MRP data. We used the 
predict function of the sgPLS package to test the cord 
blood model on peripheral blood at ages 7 and 17 years in 
ARIES and perform external validation using cord blood 
from GenR.
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Table 2  Descriptive statistics by maternal smoking in pregnancy classification

Non-smoker Non-sustained Sustained Unknown Total p value

Total N = 8754 N = 963 N = 3713 N = 1781 N = 15,211

Sex 0.022

  N-Miss 22 1 7 487 517

  Male 4460 (51.1%) 476 (49.5%) 1987 (53.6%) 650 (50.2%) 7573 (51.5%)

  Female 4272 (48.9%) 486 (50.5%) 1719 (46.4%) 644 (49.8%) 7121 (48.5%)

Ethnicity  < 0.001

  N-Miss 165 21 122 683 991

  Caucasian 8166 (95.1%) 891 (94.6%) 3369 (93.8%) 981 (89.3%) 13,407 (94.3%)

  Other 423 (4.9%) 51 (5.4%) 222 (6.2%) 117 (10.7%) 813 (5.7%)

Gestational age  < 0.001

  N-Miss 2 0 1 589 592

  Mean (SD) 39.3 (2.4) 39.5 (2.1) 39.2 (2.5) 28.0 (13.8) 38.4 (5.5)

  Range 9.0—44.0 18.0—47.0 10.0—46.0 4.0—45.0 4.0—47.0

Birth weight, internal z-score  < 0.001

  N-Miss 162 12 80 793 1047

  Mean (SD) 0.0 (0.5) 0.1 (0.5) -0.1 (0.5) -0.1 (0.5) 0.0 (0.5)

  Range -4.4 -3.9 -3.8 -3.8 -4.4

Birth length, internal z-score  < 0.001

  N-Miss 245 26 132 813 1216

  Mean (SD) 0.1 (1.6) 0.4 (1.6) -0.3 (1.6) -0.1 (1.4) 0.0 (1.6)

  Range -14.8 -12 -13.7 -9.9 -14.8

Gestational weight gain  < 0.001

  N-Miss 1937 235 1148 1608 4928

  Over 1771 (26.0%) 277 (38.0%) 714 (27.8%) 48 (27.7%) 2810 (27.3%)

  Recommended 2749 (40.3%) 278 (38.2%) 912 (35.6%) 66 (38.2%) 4005 (38.9%)

  Under 2297 (33.7%) 173 (23.8%) 939 (36.6%) 59 (34.1%) 3468 (33.7%)

Maternal grandmother—ever smoked
  N-Miss 455 29 232 1781 2497

  False 4280 (51.6%) 562 (60.2%) 2373 (68.2%) 0 7215 (56.7%)

  True 4019 (48.4%) 372 (39.8%) 1108 (31.8%) 0 5499 (43.3%)

Maternal grandmother—smoked while pregnant
  N-Miss 496 32 245 1781 2554

  Don’t know 1178 (14.3%) 152 (16.3%) 514 (14.8%) 0 1844 (14.6%)

  False 5543 (67.1%) 610 (65.5%) 1709 (49.3%) 0 7862 (62.1%)

  True 1537 (18.6%) 169 (18.2%) 1245 (35.9%) 0 2951 (23.3%)

Maternal grandfather—ever smoked
  N-Miss 297 37 396 1781 2511

  False 6383 (75.5%) 482 (52.1%) 1064 (32.1%) 0 7929 (62.4%)

  True 2074 (24.5%) 444 (47.9%) 2253 (67.9%) 0 4771 (37.6%)

Mother’s partner—smoked while pregnant
  N-Miss 290 12 195 1781 2278

  False 8125 (96.0%) 863 (90.7%) 3032 (86.2%) 0 12,020 (92.9%)

  True 339 (4.0%) 88 (9.3%) 486 (13.8%) 0 913 (7.1%)

Others who smoke in household
  N-Miss 554 45 342 1781 2722

  False 5992 (73.1%) 731 (79.6%) 2799 (83.0%) 0 9522 (76.2%)

  True 2208 (26.9%) 187 (20.4%) 572 (17.0%) 0 2967 (23.8%)

Maternal education level at time of pregnancy  < 0.001

  N-Miss 531 76 508 1534 2649
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Part 2: Tree‑based analysis—finding robust relations 
between variables and outcomes in complex data structures 
(Fig. 1, purple)
The RF method can accommodate two important consid-
erations: first, non-normal residual distributions found in 
omic and risk exposure data that violate traditional statis-
tical assumptions and, second, indirect and/or non-linear 

relations between predictors and outcomes. RF uses an 
ensemble of decision trees derived from bootstrapped 
samples of the data set and random variable selection to 
optimise model stability and attenuate overfitting [29]. 
RF ranks the relevance of competing variables in predict-
ing outcomes by assigning an importance score (calcu-
lated as the mean decrease in accuracy) [29]. Alluding to 

Table 2  (continued)

Non-smoker Non-sustained Sustained Unknown Total p value

  Non-degree 7359 (89.5%) 763 (86.0%) 2464 (76.9%) 192 (77.7%) 10,778 (85.8%)

  Other 864 (10.5%) 124 (14.0%) 741 (23.1%) 55 (22.3%) 1784 (14.2%)

Maternal financial concerns  < 0.001

  N-Miss 755 105 618 1581 3059

  No strain 7445 (93.1%) 777 (90.6%) 2558 (82.6%) 163 (81.5%) 10,943 (90.1%)

  Other 554 (6.9%) 81 (9.4%) 537 (17.4%) 37 (18.5%) 1209 (9.9%)

Maternal psychopathology  < 0.001

  N-Miss 246 41 185 1580 2052

  Denies 6749 (79.3%) 644 (69.8%) 2188 (62.0%) 141 (70.1%) 9722 (73.9%)

  Other 1759 (20.7%) 278 (30.2%) 1340 (38.0%) 60 (29.9%) 3437 (26.1%)

Maternal substance use in pregnancy  < 0.001

  N-Miss 34 0 1 1403 1438

  Denies 8365 (95.9%) 914 (94.9%) 3366 (90.7%) 377 (99.7%) 13,022 (94.5%)

  Other 355 (4.1%) 49 (5.1%) 346 (9.3%) 1 (0.3%) 751 (5.5%)

Neighbourhood quality, ascending quality  < 0.001

  N-Miss 624 57 366 1170 2217

  4 387 (4.8%) 53 (5.8%) 250 (7.5%) 59 (9.7%) 749 (5.8%)

  5 331 (4.1%) 58 (6.4%) 251 (7.5%) 41 (6.7%) 681 (5.2%)

  6 617 (7.6%) 85 (9.4%) 359 (10.7%) 59 (9.7%) 1120 (8.6%)

  7 849 (10.4%) 83 (9.2%) 438 (13.1%) 64 (10.5%) 1434 (11.0%)

  8 1102 (13.6%) 113 (12.5%) 461 (13.8%) 92 (15.1%) 1768 (13.6%)

  9 1670 (20.5%) 200 (22.1%) 589 (17.6%) 90 (14.7%) 2549 (19.6%)

  10 1993 (24.5%) 185 (20.4%) 498 (14.9%) 104 (17.0%) 2780 (21.4%)

  11 872 (10.7%) 87 (9.6%) 247 (7.4%) 55 (9.0%) 1261 (9.7%)

  Other 309 (3.8%) 42 (4.6%) 254 (7.6%) 47 (7.7%) 652 (5.0%)

Maternal social status  < 0.001

  N-Miss 1822 243 1380 1651 5096

  2 2330 (33.6%) 203 (28.2%) 611 (26.2%) 36 (27.7%) 3180 (31.4%)

  3 3009 (43.4%) 318 (44.2%) 947 (40.6%) 52 (40.0%) 4326 (42.8%)

  Other 1593 (23.0%) 199 (27.6%) 775 (33.2%) 42 (32.3%) 2609 (25.8%)

Paternal social status  < 0.001

  N-Miss 1218 184 1136 1634 4172

  1 1053 (14.0%) 44 (5.6%) 100 (3.9%) 8 (5.4%) 1205 (10.9%)

  2 2790 (37.0%) 253 (32.5%) 662 (25.7%) 44 (29.9%) 3749 (34.0%)

  3 858 (11.4%) 101 (13.0%) 230 (8.9%) 10 (6.8%) 1199 (10.9%)

  4 2047 (27.2%) 268 (34.4%) 1089 (42.3%) 60 (40.8%) 3464 (31.4%)

  5 620 (8.2%) 86 (11.0%) 354 (13.7%) 18 (12.2%) 1078 (9.8%)

  Other 168 (2.2%) 27 (3.5%) 142 (5.5%) 7 (4.8%) 344 (3.1%)

Columns 1–5 represent maternal smoking categories. Reported p-value: Continuous variables—ANOVA, categorical—chi-squared. “Miss”—missing data. Social status 
was derived from reported occupation according to the UK Registrar General’s classification. From 1 to 3, the occupations refer to manual unskilled, semi-skilled 
manual, and skilled occupations; 4 refers to skilled non-manual occupations; 5 refers to managerial and technical occupations; 6 refers to professional occupations; 
and 65 refers to armed forces. Education—“Degree” refers to having a university degree at the time of index pregnancy
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our earlier analogy about decision tree analysis, suppose 
those thousands of doctors “rated” how relevant a vari-
able was to predict an outcome. The importance score 
represents a collation of these ratings, with a higher score 
representing a variable that was more helpful in deciding 
the outcome.

To ensure the robust selection of variables, we empiri-
cally evaluate what threshold of importance is considered 
relevant to predicting an outcome using a two-step RF 
strategy, [30] which is described briefly below.

Step 2‑A: Identifying relevant predictors of outcomes 
using the Boruta algorithm  We used the Boruta algo-
rithm (from R-package of the same name) to select 
all variables relevant to an outcome [31]. This is well-
suited to our study, which aims to understand the 
mechanisms underlying a process. Instead of using 
prediction metrics, Boruta selects relevant variables 
by testing if their relation to the outcome exceeds that 
which could occur by chance. This is performed by 
generating shadow variables, which are shuffled copies 
of real variables such that their values no longer have 
any correlation with the outcome. Using a binomial 
test (p < 0.05), the model can estimate the likelihood a 
real variable will exceed the importance of a shadow 
variable. Thus, shadow variables introduce additional 
randomness to the model, making it more robust to 
random chance or correlations that can lead to false 
positives. We included the following previously associ-
ated covariates in all models: sex, maternal educational 
level, paternal social class, and in models using DNAm 
data, blood cell type proportions [32–34].

Step 2‑B: Assessing the performance of trained RF models 
using Boruta‑selected variables  We calculated model 
metrics using the caret R-package [35]. We calculated the 
performance metrics of the model using Boruta-selected 
variables (implemented in the caret R-package, [35] 
ntree = 500). We conducted re-sampling using fivefold 
cross-validation with 3 repeats and considered a com-
bination of model performance metrics, namely mean 
squared error (MSE), mean absolute error, and coefficient 
of determination (R2). In this way, we compared the pre-
dictive performance of models using DNAm data, MRPs, 
and MRP-related variables. We further tested the per-
formance of models using DNAm data from peripheral 
blood and GenR cord blood.

Confounder analysis
All models included sex, maternal education, and 
paternal social status as covariates. We selected the 
latter two variables among other social confounders 
after evaluation of multicollinearity and data loss due 

to missingness (see Additional file  1: Evaluating con-
founder effects). To understand the impact of con-
founders specifically on gwDNAm, we also performed 
an additional analysis using another component-
based technique, singular value decomposition (SVD). 
SVD has been applied to identify covariation with 
confounding variables in DNAm data using R-pack-
age  ChAMP [36]. Models of cardiometabolic out-
comes included growth variables given the correlation 
between earlier and later time points in child develop-
mental trajectories.

Mapping gwDNAm patterns to chromatin function 
and regulatory features
We performed enrichment-based analysis to evaluate the 
molecular relevance of gwDNAm patterns based on pub-
licly available data as previously described (Additional 
file  1: Enrichment-based analysis—finding molecular 
relevance).

Results
Characteristics of discovery cohort
Among ALSPAC subjects, 15,454 newborns had at 
least one data item collected at birth. The construction 
of MRPs included data from these newborns and their 
mothers. DNAm in ARIES was measured from cord 
blood at birth and around ages 7 (mean 7.5, standard 
deviation (SD) 0.1) and 17 (mean 17.1, SD 1) years in 
914, 973, and 974 children, respectively. Previous stud-
ies comparing the baseline characteristics of families 
in the ALSPAC versus the ARIES datasets found that 
the ARIES mothers were older, reported less maternal 
smoking, attained a higher educational level, and were 
more likely employed in non-manual labour [24, 37]. 
Characteristics of MRP-related variables are tabulated 
in Table 2.

Population‑based maternal risk profiles and gwDNAm 
patterns
We performed factor analysis to represent the MRP-
related variables as a composite score (see the “Methods” 
section—Part 1, Step 1-A). Based on model metrics, the 
top five dimensions were selected (scree plot in Addi-
tional file 2, Figure S1). Each dimension is a mathemati-
cal representation of the MRPs and describes a varying 
degree of contribution from all constituent MRP-related 
variables (see Table  2). Thus, children in the entire 
ALSPAC data set were assigned a score for each dimen-
sion, giving each individual a unique five-part profile of 
risk exposure.

Each of the first two dimensions captured nearly 
20% of total data variability. We can evaluate the risk 
represented by each dimension by viewing its most 
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prominent contributory variables (Fig. 2). For example, 
Dimension 1 primarily captures the infant’s grandma-
ternal data, i.e. the grandmother’s smoking history and 
whether the grandmother smoked while pregnant with 
the mother. In contrast, Dimension 2 captures similar 
information for the infant’s mother.

While we refer to the MRP representations as 
“dimensions”, we use the term “components” to refer to 
gwDNAm patterns generated by the PLS method (see 
the “Methods” section—Part 1, Step 1-B). Each com-
ponent mathematically represents a consistent pattern 
of DNAm at specific genomic sites that are related to 
MRP variability among subjects. PLS does not seek to 
account for the most variability in data but the most 
shared variance between two sets of data. In this way, 
PLS assigns component scores to each person that indi-
cates how alike or unlike his/her DNAm variability is to 
that given component pattern, which in turn is related 
to MRP. Thus, every subject has a unique identity of 
gwDNAm that is related to his/her risk exposure. In 
Additional file 3, we provide the full list of CpGs most 
representative of each gwDNAm pattern.

gwDNAm patterns in the context of confounders 
and population‑based MRPs
Inherent in the technical measurement of biology is the 
overlap of variability between the variable of interest and 
confounders (see the “Methods” section—Confounder 
analysis). To identify the degree of overlap, we evaluated 
the correlation between components with confounders 
(Additional file  2: Figures  S2-S5). There was strong evi-
dence of relation to sex with Components 1 to 3, 5, 6, and 
10. None showed strong relations to maternal education 
or paternal social status. The strongest correlations to 
cell type proportions were between Components 1 and 3 
with granulocytes and CD4 cells and Component 6 with 
nucleated red blood cells.

Next, we show the relation between MRPs and gwD-
NAm patterns in Fig.  3. We observed that Dimension 
1 (grandmaternal smoking features) correlated most 
with the DNAm patterns represented by Component 
9. Dimension 2 (maternal smoking features) was most 
related to Component 14. Similarly, we observed the rela-
tion between Dimension 3 (smoking in mother/father/
grandfather/other household members and infant birth 

Fig. 2  Bar graph of the relative contribution of variables (x-axis) to maternal risk profile construction. While each risk profile has varying 
contributions from all eight risk-related variables, certain variables dominate the construction of a dimension. The bars represent the relative 
contribution of each variable to a given dimension. Contributions that exceed the grey vertical line (calculated as in [20]) belong to variables 
that are considered the most representative of a dimension (see Additional file 1). Colours show variables that exceed this threshold and will be 
used to refer to each dimension in subsequent figures

Fig. 3  Correlation matrix of DNAm components (methylation patterns) and dimensions (MRPs). The mathematical representations of the MRPs 
are “dimensions”, and the gwDNAm patterns are “components”. Components 1–6 and 10 are strongly associated with confounders. We are unable 
to separate the biological variability of interest from that due to strong confounding in these components; thus, they will be dismissed. (As the sign 
of the correlation coefficient does not change the interpretation, it has been omitted for figure clarity)
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weight) to Component 8, Dimension 4 (maternal smok-
ing and birth weight) to Component 7, and Dimension 5 
(smoking in mother/other household members and birth 
weight) to Components 13, 18, and 19. For the sake of 
brevity and interpretability, we will focus on these com-
ponents and exclude discussion of confounder-related 
components (Components 1–6 and 10) in the “Results” 
section moving forward.

gwDNA patterns at birth perform comparably to risk 
variables to predict outcomes
In Step 2-A, we evaluate if gwDNAm patterns relate to 
child outcomes compared to the risk variables from 
which they were derived. For each outcome, we com-
pared three models using R2 and MSE: Model 1—individ-
ual MRP-related variables, Model 2—MRP dimensions, 
and Model 3—MRP-based gwDNAm patterns.

Each model included confounders (see the “Methods” 
section—Confounder analysis) and shadow variables. 
Shadow variables are representations of predictor-out-
come relations due to random chance (see Additional 
file  1: Tree-based analysis). Model 3 also includes cell 
count proportion estimates.

Figure  4 shows these models for waist circumfer-
ence (internal z-score) at age 10. Early growth rates (i.e. 
before age 36  months) were the top-ranked variables in 
all three models. In Model 1, we observed that smoking-
related variables were not ranked as relevant. This was 
consistent with traditional linear models (for example, 
the linear effect of maternal smoking for this outcome 
was β =  − 0.09, p = 0.58). This was the general observa-
tion across various outcomes, except for two academic 
performance measures (see Additional file  2: Table  S3). 
Model 1 always had a smaller sample size, largely due to 
missing self-reported maternal smoking data.

We observed that Dimension 4 and Component 7 
(green boxes), as well as Dimension 1 and Component 
9 (blue boxes), were selected in Models 2 and 3, respec-
tively. These Dimension/Component pairs are correlated 
in Fig.  3. While their shared variability may explain the 
selection of these pairs, we also observed that Dimen-
sion 3 was selected in Model 2, but its correlate, Compo-
nent 8, was not selected in Model 3. Component 18 was 

selected, but not Dimension 5. This could reflect differ-
ences in Dimension/Component correlations. However, 
it also suggests that the molecular patterns may hold var-
iability that is distinct from the risk profile from which 
they were generated, thus changing the association to the 
same phenotype.

In Step 2-B, we compared the performances between 
Models 1, 2, and 3. The differences between the three 
models were minor (Fig. 4—inset), supporting the notion 
that the DNAm components model (Model 3) compara-
bly captures the relation to subject outcomes.

gwDNAm patterns at birth relate to future cardiometabolic 
outcomes
We first review results from Model 3 using DNAm data 
collected at birth from cord blood. Component 9 was 
one of the most consistently relevant components among 
cardiometabolic outcomes (Additional file 2: Figs. S6-S9). 
This component was selected in the model of waist cir-
cumference at age 10 (Fig.  4C) and in models of blood 
pressure and lean mass at various ages. It was not related 
to weight at any age. Component 7 was related to lean 
mass, waist circumference, and weight at multiple ages. 
Component 18 demonstrated similar results for waist 
circumference, weight, blood pressure, and fat mass. 
Components 8 and 14 were related to a few outcomes at 
certain ages.

gwDNAm patterns at birth relate to future neurocognitive 
outcomes
We observed that Components 9, 18, and 19 were related 
to parent-rated development at 6  months. Components 
11, 13, and 19 were related to academic performance at 
various ages from about age 5 to 14. Component 19 was 
also related to intelligence assessed at 8 years (Additional 
file 2: Figures S10-S12, respectively). Neurocognitive out-
comes generally had more missing data than cardiomet-
abolic ones. For instance, 87% of subjects were missing 
data on intelligence measured at 4 years. Models for this 
outcome were very poor and did not generate stable pre-
dictors. Nearly all models selected paternal social status, 
which is consistent with other reports in this data set [38, 
39]. This was also observed in Model 1. This consistency 

Fig. 4  Comparison of models using DNAm patterns versus clinical variables using RF. Boxplot of importance scores (y-axis) of variables (x-axis) 
predicting waist circumference at age 10 using three different models (panels A–C). A Model 1 using individual MRP-related variables. B Model 
2 using MRP dimensions from factor analysis. C Model 3 using gwDNAm patterns in cord blood. The x-axis includes additional control variables 
of estimated blood cell type proportions. Inset: Sample size and performance metrics for each model. Boxes appearing to the right of the grey 
vertical line (i.e. after the maximum randomised shadow variable) indicate relevant variables. The box and whiskers display the distribution 
of permutation values and cannot be used to tell statistical significance [31]. Blue—Dimension 1 (smoking in grandmother), orange—Dimension 
3 (smoking in father + household + grandfather + mother), green—Dimension 4 (smoking in mother + birth weight), pink—Dimension 5 (smoking 
in household + mother + birth weight)

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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among certain variables is much like the behaviour of 
early growth variables in the cardiometabolic models.

Sensitivity analysis
Like all RF algorithms, Boruta does not accept miss-
ing values. Discarding incomplete observations has two 
important effects. It diminishes the sample size, which 
decreases the power to detect relevant variables. It also 
alters outlier and data noise effects on model specifica-
tion. Thus, we performed a sensitivity analysis of RF 
models using DNAm data to compare three models: (1) 
Raw—using all variables and only complete (i.e. no miss-
ing data) observations; (2) Boruta—using only Boruta 
selected variables and only complete observations; and 
(3) Imputed—using all variables and all observations (i.e. 
missing data was imputed). As an example, Additional 
file 2: Table S1 shows how these three models compared 
using waist circumference at age 10. We observed lit-
tle difference in error rates between the models among 
outcomes. Data for other outcomes is available upon 
request.

gwDNAm patterns generalise over time 
and across populations
We examined whether DNAm patterns could be 
observed in children as they aged and in another cohort. 
Previous literature has shown that complex trait-related 
DNAm variability in cord blood has small effect sizes in 

the 1–2% range [40], a level that can easily be dwarfed by 
physiological, stochastic, and dataset-specific variability 
over time [41, 42]. We reasoned that if DNAm patterns 
are not biologically related to future phenotypes, then 
there would be little to no detectable relation between the 
two in different DNAm datasets. We tested the DNAm 
patterns trained on ARIES cord blood samples on DNAm 
data collected from (a) blood samples from ARIES sub-
jects at ages 7 and 17 years and (b) cord blood samples 
from GenR.

Testing in different data within the ARIES cohort—peripheral 
blood samples in later childhood
The performance of models using DNAm data at older 
ages was similar compared to those using cord blood 
(Additional file 2: Figure S13 and Table S2). A subset of 
patterns persisted in their association with outcomes. For 
example, waist circumference was related to Component 
18 in both cord blood and blood at age 17 years (Fig. 5). 
Blood pressure was related to Components 9 and 18 in 
blood samples at all three ages (Additional file 2: Figure 
S6). Similarly, Components 11, 13, and 19 were related to 
school performance at older ages (Additional file 2: Fig-
ure S10).

Some associations with outcomes only appeared in 
DNAm in later childhood. For example, fat mass meas-
ured at ages 9, 11, and 13 years were all related to Com-
ponent 9 but only in blood collected at age 7 (Additional 

Fig. 5  Summary of DNA methylation components relevant to waist circumference (z-score by sex) measured at ages 7, 9, 10, and 11 years (rows). 
Only components ranked as relevant at least once for this outcome are included. The legend shows the ages at which DNA methylation data 
was collected. The coloured text of component axis labels corresponds to the related dimension, as seen in Fig. 2. The results of Components 1–6 
and 10 are not discussed as they demonstrate strong relations with confounders. The boxes with hashes indicate components that demonstrated 
the same relation to phenotype in DNAm data collected at more than one age. In other words, these hashed boxes indicate relations that persisted 
over time. Looking down the columns, we see that half the components that were related to waist circumference measured at a younger age 
would continue this association to age 11 years (i.e. coloured boxes are stacked vertically together). If the relation between DNAm components 
and future phenotype were due to chance or technical artefacts, this consistency as the phenotypic and molecular clocks ticked would be 
less likely. Results for other outcomes are in Additional file 2
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file 2: Figure S7). Samples sizes for DNAm data in later 
childhood were larger as approximately 60 “new” subjects 
were added [24, 43] compared to the cord blood data. 
This gives us the advantage of having more testing data 
than training data and more power to detect associations.

We also point out that testing the relation to outcomes 
that precede DNAm data collection cannot support “pre-
diction” in the same way as our findings from cord blood. 
Because most neurodevelopmental outcomes available 
for this study were measured in early childhood, only 
school performance has data collected prospectively or 
concurrently in relation to DNAm data collection. It is 
possible that a neurodevelopmental trait is reinforcing or 
generating the DNAm pattern, i.e. reversal causality. For 
example, the Denver developmental screen was last col-
lected at 30  months of age, but the relation of Compo-
nent 11 to these outcomes was only observed at ages 7 
and 17.

External validation in GenR cohort—cord blood samples
We performed validation using 686 cord blood DNAm 
samples from GenR to predict body mass index (BMI) 
at age 6  years (Fig.  6). We compared this model to that 
from ARIES cord blood data and BMI at age 7  years. 
As in ARIES, early growth and components related to 

Dimension 4 (MRP representing smoking in the mother 
and household members and birth weight) were selected 
as relevant predictors in the GenR model (Fig.  6, data 
points in pink, Components 18 and 19). Components 7 
and 11 (axis labels in bold in Fig.  6) were also selected. 
These components were relevant to several cardiometa-
bolic outcomes in ARIES (see Fig. 3C for waist circumfer-
ence and Additional file 2: Figure S6-S9 for weight, blood 
pressure, and fat and lean mass).

The GenR model had comparable performance met-
rics compared to other cardiometabolic outcome models 
using ARIES data (see Fig. 6 (inset) and Additional file 2: 
Table S2).

gwDNAm patterns have molecular features that enable 
them to perform together as a functional unit
We took a more detailed look at the genomic localisation 
of gwDNAm patterns. PLS enables the empirical selec-
tion of DNAm sites that most consistently and strongly 
represent MRPs (described and schematically depicted 
in Additional file  1: Figure S3). This selection process 
adheres to our objective to view risk-related covariation 
in methylation as a coordinated regulatory event with 
interdependence between sites across the genome. This 
contrasts with individually testing associations between 

Fig. 6  External validation of DNAm patterns. Boxplots of importance scores (y-axis) of variables (x-axis) predicting body mass index (BMI) 
in early childhood in the discovery cohort (ARIES) (A) versus independent replication cohort (Generation R) (B). Component 18 was selected 
in both cohorts. The replication cohort in B also ranked three other DNAm components that frequently showed relations to various 
other cardiometabolic outcomes (bold x-axis labels, Components 7, 11, and 19). Boxes appearing to the right of the grey vertical line (i.e. 
after the maximum randomised shadow variable) indicate relevant variables. The box and whiskers show the distribution of permutation values 
and cannot be used to tell statistical significance [31]. Purple—Dimension 2 (smoking in mother), green—Dimension 4 (smoking in mother + birth 
weight), pink—Dimension 5 (smoking in mother + household + birth weight). Inset: Sample size and performance metrics for each model. A 
Discovery Model from ARIES data using MRP DNAm patterns from cord blood to predict BMI (z-score by sex) at age 7 years. The x-axis includes 
the same control variables as in model 3 of Fig. 4C. B Validation Model from GenR data using MRP DNAm patterns in cord blood samples to predict 
BMI (z-score by sex) at age 6 years. The x-axis includes estimated cell type counts, sex, maternal education, and early growth (represented by BMI 
z-score measured between 13 and 17 months of age)
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risk exposure and methylation (either as single or clus-
ters of sites) in thousands of post hoc multiple hypothesis 
tests, such as performed in an epigenome-wide associa-
tion study (EWAS).

gwDNAm patterns are positioned preferentially in regions 
of open chromatin and gene regulatory sites
We tested whether gwDNAm patterns co-localise with 
sites involved in the functional regulation of chromatin 
output. We used two features: (1) DNase I hypersensitiv-
ity sites (DHSs) and (2) promoter-anchored chromatin 
interaction (PAI) and chromatin loop sites. DNAm loca-
tions that spatially intersect with these two features are 
positioned in a 3D chromatin environment that is open 
and conformationally poised to interact with gene regu-
latory factors. Sites representative of gwDNAm patterns 
were enriched for DHSs and PAI/loop features (permuta-
tion p < 0.01 for both, Additional file 2: Figure S14). Fig-
ure 7 visualises the non-random organisation of DNAm 
sites (dark blue lines) within a gwDNAm pattern across 
the chromosomes in intersection with these 3D chroma-
tin features (light blue and black lines).

gwDNAm patterns have comparatively distinct overlap 
with molecular features and confounding variables

gwDNAm patterns demonstrate affinity for sites of tran‑
scription factor binding  To assess the functional rel-
evance of EWAS candidates, most studies will test 
whether DNAm candidates are related to a gene prod-
uct (usually from a coding gene that is linked to a cer-
tain mRNA, protein, or biological function like “inflam-
mation”). Given that the 450K BeadChip was designed to 
interrogate DNAm at well-annotated genes, enrichment 
in such annotations would be unsurprising. We won-
dered whether the enrichments observed were simply 
due to the bias of the 450K BeadChip for certain genes, 
particularly genes that could demonstrate smoking-
related changes but may have no biological effect on 
future health.

We challenged this query by testing whether genomic 
sites of a given gwDNAm pattern would still show greater 
than expected enrichment when directly compared to 
candidates identified by the largest-to-date meta-analysis 
of the association between sustained maternal smoking 
and cord blood DNAm (meta-EWAS) using the 450K 
BeadChip [44]. This study analysed associations across 
13 different cohorts (n = 6685). The study team identified 
2965 CpGs after correcting for multiple hypothesis test-
ing, and 89% of these were associated with gene expres-
sion levels.

We used the XSTREME (meme-suite.org) analysis tool to 
evaluate enrichment in genomic sequences, called motifs, 
that exhibit affinity for binding to transcription factors. 
An enrichment is identified if the interrogated sites (in 
our case, sites representing a given gwDNAm pattern) 
can generate the same or more motifs of equal width and 
number of occurrences as the background sites (mean-
ing meta-EWAS sites) based on log-likelihood ratios [45]. 
Most of the top 5 ranked motifs were novel (Additional 
file  2: Figure S15-S17). These novel motifs provide “an 
unbiased view of the in vivo DNA-binding propensities” 
[45] that represent possible novel or under-characterised 
regulators in referenced databases. Discarding the over-
lap with meta-EWAS candidates that were both large in 
number and closely associated with gene expression, sites 
representative of gwDNAm patterns were still localised 
to novel areas with an affinity for transcription regula-
tion. In other words, the functional implications embed-
ded within the physical distribution of DNAm patterns 
across the genome surpass what would be expected by 
chance or microarray-based bias.

gwDNAm patterns are enriched in tissue‑specific molecu‑
lar features  We used locus overlap enrichment analysis 
(LOLA) and the curated LOLA database to determine 
whether gwDNAm patterns localised to tissue-specific 
chromatin marks [46]. gwDNAm patterns were enriched 
(q-value < 0.05) by chromatin marks specific to certain 
cell lineages, often with multiple enrichment clusters 
falling on the same or embryologically-related tissues 
(Fig.  8). For instance, Component 18 is dominated by 
high-ranking clusters specific to white blood cells. Com-
ponent 9 is characterised by high-ranking clusters around 
two main panels: neuronal progenitor and iPS DF 19.11 
(induced pluripotent stem cells derived from foreskin 
fibroblasts) cells, both arising from the neuroectodermal 
cell lineage. A similar enrichment in this cell lineage was 
observed in Component 19 (data not shown). In contrast, 
the meta-EWAS candidates harboured chromatin marks 
that were widely spread across cell lineages with no high-
ranked clusters on specific cell lineages or marks from 
the same cell panels. These findings were consistent when 
using another tissue-specific molecular marker, DHSs 
[47] (Additional file 2: Figure S18).

gwDNAm patterns have distinct relations to confound‑
ers compared to previous candidates of foetal exposure to 
smoking  We first examined the overlap of our DNAm 
component candidates to the 28 maternal smoking-
related CpG sites in cord blood identified in the same 
ARIES dataset by Richmond et  al. [48]. Seven of our 
DNAm components overlapped with at least one of 
their hits (Additional file  2: Figure S20). Three of these 
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components were related to confounders (Components 1 
and 4 are related to sex, while Component 6 is related to 
sex and cell count). All overlaps had an associated target 
gene except for one (cg04598670).

Confounding from covariates like sex and cell count 
affect DNAm data distributions differently and can be 
cohort-specific [49, 50]. Most of the EWAS hits discov-
ered by Richmond et al. overlap with EWAS hits in other 

Fig. 7  Genomic organisation of DNAm sites representative of a DNAm pattern within the chromatin environment. We show Component 9 (related 
to Dimension 1—grandmaternal smoking) as an example. The perimeter ring shows the ideogram of the human autosomes with chromosome 
numbers. Unlike differentially methylated regions, which typically describe contiguous locations, genomic sites representing gwDNAm patterns 
(dark blue lines) are spread across a given chromosome and across a cell’s chromosomes. This is consistent with the finding that methylation 
related to complex traits is a genome-wide event. It is also in keeping with the interaction of non-contiguous domains of DNA by their physical 
proximation in 3D space through chromatin looping structures and promoter-anchored interaction sites (black lines). Regulatory mechanisms 
tend to occupy open chromatin areas. Such areas are marked by DNase I hypersensitivity sites (light blue lines). The three different coloured lines 
appear to populate together, much like how cities would concentrate the machinery required to “trade” information regarding foetal exposures 
across the genome, changing the global fate of the cell
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cohorts [4, 51–53]. Therefore, we looked at the meta-
EWAS to examine if this was specific to the ARIES data-
set. Forty-eight percent (566/1183) of overlapping sites 
coincided with components related to sex and/or cell 
count confounders (Fig. 9).

Discussion
The rise in NCD prevalence and the resources needed to 
treat their lifelong complications are draining to health 
systems and societies. Current detection methods require 
an adequate degree of cellular damage to indicate entry 
into the diseased state. The most cost-effective means 
of stemming this global crisis is detection that is gener-
alisable to the whole population yet targets intervention 
before disease onset. We believe the key to achieving this 
feat is by considering the complex and context-specific 
nature of NCDs.

In this study, we adopted a view of the early origins of 
NCDs where (1) foetal risk exposure is a multidimen-
sional and population-normalised entity and (2) gene 
regulation is a transformer of cell fate that requires 
numerous coordinated changes across the genome. 
We believe this is the first identification of patterns of 
DNAm underlying population-based risk profiles. We 
employed component-based analysis and model-based 
imputation to lessen the loss and/or distortion of infor-
mation due to reliance on single points of data from 

subjects or variables alike. Importantly, this can reduce 
the impact of error and/or bias from subpopulation-
specific characteristics [26, 54, 55].

As a proof-of-concept, we used MRPs that modelled 
the risks surrounding why and how mothers smoke 
while pregnant. We used this constellation of risks 
to reveal how early experiences influence the root of 
health during foetal development, branching into tis-
sues and organs as phenotypic offshoots after birth, 
as hypothesised in DOHaD theory [56–58]. This may 
account for how NCDs associated with prenatal smoke 
exposure have a wide breadth of effects, such as res-
piratory, cardiometabolic, cognitive, and psychological 
morbidities [10, 11, 13, 15]. Pleiotropy is when a single 
gene contributes to more than one unrelated pheno-
typic trait, and it occurs frequently in NCDs [59, 60]. 
If an isolated genomic area can exhibit such pleiotropy, 
then this may also be true of epigenetic differences 
related to exposures [59, 61, 62]. Accordingly, we antic-
ipated that gwDNAm patterns would be linked to both 
physical and neurodevelopmental outcomes.

Population-based gwDNAm patterns can help capture 
biological heterogeneity that comes from the interaction 
of genetic, environmental, and random effects. Deci-
sion tree-based analysis has the ability to account for 
these interactions, revealing relations that are difficult to 
detect using traditional linear models. This facilitates a 

Fig. 8  Chromatin mark enrichment analysis using LOLA. X-axis: Enrichment rank where lower numbers indicate higher rank and thus stronger 
evidence of enrichment. Colours represent the source of DNAm candidates. Tissue/cell cultures demonstrating a specific chromatin mark are 
labelled on the y-axis. Cells sharing embryonic lineage are grouped together where applicable. Sites from a given DNAm pattern (i.e. same colour 
circles) tend to have two or more clusters with common lineages, as represented by circles falling on the same or nearby horizontal lines. In 
contrast, meta-EWAS candidates [44] represented by dark purple circles appear scattered across unrelated lineages. Granulocyte colony-stimulating 
factor, G-CSF; phorbol myristate acetate–ionomycin, PMA-I; human embryonic stem cell line, H1; induced pluripotent stem line derived 
from foreskin fibroblasts, iPS DF; human embryonic stem cell line, HUES
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more realistic view of interactive, robust, and prospec-
tive relations between gwDNAm patterns and future 
cardiometabolic and neurocognitive outcomes. We 
tested these models in DNAm data from mid- and late 
childhood and in an independent cohort. It was remark-
able to observe the persistent association of DNAm to 
child phenotypes regardless of data influences such as 
developmental maturation, technical artefacts, and data 
set-specific variability [40].

Previous perinatal DNAm studies that have attempted 
a multifactorial approach focused on maternal psycho-
social stress [63–68]. A study by Laubach et  al. used a 
composite score of socioeconomic status using maternal 
factors collected in Project Viva, a multi-ethnic preg-
nancy cohort started in 1999 [65]. In an EWAS using the 
450K BeadChip, they identified three CpGs in cord blood 
that were associated with low versus high socioeconomic 
scores. Only one was replicated at age 3, and none were 
replicated at age 7 years. We are unaware of any attempt 
to link these findings to phenotypes. A recent study by 
Provenzi et  al. used the average score on six retrospec-
tive questions related to maternal stress due to COVID-
19 infection [67]. These researchers only evaluated the 
methylation status of the SLC6A4 gene. They first found 
an association between COVID-19-related stress and 
methylation and, in a subsequent model, found the latter 
associated with only one out of three measured factors 
of infant behaviour. Most other studies use retrospective 

data or cannot capture foetal effects because of risk 
assessment or tissue collection at later ages (for a com-
prehensive review, see [69]).

Our aim to view each subject using a multidimen-
sional and unique perspective could be described as “self-
defeating” if judged by traditional statistical metrics. For 
instance, the PLS methodology seeks shared information 
between two datasets and does not maximise the vari-
ability explained. This directly undermines R2 and related 
metrics. Moreover, by avoiding the assumption that 
individuals fit into homogeneous categories, we cannot 
enhance the reported differential effect between groups. 
The non-linear and interactive effects detected by deci-
sion tree analysis are difficult to translate into straight-
forward results of causal, mediating, or dose–response 
effects, which are more familiar to clinicians, patients, 
and researchers [70].

DNAm data is also expensive and more invasive than 
routine history and physical measurements. However, we 
believe the value of gwDNAm patterns lies in how they 
may connect to real-life biological context. For example, 
the genome-wide distribution of these patterns intersects 
with various features that are integral to interactions with 
regulatory elements (e.g. locations associated with DHS, 
PAI, and transcription factor binding) and the 3D topol-
ogy of chromatin (e.g. chromatin loop domains). This 
suggests that gwDNAm patterns have a spatial organisa-
tion linked to the functional units of cell fate decisions 

Fig. 9  Overlap of gwDNA methylation patterns with meta-EWAS candidates [44]. Histogram shows the number of EWAS candidates that match 
sites within DNAm components (patterns). The dark grey bars highlight seven DNAm components that we dismissed because they relate strongly 
with the confounders of sex and/or cell composition. Components related to confounders were also found to be frequently related to health 
outcomes. Among 1183 overlaps, 566 overlapped with these components (dark grey bars), 749 represented unique CpG sites, and 474 localised 
to unique genes. A large proportion of gwDNAm pattern representative sites “consistent” with this EWAS were related to Component 4. Recall 
that this component was related to subject sex and was the most strongly correlated component with the maternal smoking-related MRP, 
Dimension 2
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[71–74]. This is critical to operationalise one-dimensional 
measures of methylation into realistic reflections of the 
multidimensional and interactive nature of mechanisms 
underlying complex traits. Data supports that these chro-
matin features are key players in exposure-mediated 
shifts in gene expression and overall cell function [75]. 
This may also add to the potential forecasting ability of 
DNAm, given that the 3D re-organisation of chromatin 
can precede changes in gene expression [6, 73, 76].

It is possible that genotype-dependent methylation is 
responsible for our findings. However, we note that each 
gwDNAm pattern uses the magnitude and directional-
ity of methylation at a given site relative to all other CpG 
sites across the genome to uncover consistent and coor-
dinated patterns among individuals. Thus, DNAm sites 
within a given pattern are inherently related by design. 
Genotype-dependent methylation must act in magnitude 
and direction synchronously within gwDNAm patterns 
to give consistent false positive associations. If this biased 
the extraction of MRP-related gwDNAm patterns, then 
this same bias must also align itself to relate to outcomes 
across data sets spanning time, populations, and cardio-
metabolic and neurocognitive phenotypes. If that were 
the case, we reason that there should be far more consist-
ent relations between differential methylation and child 
outcomes in the current literature [40].

CpGs representing a gwDNAm pattern are also con-
ceptually different from differential DNAm sites identi-
fied in EWAS research because the latter have no innate 
relational organisation. This connectivity of sites within 
patterns reveals differences between patterns. We specu-
late these differences may underlie distinct processes 
such as cell- or stimuli-specific biological signalling. This 
was suggested by the degree of specificity in DNAm pat-
terns, such as for certain tissues (Fig. 8) and for sources 
of variability due to blood cell type composition and 
sex (Fig.  9—dark bars). For example, eight meta-EWAS 
sites that annotate to CYP1A1 overlapped with Compo-
nent 4 (which is related to sex and the maternal smok-
ing-related MRP, Dimension 2) and with Components 9 
and 11 (which were related to child outcomes). A similar 
scenario was observed for sites annotated to GFI1 and 
AHRR genes. One interpretation of these observations is 
that DNAm at these sites is confounded and should be 
discarded. However, we speculate that methylation (like 
for CYP1A1) is relevant to clinical outcomes depending 
on their interactions with genetic and epigenetic mecha-
nisms at other sites that will vary in each individual. As 
such, there are instances where differential methylation 
at these same sites may be driven by “bystanders”, such 
as sex or cell composition that may covary or even inter-
act with the exposure but do not lie at the biological 
root underpinning the phenotype. In other words, there 

may be specificity in the function of DNA methylation 
based on a broad scope of clinical and, thus, molecular 
contexts.

Previous literature has identified thousands of mater-
nal smoking-related DNAm sites, many with theoreti-
cally plausible links to biological phenotypes. Compared 
to these (as represented by meta-EWAS data in our 
analysis), gwDNAm patterns were implicated in novel 
genomic sites (Fig. 9) and transcription networks (Addi-
tional file 2: Figures S15-S17) with a greater proportion of 
sites found in CpG poor or non-genic regions [77] (Addi-
tional file 3). Earlier studies have focused on candidates 
located around well-annotated protein-coding genes and 
biological pathways. This leads to a gene-centric bias, 
which is potentially harmful given that it may neglect 
lesser-known but potentially important mechanisms [78]. 
Mounting evidence suggests that the non-coding genome 
has a major role in human disease [79–81].

A disease-based bias currently exists, as the vast major-
ity of gene annotations originate from repositories col-
lected for cancers, rare diseases, or diseases mainly relevant 
to populations of European ancestry [82]. These potential 
biases are barriers to addressing the bench-to-bedside gap 
[5, 10, 78] as well as social disparities [83] in NCD research. 
As well, we are unaware of any epigenetic studies that have 
used a multidimensional, population-based measure of risk 
related to smoking to model foetal programming. Thus, our 
findings may promote the investigation of genomic regions 
previously neglected by this literature.

We anticipate that a context-based approach may 
complement traditional research findings by helping to 
explain why some DNAm sites that have received intense 
research focus (and garnered statistical “significance”) 
have provided no clinical traction in improving the man-
agement of NCDs [5, 78]. The intent of our study was not 
to “label” a child with his/her future outcomes. Like other 
NCD “biomarkers” in current literature (e.g. serotonin 
transporter gene polymorphisms (SLC6A4) and mental 
health disorders [84]), our work supports the notion that 
future outcomes are a result of many pathways where 
a biological factor may play different roles of varying 
importance depending on context.

Instead of interpreting these findings to suggest any 
degree of determinism conferred by life exposures, we 
believe they demonstrate the potential to uncover com-
mon molecular pathways underlying diverse vulnerabili-
ties to risk. This capability will help the scientific and 
medical communities to foster resilience on a popula-
tion scale. Further, our aim in exploring a context-based 
approach was to find a means to realistically model 
the intersection between genetic, environmental, and 
random chance effects that underlie maternal-foetal 
health. The uncovered models of gwDNAm patterns 
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demonstrate reproducibility and specificity. As well, they 
probe novel interactions and functions among networks 
of DNAm sites that may offer insight into pathways to 
future health. We believe such efforts better harmonise 
science and bedside medicine, shifting the field towards 
context-based design and away from the use of discrete 
categories that invite stereotype-based labels.

Limitations
We used DNAm data from blood cells. The extent of extrap-
olation of these findings to target tissues such as adipose 
and brain cells remains unknown, even though there are 
clear links between immune function in cardiometabolic 
and neurocognitive diseases [85, 86]. Though we attempted 
to attenuate subpopulation-based bias, it remains that 
the populations under study, microarray used, and vari-
ous annotation resources are biased to represent primarily 
Western European-descent individuals. To evaluate general-
isability, we will need to replicate and compare these results 
to those obtained from a mixed-descent population (after 
re-training and testing the methods). We used basic, open-
source R language implementation tools in consideration 
of accessibility to all users and theoretic fit with our a priori 
hypotheses. More sophisticated methods (e.g. non-negative 
tensor factorisation or various artificial intelligence-based 
algorithms) exist that can better deal with the “high noise to 
low signal” data conditions and manage simultaneous learn-
ing and modelling between risk exposure data, DNAm data, 
and phenotypic outcomes. We hope this work will stimu-
late statistical methods in epigenetic and other omic studies 
that can better characterise and benchmark context-based 
representations of risks and outcomes. We were unable to 
compute patterns of change on a genome-wide scale despite 
having repeated measures of DNAm data due to the multi-
plicative computational cost of such a large data set. This is 
an area where techniques from fields like functional neuro- 
and cardiac-physiology [87] and biometry applications on 
smart devices [88] may be helpful in dealing with immense, 
repeated measures of data. We speculate such an advance-
ment would improve model generalisability by increasing 
precision in characterising heterogeneity, enhancing the 
utility of limited human biological samples. Last, tree-based 
models can be difficult to interpret compared to main-effect 
models. As these methods continue to gain popularity in 
many fields outside of informatics, future models will have 
improved interpretability [89, 90].

Conclusions
Our findings are preliminary, but they join a growing 
body of research arguing for the exploration of coordi‑
nated patterns of molecular signals—signals that can fun-
nel a wide diversity of risk profiles to a number of shared 

clinically relevant traits [91–93]. The gwDNAm patterns 
in this study provide a population-normalised score akin 
to how clinical tests have normative reference ranges. 
In addition to providing population-based context, the 
patterns demonstrate novel molecular context with 
remarkable colocation among genomic features critical 
to chromatin function. We believe our work represents 
a proof-of-concept for a context-based approach in the 
study of complex entities like the maternal-foetal dyad. If 
DNAm patterns discovered in blood can link population 
heterogeneity and molecular interactivity to future traits, 
this will enhance generalisability while individualising 
early risk management and avoiding invasive sampling of 
target tissues.
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