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Eindhoven University of Technology, Eindhoven, The Netherlands; dDepartment of Diagnostic and Interventional Radiology, Faculty of 
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ABSTRACT 
Purpose: A crucial aspect of quality assurance in thermal therapy is periodic demonstration of the 
heating performance of the device. Existing methods estimate the specific absorption rate (SAR) from 
the temperature rise after a short power pulse, which yields a biased estimate as thermal diffusion 
broadens the apparent SAR pattern. To obtain an unbiased estimate, we propose a robust frequency- 
domain method that simultaneously identifies the SAR as well as the thermal dynamics.
Methods: We propose a method consisting of periodic modulation of the FUS power while recording 
the response with MR thermometry (MRT). This approach enables unbiased measurements of spatial 
Fourier coefficients that encode the thermal response. These coefficients are substituted in a generic 
thermal model to simultaneously estimate the SAR, diffusivity, and damping. The method was tested 
using a cylindrical phantom and a 3 T clinical MR-HIFU system. Three scenarios with varying modula-
tion strategies are chosen to challenge the method. The results are compared to the well-known 
power pulse technique.
Results: The thermal diffusivity is estimated at 0.151 mm2s–1 with a standard deviation of 0.01 mm2s–1 

between six experiments. The SAR estimates are consistent between all experiments and show an 
excellent signal-to-noise ratio (SNR) compared to the well established power pulse method. The fre-
quency-domain method proved to be insensitive to B0-drift and non steady-state initial temperature 
distributions.
Conclusion: The proposed frequency-domain estimation method shows a high SNR and provided 
reproducible estimates of the SAR and the corresponding thermal diffusivity. The findings suggest that 
frequency-domain tools can be highly effective at estimating the SAR from (biased) MRT data acquired 
during periodic power modulation.
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I. Introduction

Hyperthermia treatments, where a tumor is heated to tem-
peratures ranging between 39 and 45 degrees Celsius for a 
duration of 60–90 min, are shown to be an effective adjuvant 
to conventional cancer therapies [1]. The effect of the hyper-
thermia treatment depends on, amongst others, the applied 
thermal dose and the increased perfusion. A priori treatment 
modeling helps to support the hyperthermia treatment as it 
enables virtual studies to optimize the outcome [2]. 
Naturally, these virtual studies require accurate applicator 
and patient models. Additionally, as applicators are becom-
ing more spatially selective, obtaining accurate models is 
becoming more relevant. For this reason, methods to verify 
the accuracy of Radio-Frequency electromagnetic or Focused 
Ultrasound (FUS) applicator models are essential.

A well-established method, which is incorporated in ESHO 
QA protocols [3,4], to estimate the Specific Absorption Rate 
(SAR) supplied by an applicator, utilizes a short power pulse 
and monitors the temperature rise. For sufficiently short time 
spans and small spatial SAR gradients, the measured tem-
perature rise indeed approximates the SAR well [5]. However, 
the approximation deteriorates when diffusion and perfusion 
effects start (significantly) affecting the temperature distribu-
tion. As a result, there is a delicate balance between the sig-
nal-to-noise ratio (SNR) of the estimated SAR and the validity 
of the assumption that measured temperature is proportional 
to the SAR. When the duration of the power pulse is short, 
diffusion effects are small compared to the temperature rise. 
However, the temperature increase itself is also small. 
Extending the duration of the power pulse increases the 
temperature further, but also increases the effects from 
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diffusion and perfusion. To complicate matters, diffusion 
effects are typically dominant in the region of interest, i.e., 
regions with large SAR gradients such as at the focus of a 
FUS applicator.

Besides estimating the SAR for quality assurance purposes, 
estimating the thermal (tissue) parameters is of interest [5– 
11]. For example, thermal diffusivity (the ratio between con-
ductivity, density, and heat capacity) can be estimated using 
an invasive ‘self-heated thermistor’ and a temperature sensor 
[6]. Here, at the first location, a constant temperature is 
maintained by the thermistor. Then, at the second location, a 
sensor measures the resulting steady-state temperature 
increase. The thermal diffusivity is then estimated from the 
temperature difference. However, this technique requires 
invasive probes and is only applicable to small volumes. 
Other diffusivity estimation methods utilize a sinusoidal ther-
mal excitation on the skin and estimates the tissue parame-
ters by extracting the amplitude and phase shifts of the 
measured surface temperature [9,12]. Besides point and sur-
face measurements, advances in Magnetic Resonance 
Thermometry [13] (MRT) opened new opportunities to non- 
invasively estimate the thermal conductivity and perfusion 
[7]. These existing methods require that the spatial distribu-
tion of the SAR is known a priori.

In this paper, we use frequency-domain system identifica-
tion techniques [14–17] to estimate the SAR distribution and 
the thermal diffusivity of a phantom using a FUS heating 
device (the phantom lacks perfusion, and, thus, damping). 
Our method will explicitly account for the thermal dynamics 
by estimating the coefficients in the Pennes’ Bioheat 
Equation [18] (PBE). To achieve this, we periodically modulate 
the FUS power, which enables the use of advanced fre-
quency-domain tools, such as the Local Rational Method [19] 
(LRM), to remove the influence of disturbances like B0-drift in 
MRT and non steady-state initial temperature distributions. 
We will verify the proposed method by comparing the 
estimated SAR and thermal diffusivity between three FUS 
scenarios where we vary the mean power, modulation fre-
quencies, and experiment duration.

II. Theory

A. Thermal model

We consider a thermal model described by the heat equa-
tion with damping and a source [20], of which PBE is a par-
ticular realization to model heat transport in patients [18]:

_T ðr, tÞ ¼ aðrÞr2Tðr, tÞ þ dðrÞTðr, tÞ þ bðrÞuðtÞ: (1a) 

The boundary conditions are

Tðr, tÞ ¼ TBCðr, tÞ, for r on boundary: (1b) 

Here, T(r,t) [�C], TBCðr, tÞ [�C], r 2 R3 [m], t [s], aðrÞ
[m2s–1], d(r) [s–1], b(r) [�CJ–1], u(t) [W] denote the temperature, 
prescribed boundary temperature, position vector, time, het-
erogeneous thermal diffusivity, heterogeneous damping 
(from perfusion), normalized power deposition profile 
(NPDP), and scalar input power, respectively. In contrast to 
the PBE, the left-hand side of (1a) is divided by the density 

and specific heat capacity to obtain a unique parameteriza-
tion of the partial differential equation. Additionally, T(r,t) 
denotes a temperature relative to a steady-state, e.g., room 
temperature for a phantom, as this is a natural choice when 
using relative temperature measurements. Through (1b), we 
specify Dirichlet boundary conditions, where the boundary 
temperature is described with TBCðr, tÞ: While this may seem 
strange at first, we will be using thermometry to prescribe 
the boundary temperature. This isolates our model from the 
complicated and unknown true boundary conditions of the 
patient or phantom [15].

When considering temperature measurements using 
Proton Resonance Frequency Shift (PRFS) thermometry [21], 
it is natural to discretize (1a) and (1b) on a cartesian grid in 
space. Hereto, we define a space of interior voxels at loca-
tions fr1, :::, rng ¼ DI � R3 and boundary voxels frnþ1, :::, 
rnþnBCg ¼ DBC � R3: We make the distinction between inter-
ior and boundary voxels in order to incorporate the bound-
ary conditions in our modeling framework. To translate the 
spatially discrete thermal dynamics to a state-space frame-
work, we stack the temperature at the discrete spatial loca-

tions in a vector, i.e., zðtÞ ¼
zIðtÞ

zBCðtÞ

� �

, with

zIðtÞ ¼

Tðr1, tÞ

..

.

Tðrn, tÞ

2

6
4

3

7
5, zBCðtÞ ¼

Tðrnþ1, tÞ

..

.

TðrnþnBC , tÞ

2

6
4

3

7
5: (2) 

Similar to sampling the temperature on the discrete grid, 
we stack the parameters a, d, and b at the discrete locations 
ri 2 DI in a vector h 2 R3n, i.e.,

h ¼ aðr1Þ ::: aðrnÞ dðr1Þ ::: dðrnÞ bðr1Þ ::: bðrnÞ½ �
>
: (3) 

We only estimate the coefficients at the interior voxels, as 
the boundary voxels are used to provide boundary condi-
tions to our model. Using the newly introduced vectors z 
and h, we rewrite (1) in state-space form [22]

_zIðtÞ ¼ AðhÞzðtÞ þ BðhÞuðtÞ, (4) 

where the matrix functions A : R3n ! Rn�ðnþnBCÞ and B :

R3n ! Rn are given in Appendix A. Note that AðhÞ is non- 
square as it describes the evolution of the interior voxels 
using both the interior and boundary voxels. While this defin-
ition deviates from the typical definition in literature, it is a 
natural choice for our problem, as we will see below.

We apply the Fourier transform to (4), yielding

jxZIðxÞ ¼ AðhÞZðxÞ þ BðhÞUðxÞ, (5) 

where j2 ¼ −1, x denotes the angular frequency, and Z :

R! CnþnBC , and U : R! C denote the state vector and 
input in the frequency domain, respectively. By applying the 
Fourier transform to (4), we transformed a differential equa-
tion to a complex-valued algebraic equation. As a result, we 
can estimate h by solving the algebraic equation for h given 
measurements ZðxÞ and UðxÞ: Opposed to measuring UðxÞ, 
we will obtain UðxÞ by applying a Fast Fourier Transform 
(FFT) to the prescribed FUS modulation power.

Remark: The SAR, measured in Wkg–1, is commonly used 
to quantify the heat load applied to a patient. However, our 
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proposed method estimates, what we call, the normalized 
power deposition profile (NPDP), measured in �CJ–1. This 
choice is motivated by the observation that the SAR is not 
uniquely identifiable without an additional measurement of 
the specific heat capacity and FUS power. Nevertheless, the 
SAR can be derived from the NPDP by multiplying it with 
the specific heat capacity and the FUS power.

B. Measuring the frequency-domain

In this section, we will detail how ZðxÞ is measured from 
thermometry data. We will start by specifying requirements 
for the thermometry, which is followed by the design of the 
periodic power modulation and the post processing.

We consider temperature measurements using MRT at 
regularly spaced intervals with sample time ts, i.e., we meas-
ure at times tk ¼ kts with k 2 N: We collect these measure-
ments in a vector yðtkÞ 2 RnþnBC , which is modeled as a 
combination of the true temperature and noise,

yðtkÞ ¼ zðtkÞ þ gðtkÞ, giðtkÞ � N ðlðri, tkÞ, rðriÞÞ: (6) 

Here, gðtkÞ is assumed to be normally distributed with 
mean lðri, tkÞ, which denotes a slowly time-varying bias and 
position dependent variance rðriÞ: In PRFS thermometry, the 
slowly time-varying measurement bias typically represents 
the B0-drift.

Given a sequence of measurements at regularly spaced 
intervals yðt1Þ, yðt2Þ, :::, yðtNÞ, we introduce the Fourier trans-
formed measurement vector at discrete frequencies xk 2

X ¼ 2p
tN
f0, 1, :::, N

2g as YðxkÞ 2 Cn, assuming N to be even. 

However, YðxkÞ cannot be directly substituted into (5) as a 
measurement of ZðxkÞ, as (5) models the thermal dynamics 
in terms of the steady-state response and YðxkÞ contains a 
combination of the transient response and the steady-state 
response. The steady-state response is obtained when the 
transient dynamics have decayed [10,14] and when there is 
no B0-drift. To alleviate this problem, we correct YðxkÞ using 
the Local Rational Method [14,19] (LRM) to obtain �YðxkÞ, 
which is a non-biased measurement of ZðxkÞ, as explained 
next.

To apply the LRM, we assume that the measurements 
YðxkÞ have the following structure: YðxkÞ ¼ ZðxkÞ þ

YDðxkÞ þ YNðxkÞ, where YD and YN denote the transient 
disturbances and the zero-mean circular complex normally 
distributed noise. By decomposing the measurements like 
this, YDðxkÞ accounts for all transient phenomena, such as 
B0-drift, non steady-state initial temperature distributions, 
and non-periodic applicator power. To isolate ZðxkÞ from 
YðxkÞ, we utilize two cornerstone properties of linear time- 
invariant systems. First, when a linear time-invariant system 
is excited with a periodic input at a certain frequency, the 
steady-state response will be at the same frequency. Second, 
the response to a superposition of inputs is a superposition 
of the respective individual responses. Hereto, we choose 
u(t) (the FUS power) as a random phase multi-sine at a lim-
ited number of discrete frequencies XU � X,

uðtÞ ¼
X

xk2XU

RðjUkjejðxk tþ/UkÞÞ: (7) 

Here, Uk 2 C denotes the complex-valued Fourier coeffi-
cient at xk 2 XU and j � j and / denote the magnitude and 
angle, respectively. The resulting frequency-domain represen-
tation (for positive frequencies) of u(t) is then

UðxkÞ ¼
Uk , if xk 2 XU,
0, otherwise:

�

(8) 

As expected, UðxkÞ is only non-zero at the modulation 
frequencies XU. The effect of this particular modulation strat-
egy is that the thermometry in the frequency-domain is 
given by

YðxkÞ ¼
ZðxkÞ þ YDðxkÞ þ YNðxkÞ, if xk 2 XU,
YDðxkÞ þ YNðxkÞ, otherwise:

�

(9) 

Indeed, we expect to see the steady-state response only 
at the modulation frequencies, while measurement noise and 
transient disturbances are spread over all frequencies. The 
key insight exploited by the LRM is that we can estimate 
YDðxkÞ at xk 2 X (including at XU) based on neighboring fre-
quencies that are not excited, see (9). Hereto, we estimate 
YDðxkÞ at xk 2 X by fitting a low order rational function 
through YðxkÞ in the window Xk, m ¼ fxk−m, :::, xkþmgnXU, 

i.e., YDðxkÞ �

Pl

i¼0
piðxkÞx

i
kPl

i¼0
qiðxkÞx

i
k

, where l is the order of the rational 

function and piðxkÞ, qiðxkÞ 2 CnþnBC are the frequency- 
dependent vectors of polynomial coefficients. These coeffi-
cients are computed, for each frequency xk 2 X, by solving 
the optimization problem

arg min
p0, q0���pl, ql

X

xh2Xk, m

YðxhÞ −
Pl

i¼0piðxkÞx
i
h

Pl
i¼0qiðxkÞx

i
h

 !2

: (10) 

We solved (10) and computed YDðxkÞ using the rkfit tool-
box [23]. After removing the transient YDðxkÞ from YðxkÞ, 
we obtain

�YðxkÞ ¼
ZðxkÞ þ YNðxkÞ, if xk 2 XU,
YNðxkÞ, otherwise:

�

(11) 

Here, �YðxkÞ denotes a noisy measurement of the steady- 
state response, which can be substituted into (5) for xk 2 XU 

in order to estimate h. Based on (11), we estimate the noise 
variance of �YðxkÞ using the frequencies that are not excited 
by the periodic modulation, i.e.,

diagðvarð�YðxkÞÞÞ �
1
sk

X

xh2Xk, m

�YðxhÞ, (12) 

sk ¼ cardðXk, mÞ − 2ðl þ 1Þ − 1, (13) 

where cardð�Þ denotes the cardinality of a set. As we will see 
in the next section, we use the measured forced steady-state 
response and estimated noise variance to formulate the max-
imum likelihood estimator for h.

C. Errors in variables identification

In this section, we present the optimization method we use 
to estimate h from noisy LRM corrected measurements 
�YðxkÞ: Hereto, we start by defining an estimation error in 
the frequency-domain based on (5),
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eðxk , hÞ ¼ AðhÞ�YðxkÞ þ BðhÞUðxkÞ − jxk
�Y IðxkÞ, (14) 

for xk 2 XU: Loosely speaking, eðxk , hÞ represents how well 
the dynamics, that depend on the parameter vector h, match 
the measurements. A crucial property is that eðxk , hÞ is linear 
in h, which is immediate from AðhÞ and BðhÞ being linear in 
h (see Appendex A). Based on (14), we introduce the 
Maximum Likelihood (ML) estimator for h,

h? ¼ arg min
h2R3n

X

xk2XU

eHðxk , hÞC−1ðxk , hÞeðxk , hÞ, (15) 

where h? denotes the parameter estimate and C : X� R3n !

Rn�n denotes the covariance matrix of eðxk , hÞ: The matrix C 
is h-dependent, as noise in �YðxkÞ is multiplied by AðhÞ and is 
given by

Cðxk , hÞ ¼ ðAðhÞ − jxkIÞvarð�YðxkÞÞðAðhÞ − jxkIÞH: (16) 

We solve (15) using gradient descend, where the gradient 
is replaced by the easier-to-compute pseudo gradient [24].

III. Methods

A. Setup

The parameter estimation method was assessed using a 
cylindrical phantom in a clinical MR-HIFU system (3 T 
Achieva, Philips Healthcare, Best, The Netherlands, and 
Sonalleve V2 HIFU, Profound Medical, Mississauga, Canada), 
see Figures 1 and 2 for a scan and schematic illustration of 
the setup.

The phantom temperature was measured every 2.5 s using 
PRFS thermometry, which consisted of seven sagittal multi- 
shot EPI accelerated scans with a 112� 112 reconstruction 
matrix, an EPI acceleration factor of 9, voxel size of 1:8�
1:8� 6 mm, and an effective echo time of 16 ms. Six power 
modulation experiments, split into three scenarios, were per-
formed to challenge the proposed method across a range of 
modulation frequencies, experiment duration, and ultrasound 
powers, see Table 1. Scenario A and C contain two and three 
experiments, respectively, to demonstrate the consistency 
under the same experimental conditions. All experiments 
were performed in succession, allowing the phantom to only 

partially cool down (approximately five to ten minutes 
between experiments).

The proposed frequency domain method is compared to 
the power pulse method. For this method, we start with a 
baseline scan when the phantom is at room temperature. 
Then, a 25 s pulse of 4 W is applied to the phantom. At 25 s, 
a second scan is acquired to compute the temperature with 
respect to the baseline. The NPDP is then estimated by divid-
ing the temperature rise over the time span (25 s) and the 
applied power (4 W). Both scans are the same multi-shot EPI 
scans as used for the frequency domain method.

The FUS power modulation signals u(t), and their respect-
ive spectra, are seen in Figure 3. Not all frequencies in the 
u(t) spectrum are sufficiently excited to yield a good SNR, 
see Figure 3. We discarded the excitation frequencies (empty 
markers) for which the heating was not clearly visible above 
the noise. Table 1 lists the excitation frequencies with suffi-
cient SNR.

Remark: The SNR can be improved by designing u(t) such 
that corresponding spectrum concentrates all energy at a 
few frequencies. This avoids discarding frequencies with 
insufficient SNR.

B. Data post-processing

Image translation in the frequency encode direction, result-
ing from a B0-drift, is corrected using the measured phase of 
the central k-space voxel [25]. We only correct the image 
translation resulting from the B0-drift, the bias that is intro-
duced in the thermometry is inherently corrected by the 
LRM method, see Section II B. Hereafter, in image-space, 
the phase is unwrapped and scaled accordingly to 
obtain the relative temperature measurements from PRFS 

Figure 1. MRI scan showing a sagittal slice of the phantom placed on top of 
the FUS applicator. The position of the seven slices that are acquired every 2.5 s 
are indicated by the yellow rectangles. The approximate acoustic beam path is 
indicated by the red circular sector.

Figure 2. Schematic overview of the experiment setup. Bottom left: the modu-
lated FUS power, which serves as the input to the system. Right: a sagittal sec-
tion of the phantom placed on top of the the FUS applicator. Top left: the PRFS 
thermometry, which serves as the output of the system.

Table 1. Experimental design for three scenarios.

Scenario A B C

Duration [min] 48 48 8
XU [rad–1] 2p

720 f1, 3g 2p
720 f10, 14g 2p

120

XU [mHz] f1:39, 4:17g f13:9, 19:4g 8.3
Mean power [W] 2 2 3.5
Quantity 2 1 3

4 S. NOUWENS ET AL.



thermometry [21]. The combined domain of interior and 
boundary voxels is chosen as the set of voxels with a stand-
ard deviation less than 0.3�C. The threshold was motivated 
by highly spatially correlated noise around the edges of the 
phantom. The boundary voxels are subsequently defined 
along the boundary of the previously defined set (naturally, 
the boundary voxels include the first and last slice of the 
thermometry). Based on the interior and boundary voxels, a 
measurement vector yðtkÞ according to (6) is constructed for 
all time-steps.

The frequency domain temperature measurement 
fYðx1Þ, :::, YðxN=2Þg is compensated for the non-instantan-
eous (delayed) MRI scans, see Figure 4. The correction is 
given by fe−jsx1 Yðx1Þ, :::, e−jsxN=2 YðxN=2Þg, where s ¼ 0:75ts:

The frequency domain input fUðx1Þ, :::, UðxN=2Þg is multi-
plied by a zero-order hold as the signal is saved as opposed 
to being measured in a band limited setting [14]. The correc-
tion is given by sinc xk

2p
ts

� �
e−j

xk
2 ts UðxkÞ for xk 2 XU:

The LRM correction interpolates YDðxkÞ over a window of 
width 20 (excluding frequencies that are modulated), i.e., 
Xk, 10 ¼ fxk−10, :::xkþ10gnXU, with a first-order rational func-
tion (l¼ 1) to obtain, �YðxkÞ and varð�YðxkÞÞ for xk 2 XU 

according to (11) and (12), see Figure 5.
The following constraints are added to the optimization 

problem. The damping is set to zero, i.e., dðriÞ ¼ 0 for all ri 2

DI, as the phantom lacks perfusion. The thermal diffusivity 
cannot be (reliably) estimated in regions without heating, for 

this reason, we constrain the diffusivity to be constant over 
the interior voxels, i.e., aðriÞ ¼ aðrkÞ for all ri, rk 2 DI: Last, the 
optimization problem (15) is solved using the frequencies 
in XU.

IV. Results

Figure 3 (top) shows the FUS power modulation, u(t), for 
each scenario. Figure 3 (bottom), shows the FUS power 
modulation in the frequency-domain, UðxkÞ, for each scen-
ario. The filled markers denote the frequencies in XU, which 

Figure 3. Time and frequency-domain representation of u(t) for scenarios A 
(–––), B (–––), C (–––). for scenarios A and B, only part of the input signal is 
shown. The filled markers in the frequency-domain indicate the frequencies in 
XU and the empty markers denote the discarded frequencies due to insuffi-
cient SNR.

Figure 4. Illustrating the effective measurement time concept for delayed non- 
instantaneous measurements.

Figure 5. Visual demonstration of the LRM method for scenario A1. Top: fre-
quency-domain representation of the measurement, with YðxkÞ (–––) and the 
estimated transient YDðxkÞ (–––). Bottom: uncorrected measurement yðtkÞ (–––) 
and corrected measurement F−1ð�Y ðxÞÞ (–––), where F−1 denotes the inverse 
Fourier transform. As expected, the LRM corrected measurement automatically 
compensates for the strong drift by focusing on the periodic excitation 
frequencies.

Figure 6. Temperature at the focal point along the transducer axis over time 
(see blue arrow Figure 7). The different graphs correspond to experiments 
A1 (–––), A2 (– – –), B1 (–––), C1 (–––), C2 (– – –), and C3 (–- –- –-), see Table 1
for the definitions. The negative trend in the top plot is predominantly caused 
by B0-drift. This drift is not explicitly corrected as the LRM method is insensitive 
to slowly time-varying measurement biases.
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are used in the estimation algorithm. The empty markers are 
discarded frequencies due to insufficient SNR. Figure 6 shows 
the PRFS thermometry at the focal point along the trans-
ducer axis over time, for each experiment. The periodic 
steady-state response is visible in the time series data, but it 
is dominated by thermal transient dynamics and B0-drift.

Figure 5 (top) demonstrates the LRM at the focal point on 
the transducer axis for experiment A1. Distinct ‘peaks’ at the 
FUS modulation frequencies xk 2 XU are clearly seen. 
Additionally, the first-order rational function describes YDðxkÞ

well at the frequencies not excited by the FUS power modu-
lation. Figure 5 (bottom) illustrates the LRM method in the 
time-domain. The time-domain response suggests that the 
LRM successfully suppressed transient phenomena (such as 
the B0-drift) and extracts the steady-state response from the 
unprocessed thermometry.

Figure 7 illustrates the LRM and how the results can be 
interpreted to estimate the thermal diffusivity and NPDP. 
Figure 7 (left) shows the measured temperature on the cen-
tral slice with three colored arrows at different distances to 
the transducer axis. The arrow colors correspond to the col-
ors in the time series. Figure 7 (middle) shows the measured 

temperature over time at different distances from the trans-
ducer axis. The periodic response is clearly visible, as well as 
a decreasing amplitude and delayed response with an 
increasing distance from the transducer axis. Figure 7 (right) 
shows the LRM corrected measurements where transient 
phenomena are suppressed and noise is reduced. The 
change in amplitude and phase shifts are used to separate 
diffusion effects from direct heating.

Figure 8 shows the estimated NPDP (which is proportional 
to the SAR) at slices two until six for experiment A1. Power 
deposition is detected in all five slices. Additionally, in the 
middle slice, a clear focus, including near and far field heat-
ing, is observed. Recall that slices one and seven are used as 
a boundary condition and no power deposition is estimated 
in these slices. Figure 9 compares the estimated NPDP at the 
central slice for scenarios A1, B1, C1, and the power pulse 
method, respectively. The NPDP is consistent between all 
scenarios. Additionally, the overall shape of the estimated 
NPDP aligns well with the estimate resulting from the power 
pulse method.

Table 2 lists the estimated thermal diffusivity and several 
properties of the estimated NPDP. The standard deviation of 

Figure 7. Magnified temperature map of the focal region for experiment C1 (left). The measured temperature at the locations indicated by the corresponding col-
ored arrows (middle). The LRM corrected temperature transformed back into the time-domain for the corresponding locations (right).

Figure 8. From left to right: the estimated NPDP in slices 2–6 for scenario A1.

Figure 9. Estimated NPDP, from left to right: scenario A1 (duration: long; frequency: low; power: low), scenario B1 (duration: long; frequency: high; power: low), 
scenario C1 (duration: short; frequency: medium; power: high), and the power pulse method.
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the estimated thermal diffusivity is 0.0088 [mm2s–1] between 
all experiments from scenarios A, B, and C. When focusing 
on the experiments from scenario C, the standard deviation 
is 0.0012 [mm2s–1]. This drop in standard deviation could 
suggest that residual biases are a significant factor in the 
quality of the resulting estimate. The peak power deposition 
for all experiments is approximately 20% higher compared to 
peak power deposition as estimated by the power pulse 
method. This is expected as diffusion broadens the apparent 
power deposition profile. The broadening of the focus is also 
observed when comparing the TC25 and TC50 (number of 
voxels with at least 25%, or 50%, of the peak value) between 
the proposed method and the power pulse method. Finally, 
the spatial standard deviation of the NPDP is between 5 and 
10 times lower for the proposed method, compared to the 
power pulse method.

V. Discussion

In this section, we will discuss the accuracy and precision of our 
estimated thermal diffusivity and NPDP. This is followed by a 
brief discussion on experiment design and future applications.

A. Notes on accuracy and precision

The discrepancy between the standard deviation when con-
sidering all experiments or just the experiments in scenario 
C, could suggest that biases contribute more to the error 
compared to noise. We will discuss potential mechanisms 
that can introduce a bias in our methodology.

LRM interpolation
A crucial step in the method is the LRM correction, which 
suppresses non-periodic transients from the thermometry. In 
doing so, it is assumed that the transient disturbances are 
smooth in the frequency-domain and can be locally 
described by a low order rational function (first-order in our 
setting). Figure 5 shows that this is a reasonable assumption, 
however, any interpolation error is directly propagated 
through the estimation algorithm. Hence, this process must 

be performed with care. Based on our experience, interpolat-
ing the transient disturbances in the frequency-domain is 
more difficult at lower frequencies due to the larger curva-
ture, see, e.g., Figure 5 (top). This effectively limits the lowest 
possible power modulation frequency (at least three or four 
periods must be measured for the LRM to be successful).

Estimating the Laplacian
As seen in (14), the error measure encodes the thermal dynam-
ics through the matrices AðhÞ and BðhÞ: Loosely speaking, AðhÞ
is the linear map that computes the Laplacian of the tempera-
ture field, which is needed to estimate the amount of diffusion 
at all discrete locations. As the feature size of the FUS applica-
tor is similar in size to the voxels (especially in the out of plane 
direction), computing the Laplacian through finite differences 
yields a biased result. Lower power modulation frequencies or 
smaller voxel sizes are possible measures to reduce this effect. 
Another interesting approach would be to infer a spatially con-
tinuous temperature field from the discrete measurements, 
using, e.g., Gaussian processes [15]. Such methods derive the 
Laplacian analytically and do not suffer from the aforemen-
tioned limitations, provided that an underlying temperature 
field can be reconstructed from the thermometry.

Measurement timing uncertainty
Phase shifts in the periodic thermal response are used to dif-
ferentiate diffusion effects from the NPDP (see Figure 7). For 
this reason, unaccounted phase shifts originating from timing 
uncertainties can bias the results. To minimize this problem, 
we used short scan times and estimated the effective measure-
ment time s, see Figure 4. However, the exact delay is difficult 
to estimate as it varies over the volume and is a combination 
of MR acquisition time and the delay between the com-
manded FUS power and applied FUS power. Accurately syn-
chronizing the FUS power update intervals with the MR scans 
and time stamping individual slices will reduce the uncertainty 
in the (slice dependent) effective measurement time.

Band limited assumption
Band limited experimental conditions are often assumed in the 
system identification literature, i.e., it is assumed that there is no 
spectral content above the Nyquist frequency [14]. Loosely 
speaking, the band limited assumption guarantees that no high 
frequency spectral content can alias onto the lower frequencies. 
This condition is typically satisfied through the use of anti-alias 
filters. However, it is not straightforward to implement such fil-
ters for MRI scanners. To minimize the effect of aliasing, it is pre-
ferred to externally measuring the FUS power, instead of saving 
the commanded value. Besides measuring the applied FUS 
power, fast MR scans are crucial to reduce aliasing effects in the 
thermometry. In general, thermal dynamics are slow and natur-
ally suppress high frequency excitations. Hence, when the 
Nyquist frequency is sufficiently high, the thermal dynamics 
themselves serve as an anti-alias filter. Reducing aliasing effects 
is therefore the second reason, besides reducing timing uncer-
tainties, to use fast MR scans.

Table 2. Estimated thermal diffusivity for each scenario and noise standard 
deviation of the estimated NPDP.

Scenario A1 A2 B1

a [mm2s–1] 0.138 0.142 0.153
max(b) [�CJ–1] 801 � 10−4 888 � 10−4 833 � 10−4

std(b) [�CJ–1] 5:02 � 10−4 4:67 � 10−4 8:13 � 10−4

TC25 [voxel] 47 41 40
TC50 [voxel] 17 16 16

Scenario C1 C2 C3

a [mm2s–1] 0.157 0.159 0.157
max(b) [�CJ–1] 972 � 10−4 900 � 10−4 855 � 10−4

std(b) [�CJ–1] 9:62 � 10−4 9:83 � 10−4 9:69 � 10−4

TC25 [voxel] 79 91 90
TC50 [voxel] 20 20 20

Scenario Power pulse

max(b) [�CJ– 1] 719 � 10−4

std(b) [�CJ– 1] 48:1 � 10−4

TC25 [voxel] 142
TC50 [voxel] 28
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B. Experiment design

Expected SNR
Experiment duration, FUS power amplitude, and excitation fre-
quencies influence the noise standard deviation of the esti-
mated NPDP, as shown in Figure 9 and Table 2. Generally 
speaking, increasing the experiment duration boosts the SNR 
at the modulation frequencies, which is an important benefit 
of the frequency-domain approach. This allows the frequency- 
domain estimation method to work, even in settings with a 
bad SNR, given a sufficiently long experiment duration. This is 
in contrast to the well-established power pulse method, for 
which an increased experiment duration results in a large 
bias. Another method to increase the SNR is to use higher 
FUS power at the modulation frequencies. As briefly men-
tioned, there are benefits in reducing the acquisition time of a 
single MRI scan. However, faster scans typically reduce the 
SNR for the respective scan. Nevertheless, when considering a 
fixed experiment duration, faster scans result in more meas-
urements. As the expected noise covariance in the frequency- 
domain is proportional to the reciprocal of the number of 
scans, the lower SNR from a faster scan is approximately com-
pensated by the increase in the number of scans. This rela-
tionship holds provided the increasing noise variance for a 
single scan is approximately inversely proportional to the scan 
time. Hence, faster scans have the potential to minimally 
affect the expected SNR for a fixed experiment duration while 
increasing the Nyquist frequency and reducing biases.

FUS modulation frequency
An important aspect for the estimation quality is the design of 
the input signal, i.e., choosing the excitation frequencies and their 
respective amplitudes. It has been shown that each parameter 
(e.g., the NPDP and thermal diffusivity) has a varying sensitivity at 
different frequencies [17]. As a result, choosing the FUS modula-
tion frequencies can have an impact on the quality of the param-
eter estimate. An important tradeoff is that higher modulation 
frequencies typically yield a lower SNR as thermal systems attenu-
ate high frequencies, see, e.g., the differences between scenarios 
A and B in Figure 6. On the other hand, low modulation frequen-
cies can result in longer experiment duration, as at least three or 
four periods must be measured. Hence, the desired experiment 
duration implicitly limits the lowest modulation frequency. Clearly, 
optimal experiment design to obtain the desired estimation 
accuracy is an interesting topic for further research.

Future applications

Besides quality assurance, in vivo applications are of interest for 
future research. In vivo estimates of the power deposition pro-
file, thermal diffusivity and damping could, for example, enable 
personalized treatments. However, extending the method to an 
in vivo setting introduces additional challenges. For example, 
motion during identification violates the assumptions of the lin-
ear time-invariant model (1). It is expected that sensitivity to 
motion is particularly high for FUS applicators due to the small 
size of the focal region. Applying the method in a setting with 
heterogeneous diffusivity and damping parameters is expected 

to increase the variance of the parameter estimates. This moti-
vates the need for optimized periodic excitations and novel 
post-processioning techniques to obtain the desired estimation 
accuracy within a reasonable measurement time.

VI. Conclusion

In this paper, we presented a frequency-domain system iden-
tification approach to identify thermal parameters such as 
the thermal diffusivity, damping, and spatial power depos-
ition profile. In particular, by transitioning from time-domain 
to frequency-domain identification, in combination with a 
periodic FUS modulation, we concentrate the signal power 
at a few frequencies, resulting in a good SNR. Moreover, by 
using advanced frequency-domain processing techniques, 
e.g., the LRM, our method is insensitive to B0-drift and non 
steady-state initial temperature distributions. Moreover, the 
presented method explicitly accounts for measurement noise 
and thermal dynamics including diffusion and perfusion.

We demonstrated the feasibility of the method by estimat-
ing the thermal diffusivity and spatial power deposition in a 
phantom using an MR-HIFU setup. We performed six experi-
ments based on three different scenarios, each with different 
input signals and experiment duration. The comparison to the 
power pulse method showed that our method has a signifi-
cant increase in SNR and an apparent improvement in the 
estimated power deposition profile at the focal point of the 
applicator. The thermal diffusivity was estimated with a stand-
ard deviation of 0.01 mm2s–1 between the six experiments. 
The spatial power deposition clearly showed the near- and 
far-field heating and a well-defined focus. Moreover, the spa-
tial shape and magnitude of the estimated power deposition 
profile is consistent between all experiments, which further 
supports the expected accuracy of the method.

Finally, we provide several rules of thumb that summarize 
important aspects of experimental design:

� Number of periods: at least three or four.
� An integer number of periods must be measured.
� Temperature must be measured at equidistant time 

intervals.
� Scans should be as fast as possible, provided the noise 

increase is approximately proportional to the decrease in 
scan time.

� SNR of the estimated NPDP is (approximately) propor-

tional to SAR
modulation frequency

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
number of scans

voxel noise

q

:
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APPENDIX A 
Matrix functions A and B

In this appendix, we present the definition of the matrices AðhÞ and BðhÞ
that is well-suited to large-scale systems, such as, the three-dimensional 
heat equation. Hereto, we directly define AðhÞZðxÞ and BðhÞUðxÞ:

First, we start by approximating the Laplacian of the temperature 
field, i.e., r2Tðri , xÞ for ri 2 DI: We approximate the Laplacian using 
finite differences,

r2TðriÞ �
Tðri þ DrxÞ − 2TðriÞ þ Tðri − DrxÞ

Dx2

þ
Tðri þ DryÞ − 2TðriÞ þ Tðri − DryÞ

Dy2

þ
Tðri þ DrzÞ − 2TðriÞ þ Tðri − DrzÞ

Dz2
:

(17) 

Here, Drx , Dry , and Drz denote the distance to neighboring voxel in 
the x, y, and z directions, respectively. Note that we require r 2 DBC to 
estimate the Laplacian at r 2 DI: Given the Laplacian of the temperature, 
AðhÞZðxÞ is given by

AðhÞZðxÞ ¼ diag

r2Tðr1, xÞ

..
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(18) 

Second, BðhÞUðxÞ is given by

BðhÞUðxÞ ¼

bðr1Þ

..

.

bðrnÞ

2

6
4

3

7
5UðxÞ: (19) 

The Dirichlet boundary condition is captured by estimating 
r2Tðri , xÞ on r 2 DI using a finite difference scheme. Indeed, we require 
all voxels in DI [DBC to estimate the Laplacian on DI:
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