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Abstract 

Background: There is currently no consensus on the impact of class imbalance meth-
ods on the performance of clinical prediction models. We aimed to empirically investi-
gate the impact of random oversampling and random undersampling, two commonly 
used class imbalance methods, on the internal and external validation performance 
of prediction models developed using observational health data.

Methods: We developed and externally validated prediction models for various out-
comes of interest within a target population of people with pharmaceutically treated 
depression across four large observational health databases. We used three different 
classifiers (lasso logistic regression, random forest, XGBoost) and varied the target 
imbalance ratio. We evaluated the impact on model performance in terms of discrimi-
nation and calibration. Discrimination was assessed using the area under the receiver 
operating characteristic curve (AUROC) and calibration was assessed using calibration 
plots.

Results: We developed and externally validated a total of 1,566 prediction models. On 
internal and external validation, random oversampling and random undersampling 
generally did not result in higher AUROCs. Moreover, we found overestimated risks, 
although this miscalibration could largely be corrected by recalibrating the models 
towards the imbalance ratios in the original dataset.

Conclusions: Overall, we found that random oversampling or random undersampling 
generally does not improve the internal and external validation performance of predic-
tion models developed in large observational health databases. Based on our findings, 
we do not recommend applying random oversampling or random undersampling 
when developing prediction models in large observational health databases.
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Background
Many datasets used for clinical prediction modeling exhibit an unequal distribution 
between their outcome classes and are hence imbalanced; typically, only a small pro-
portion of patients in a target population experiences a certain outcome of interest. 
In the machine learning literature, the term class imbalance problem has been used 
to describe a situation in which a classifier may not be suitable for imbalanced data. 
It has been suggested that a prediction model developed using imbalanced data may 
become biased towards the larger class (also referred to as the majority class) and 
may be more likely to misclassify the smaller class (also referred to as the minority 
class) [1]. As a result, various methods have been proposed to improve prediction 
performance when developing prediction models using imbalanced data [1, 2]. Such 
methods are also referred to as class imbalance methods.

In our previous systematic review on clinical prediction modeling using electronic 
health record (EHR) data, we found that class imbalance methods were increasingly 
applied in the period 2009–2019 [3]. However, there is currently no consensus on 
the impact of class imbalance methods on the performance of clinical prediction 
models. Several previous studies suggest that class imbalance methods may indeed 
improve performance of clinical prediction models [4, 5]. In contrast, a recent study 
focusing on logistic regression investigated random oversampling, random under-
sampling, and Synthetic Minority Oversampling Technique (SMOTE), and found 
that balancing data using these methods generally did not improve model dis-
crimination [6]. These previous studies focused on low-dimensional datasets with 
smaller sample sizes; the impact of class imbalance methods on the performance of 
prediction models developed in large observational health databases is yet unclear. 
Observational health data typically contain information on thousands of features 
concerning health conditions and drugs that are routinely recorded in a patient’s 
medical history.

Additionally, to the best of our knowledge, no previous study investigating the 
impact of class imbalance methods has also assessed external validation performance. 
External validation refers to evaluating the model performance on data from data-
bases that were not used during model development, while internal validation refers 
to evaluating the model performance on data from the same database that was used 
to train the model such as by using a train and test split-sample. Although good inter-
nal validation should be an initial requirement for a prediction model, it is often 
the case that model performance drops on external validation. We are interested in 
whether class imbalance methods would result in models with better generalizability 
and robustness.

The aim of this study is to empirically investigate the impact of random oversam-
pling and random undersampling, two commonly used class imbalance methods, 
on the internal and external validation performance of prediction models developed 
using observational health data. We developed and validated models for various out-
comes within a target population of people with pharmaceutically treated depression 
across four large observational health databases. We used three different classifiers 
(lasso logistic regression, random forest, XGBoost) and varied the target imbalance 
ratio.
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Methods
In this study, we developed and validated prediction models using the Patient-Level Pre-
diction (PLP) framework from the Observational Health Data Sciences and Informat-
ics (OHDSI) initiative [7]. To improve the interoperability of originally heterogeneous 
data sources, OHDSI uses the Observational Medical Outcomes Partnership Common 
Data Model (OMOP CDM), which transforms source data into a common format using 
a set of common terminologies, vocabularies, and coding schemes [8]. The OHDSI PLP 
framework in turn allows for standardized development and extensive validation of pre-
diction models across observational health databases that are mapped to the OMOP 
CDM [8, 9].

Data description

We used four observational health databases: three large claims databases from the 
United States of America (USA) and one large EHR database from Germany with data 
mapped to the OMOP CDM. The databases are listed in Table 1 and a description of 
each database is provided in Additional file  1. Each site obtained institutional review 
board approval for the study or used de-identified data. Therefore, informed consent was 
not necessary at any site.

For each database, we investigated 21 different outcomes of interest within a target 
population of people with pharmaceutically treated depression, as described in the 
OHDSI PLP framework paper [7]. For each of these 21 different outcomes, the predic-
tion problem was defined as follows: “Amongst a target population of patients with phar-
maceutically treated depression, which patients will develop < the outcome > during the 
1-year time interval following the start of the depression treatment (the index event)?”. 
The aim of this study was not to obtain the best possible models for these prediction 
problems but to empirically investigate the impact of random oversampling and ran-
dom undersampling on model performance. For consistency across the experiments 
and to reduce computational efforts, we sampled an initial study population of 100,000 
patients from each database. Further inclusion criteria were then applied to obtain the 
final study population for each outcome of interest within each database [7]: (1) a mini-
mum of 365 days of observation in the database prior to index, and (2) no record of the 
specific outcome of interest any time prior to index. Additional file 2: Table S1 provides 
the observed outcome event count and the observed outcome event proportion in the 
final study population for all prediction outcomes of interest and all databases. For some 

Table 1 Databases included in the study with data mapped to the OMOP CDM

Database full name Database short name Country Data type Population size Date range

IBM MarketScan® Commer-
cial Claims and Encounters 
Database

CCAE USA Claims 157 m 2000–2021

IBM MarketScan® Multi-
State Medicaid Database

MDCD USA Claims 33 m 2006–2021

IBM MarketScan® Medi-
care Supplemental Database

MDCR USA Claims 10 m 2000–2021

IQVIA Disease Analyser Ger-
many EMR

IQVIA Germany Germany EHR 31 m 2011–2021
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outcomes in IQVIA Germany, no outcome events were observed. Across all remaining 
study populations, the observed outcome event count ranged from 32 (0.03%) to 7,365 
(10.44%).

Candidate predictors

Candidate predictors were extracted from data routinely recorded in the databases. 
These included binary indicators of 5-year age groups (0–4, 5–9, etc.) and sex, as well as 
a large set of binary indicators of recorded OMOP CDM concepts for health conditions 
and drug groups [10]. For health conditions and drug groups, we considered data from 
the 365 days prior to index. No feature selection methods were used for selecting can-
didate predictors prior to model training. The initial study population contained 13,207 
candidate predictors in CCAE, 14,237 in MDCD, 13,499 in MDCR, and 6,494 in IQVIA 
Germany. A list of all the candidate predictors per database is available in Additional 
file 3.

Handling of missing data

Observational health data rarely reflect whether a feature is not observed or missing. 
In the observational health data used in this study, if a candidate predictor was not 
recorded in a patient’s history, the candidate predictor defaulted to a value of 0 (corre-
sponding to not observed) for this patient. Age group and sex are required by the OMOP 
CDM and were always recorded.

Statistical analysis methods

For our experiments, we varied the prediction task, the sampling strategy, and the clas-
sifier, resulting in a total of 1,566 prediction models = 58 (prediction tasks) × 9 (8 sam-
pling strategies + 1 control) × 3 (classifiers). The details of what was varied are described 
in the rest of this section.

We refer to a combination of one of the 21 prediction problems and one of the four 
databases as a prediction task. For each prediction task, a random stratified subset 
of 75% of the patients in the final study population was used as a training set and the 
remaining subset of 25% of the patients was used as a test set. To increase statistical 
power for our analysis, prediction tasks for which the test set contained less than 100 
outcome events were excluded from further analysis [11]. This resulted in a total of 58 
prediction tasks across the four databases; two outcomes (‘acute liver injury inpatient’ 
and ‘decreased libido’) were omitted from further analysis. The imbalance ratio (IR) is 
defined as the number of patients who do not experience the outcome (the minority 
class) divided by the number of patients who do experience the outcome (the majority 
class). An IR = 1 hence represents balanced data, while data with an IR > 100 are typically 
considered severely imbalanced [12]. The original IRs  (IRoriginal) in the final study popu-
lations ranged from 8.6 to 245.3 with a median of 84.0 (Table 2).

First, we developed an original data model (without sampling strategy) for each of the 
58 prediction tasks. We then investigated random oversampling and random undersam-
pling: for random oversampling, data from the minority class were randomly replicated 
(with replacement) and added to the original dataset; for random undersampling, data 
from the majority class were randomly selected and removed from the original dataset. 
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We randomly sampled towards a target IR:  IRtarget = min(IRoriginal, x) with x ∈ {20, 10, 2, 
1}; this resulted in a total of eight different sampling strategies.

Three different classifiers were considered: L1-regularized logistic regression (also 
known as “lasso logistic regression” or “lasso”), random forest, and XGBoost. The algo-
rithms were all implemented within the OHDSI PLP framework [7], with lasso logis-
tic regression implemented using the glmnet R package [13], random forest using the 
Scikit-learn Python package [14], and XGBoost using the xgboost R package [15]. The 
model development and internal validation procedure is illustrated in Fig. 1. First, we 
performed hyperparameter tuning using threefold cross-validation (CV) on the training 
set [16]. The sampling strategy was only applied to the training folds within CV; it was 
not applied to the validation fold to allow for a realistic evaluation of the model during 
CV [17]. Next, the model was refit on the full training set using the tuned hyperparam-
eters, and the final model was internally validated on the test set (i.e., the held out 25% of 
patients from the development database).

Model evaluation

We evaluated model discrimination for each developed model using the area under the 
receiver operating characteristic curve (AUROC) with 95% confidence intervals [18]. 
The impact of the sampling strategy on model discrimination was then assessed using 
the difference from the original data model AUROC, calculated using internal AUROC 
difference =  AUROCsampled, internal –  AUROCoriginal, internal, with  AUROCoriginal, internal 
the AUROC of the original data model for which no sampling strategy was applied on 
internal validation. A positive AUROC difference therefore means that the sampling 

Table 2 Original imbalance ratios

Each column represents a database

Outcome of interest CCAE MDCD MDCR IQVIA Germany

Acute myocardial infarction 221.4 60.5

Alopecia 191.8 205.8 203.6

Constipation 43.6 18.6 16.3 85.3

Delirium 245.3 84.5

Diarrhea 28.9 16.8 16.7

Fracture 174.3 104.7 34.1 185.8

Gastrointestinal hemorrhage 209.5 83.1 44.6

Hyponatremia 157.7 85.8 32.4

Hypotension 131.6 47.6 21.5 178.3

Hypothyroidism 73.1 76.6 31.9 158.9

Insomnia 19.5 12.7 17.9 57.2

Ischemic stroke inpatient 101.1

Nausea 20.6 8.6 15.7 60.5

Open-angle glaucoma 194.0

Seizure 180.5 71.4 90.8

Suicide and ideation 49.7 19.2 164.6

Tinnitus 158.0 174.8 83.4 152.3

Ventricular arrhythmia and sudden 
cardiac death inpatient

220.7 90.9

Vertigo 167.5 202.4 71.9 204.5
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strategy resulted in an increased AUROC compared to when no sampling strategy was 
applied, while a negative AUROC difference means that the sampling strategy resulted 
in a decreased AUROC. We also evaluated discrimination using the maximum F1-score 
across all prediction thresholds for each model.

The impact of the sampling strategy on model calibration (in the moderate sense) was 
assessed using plots of the mean predicted risks against the observed outcome event 
proportions, categorized using percentiles of the predicted risks by each model [19, 20]. 
Without sampling, the mean predicted risks and the observed outcome event propor-
tions are expected to be equal on internal validation. However, when random oversam-
pling or random undersampling is applied, the outcome proportion in the data used 
to train the classifier is modified, resulting in a mismatch between the predicted risks 
and the observed outcome event proportions, and thus miscalibration is expected. We 
investigated whether this miscalibration could be corrected by recalibrating the mod-
els towards the original IRs, and we assessed the calibration plots both before and after 
recalibration [21]. Recalibration towards the original IR was done by adding a correction 

Fig. 1 Flow chart of the model development and internal validation procedure
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to the logit function of the estimated probabilities to obtain the logit function of the 
recalibrated probabilities as follows:

with C = ln

(

odds
(

πoriginal
)

odds(πtarget)

)

 where πoriginal =
1

IRoriginal+1
 and πtarget =

1
IRtarget+1

.

We also investigated whether the best sampling strategy in terms of AUROC could be 
identified prior to evaluating the performance on the test set by selecting the sampling 
strategy with the highest AUROC during CV. We consider the eight different sampling 
strategies as well as the option of no sampling strategy, i.e., the original data model, and 
assessed the internal AUROC difference. We tested whether the median AUROC differ-
ences between the original data model and the selected model were significantly differ-
ent from 0 using the Wilcoxon signed-rank test ( p < 0.05).

Finally, we investigated whether the sampling strategy resulted in better generaliz-
ability and robustness by externally validating each developed model across the other 
databases [22]. To increase statistical power for our analysis, external validation tasks 
for which the external validation dataset contained less than 100 outcome events were 
excluded from further analysis [11]. We evaluated the impact of the sampling strategy 
on model discrimination using the external AUROC difference =  AUROCsampled, external – 
 AUROCoriginal, external, with  AUROCoriginal, external the AUROC of the original data model 
for which no sampling strategy was applied on external validation. The impact of the 
sampling strategy on model calibration was assessed in the same way as on internal 
validation.

Detailed definitions of the inclusion criteria and outcome definitions, including code 
lists, as well as the analytical source code that were used for the analysis, including 
example code, are available at: https:// github. com/ mi- erasm usmc/ Rando mSamp lingP 
redic tion.

Results
We developed an original data model for which no sampling strategy was applied and 
eight different models for which a sampling strategy was applied across a total of 58 
prediction tasks and three different classifiers. We hence developed and externally vali-
dated a total of 1,566 prediction models. The original AUROCs ranged from 0.58 to 0.87 
(Table 3).

First, we investigated the impact on model discrimination in terms of AUROC differ-
ence for each sampling strategy and classifier on internal validation (Fig. 2). We can see 
that although there were some cases with a positive AUROC difference, indicating that 
the sampling strategy resulted in a higher AUROC compared to when no sampling strat-
egy was applied, random oversampling and random undersampling generally did not 
improve the AUROC. For lasso logistic regression and XGBoost, the impact of random 
sampling on model discrimination was relatively small, with a maximum absolute differ-
ence in AUROC below 0.06. However, for random oversampling with random forest, we 
observed a larger impact on model discrimination; the AUROC differences had a wider 
range, with the largest difference around − 0.3. Moreover, we investigated the AUROC 
differences for each sampling strategy and classifier by number of outcome events on 

ln
(

odds
(

probabilityi,recalibrated
))

= ln
(

odds
(

probabilityi,estimated

))

+ C for individual i

https://github.com/mi-erasmusmc/RandomSamplingPrediction
https://github.com/mi-erasmusmc/RandomSamplingPrediction
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Table 3 Original data model AUROCs (with 95% confidence intervals)

Outcome of interest Classifier CCAE MDCD MDCR IQVIA Germany

Acute myocardial infarc-
tion

Lasso 0.86 (0.82–0.89) 0.71 (0.69–0.73)

Random forest 0.87 (0.84–0.90) 0.69 (0.66–0.71)

XGBoost 0.87 (0.85–0.90) 0.71 (0.69–0.73)

Alopecia Lasso 0.61 (0.57–0.66) 0.69 (0.65–0.73) 0.69 (0.65–0.73)

Random forest 0.58 (0.53–0.63) 0.65 (0.61–0.70) 0.68 (0.64–0.72)

XGBoost 0.64 (0.59–0.68) 0.68 (0.64–0.73) 0.68 (0.64–0.72)

Constipation Lasso 0.67 (0.64–0.69) 0.65 (0.63–0.66) 0.66 (0.65–0.68) 0.80 (0.78–0.83)

Random forest 0.66 (0.64–0.69) 0.64 (0.62–0.66) 0.64 (0.63–0.66) 0.81 (0.79–0.83)

XGBoost 0.67 (0.65–0.69) 0.65 (0.63–0.66) 0.66 (0.65–0.68) 0.80 (0.77–0.83)

Delirium Lasso 0.79 (0.75–0.84) 0.75 (0.72–0.78)

Random forest 0.80 (0.76–0.84) 0.73 (0.70–0.76)

XGBoost 0.80 (0.75–0.84) 0.74 (0.71–0.77)

Diarrhea Lasso 0.65 (0.63–0.67) 0.67 (0.66–0.69) 0.64 (0.62–0.65)

Random forest 0.64 (0.62–0.66) 0.67 (0.65–0.69) 0.62 (0.61–0.64)

XGBoost 0.63 (0.61–0.66) 0.67 (0.66–0.69) 0.63 (0.61–0.65)

Fracture Lasso 0.61 (0.56–0.66) 0.70 (0.67–0.74) 0.67 (0.65–0.70) 0.82 (0.78–0.86)

Random forest 0.61 (0.56–0.65) 0.66 (0.63–0.70) 0.65 (0.63–0.67) 0.80 (0.77–0.84)

XGBoost 0.62 (0.57–0.67) 0.69 (0.65–0.72) 0.67 (0.65–0.69) 0.82 (0.79–0.86)

Gastrointestinal hemor-
rhage

Lasso 0.73 (0.67–0.78) 0.74 (0.71–0.77) 0.73 (0.71–0.76)

Random forest 0.72 (0.67–0.77) 0.75 (0.72–0.78) 0.72 (0.70–0.74)

XGBoost 0.70 (0.65–0.75) 0.74 (0.71–0.77) 0.72 (0.70–0.75)

Hyponatremia Lasso 0.74 (0.69–0.78) 0.84 (0.81–0.86) 0.66 (0.64–0.68)

Random forest 0.73 (0.68–0.77) 0.83 (0.80–0.85) 0.64 (0.62–0.66)

XGBoost 0.74 (0.70–0.78) 0.84 (0.81–0.86) 0.66 (0.64–0.68)

Hypotension Lasso 0.74 (0.70–0.78) 0.75 (0.73–0.77) 0.72 (0.71–0.74) 0.71 (0.66–0.75)

Random forest 0.74 (0.70–0.78) 0.74 (0.72–0.77) 0.71 (0.70–0.73) 0.71 (0.67–0.75)

XGBoost 0.74 (0.71–0.78) 0.75 (0.73–0.78) 0.72 (0.70–0.74) 0.71 (0.67–0.75)

Hypothyroidism Lasso 0.80 (0.78–0.83) 0.76 (0.72–0.79) 0.83 (0.81–0.85) 0.86 (0.82–0.89)

Random forest 0.79 (0.76–0.82) 0.74 (0.71–0.78) 0.82 (0.80–0.84) 0.87 (0.84–0.90)

XGBoost 0.80 (0.77–0.83) 0.75 (0.72–0.78) 0.83 (0.81–0.85) 0.86 (0.82–0.89)

Insomnia Lasso 0.64 (0.62–0.66) 0.61 (0.60–0.63) 0.67 (0.65–0.69) 0.60 (0.57–0.63)

Random forest 0.62 (0.61–0.64) 0.60 (0.58–0.61) 0.66 (0.64–0.67) 0.58 (0.55–0.60)

XGBoost 0.64 (0.62–0.66) 0.61 (0.60–0.63) 0.67 (0.65–0.69) 0.59 (0.56–0.62)

Ischemic stroke inpatient Lasso 0.79 (0.76–0.82)

Random forest 0.76 (0.73–0.79)

XGBoost 0.78 (0.75–0.81)

Nausea Lasso 0.67 (0.66–0.69) 0.66 (0.65–0.68) 0.66 (0.64–0.68) 0.75 (0.73–0.77)

Random forest 0.65 (0.64–0.67) 0.65 (0.64–0.66) 0.64 (0.63–0.66) 0.75 (0.72–0.77)

XGBoost 0.66 (0.65–0.68) 0.66 (0.65–0.67) 0.66 (0.64–0.68) 0.75 (0.73–0.77)

Open-angle glaucoma Lasso 0.76 (0.71–0.82)

Random forest 0.77 (0.72–0.82)

XGBoost 0.79 (0.75–0.84)

Seizure Lasso 0.75 (0.70–0.79) 0.74 (0.71–0.77) 0.74 (0.70–0.77)

Random forest 0.73 (0.69–0.78) 0.71 (0.68–0.74) 0.73 (0.70–0.77)

XGBoost 0.72 (0.67–0.76) 0.73 (0.70–0.76) 0.73 (0.69–0.76)

Suicide and ideation Lasso 0.79 (0.77–0.81) 0.76 (0.74–0.77) 0.73 (0.69–0.77)

Random forest 0.75 (0.73–0.77) 0.72 (0.71–0.74) 0.64 (0.59–0.68)

XGBoost 0.79 (0.77–0.81) 0.75 (0.74–0.77) 0.71 (0.67–0.75)
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internal validation (Fig.  3). It appears that overall, and in particular for random over-
sampling with random forest, the impact of random sampling on the AUROC shows 
more variation when the number of outcome events is lower. We also investigated the 
impact on model discrimination in terms of difference in maximum F1-score for each 
sampling strategy and classifier on internal validation (Additional file 4). We found that 
random oversampling and random undersampling generally did not improve the maxi-
mum F1-score.

Figure  4 shows that model calibration on internal validation clearly deteriorated 
for all sampling strategies, for all three classifiers. More specifically, the calibration 
plots indicate increased overestimation for random oversampling or random under-
sampling towards smaller target IRs, compared to the original data model. This is in 
line with expectations, since the models with smaller target IRs were trained using 
increased outcome proportions. To investigate whether this miscalibration could be 
corrected, we recalibrated the models towards the original IRs. Figure 5 shows that 
after recalibration, the calibration plots resembled those of the original data models, 

Table 3 (continued)

Outcome of interest Classifier CCAE MDCD MDCR IQVIA Germany

Tinnitus Lasso 0.66 (0.62–0.70) 0.69 (0.64–0.74) 0.60 (0.56–0.63) 0.60 (0.56–0.65)

Random forest 0.64 (0.60–0.68) 0.71 (0.67–0.76) 0.58 (0.55–0.62) 0.62 (0.58–0.66)

XGBoost 0.66 (0.62–0.70) 0.69 (0.65–0.74) 0.59 (0.55–0.62) 0.60 (0.55–0.65)

Ventricular arrhythmia 
and sudden cardiac 
death inpatient

Lasso 0.83 (0.79–0.87) 0.77 (0.74–0.79)

Random forest 0.84 (0.81–0.87) 0.76 (0.73–0.79)

XGBoost 0.83 (0.79–0.87) 0.77 (0.74–0.80)

Vertigo Lasso 0.65 (0.61–0.70) 0.72 (0.67–0.76) 0.62 (0.59–0.65) 0.63 (0.57–0.68)

Random forest 0.63 (0.58–0.68) 0.70 (0.66–0.74) 0.59 (0.55–0.62) 0.65 (0.60–0.70)

XGBoost 0.63 (0.58–0.67) 0.71 (0.66–0.75) 0.60 (0.57–0.64) 0.63 (0.59–0.68)

Each column represents a database

Fig. 2 Internal AUROC differences across all prediction problems and databases for each sampling strategy 
and classifier. A positive difference means original data model had a lower AUROC, and a negative difference 
means original data model had a higher AUROC
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although for random oversampling with random forest the models appeared to under-
estimate risks instead. The same calibrations plots per outcome of interest are avail-
able in Additional file 5.

Next, we were interested in whether the best sampling strategy in terms of AUROC 
could be identified prior to evaluating the performance on the test set by selecting 
the sampling strategy with the highest AUROC during CV. The option of no sampling 
strategy, i.e., the original data model, was also considered. Table 4 shows the resulting 
median AUROC differences across all prediction problems for each database and clas-
sifier on internal validation. Only for random forest we found positive median AUROC 
differences, but these were not significantly different from zero. Hence, selecting the 

Fig. 3 Internal AUROC differences across all prediction problems and databases for each sampling strategy 
and classifier by number of outcome events. A positive difference means original data model had a lower 
AUROC, and a negative difference means original data model had a higher AUROC
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sampling strategy based on the highest AUROC during CV generally did not improve 
the test AUROC.

Finally, we investigated the impact of random sampling on external validation perfor-
mance by assessing the external AUROC differences across all prediction tasks for each 
sampling strategy and classifier (Fig. 6). The results were consistent with internal valida-
tion; generally, random oversampling and random undersampling did not improve the 

Fig. 4 Calibration plots across all prediction problems and databases for each sampling strategy and 
classifier on internal validation prior to recalibration towards the original imbalance ratios
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AUROC on external validation compared to when no sampling strategy was applied. For 
random oversampling with random forest, we found more variation and larger drops 
in external validation AUROC. We also found that random oversampling and random 
undersampling generally did not improve the maximum F1-score on external validation 
compared to when no sampling strategy was applied (Additional file 4). The calibration 
plots on external validation before and after recalibration are available in Additional 

Fig. 5 Calibration plots across all prediction problems and databases for each sampling strategy and 
classifier on internal validation after recalibration towards the original imbalance ratios
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file  6. Consistent with internal validation, the calibration plots prior to recalibration 
indicate increased overestimation for random oversampling or random undersampling 
towards smaller target IRs. However, after recalibration, the calibration plots mostly 
resembled those of the original data models.

Discussion
In this study, we empirically investigated the impact of random oversampling and ran-
dom undersampling on the performance of prediction models developed using observa-
tional health data. We developed models for various outcomes of interest within a target 
population of people with pharmaceutically treated depression. We varied the classifier 
(lasso logistic regression, random forest, XGBoost), the sampling strategy (random over-
sampling, random undersampling), and the target IR [1, 2, 9, 20] and applied each com-
bination across 58 prediction tasks (each a combination of a prediction problem and one 
of the four databases). Overall, we found that random oversampling or random under-
sampling towards different imbalance ratios generally does not improve the performance 
of prediction models developed in large observational health databases.

Table 4 Median internal AUROC differences (with interquartile range) across all prediction problems 
for each database and classifier when choosing the sampling strategy with the highest AUROC 
during CV

Database Number of 
prediction 
tasks

Lasso Random forest XGBoost All classifiers

CCAE 14 − 0.0025 (0.0073) 0.0001 (0.0106) 0 (0.0067) − 0.0004 (0.0076)

MDCD 17 − 0.0004 (0.0044) 0 (0.0062) 0 (0.0071) 0 (0.0068)

MDCR 19 0.0000 (0.0052) 0.0037 (0.0143) 0 (0.0057) 0 (0.0075)

IQVIA Germany 8 − 0.0011 (0.0048) 0.0012 (0.0095) − 0.0045 (0.0204) − 0.0010 (0.0098)

All databases 58 − 0.0004 (0.0053) 0.0008 (0.0099) 0 (0.0074) 0 (0.0081)

Fig. 6 External AUROC differences across all prediction problems and databases for each sampling strategy 
and classifier. A positive difference means original data model had a lower AUROC, and a negative difference 
means original data model had a higher AUROC
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On internal validation, the impact of random sampling on model discrimination in 
terms of an increase or a decrease in the AUROC appeared limited for most models. 
Only the models for random oversampling with random forest showed more variation 
in AUROC difference and generally a substantial decrease in the AUROC compared 
to the original data model. The combination of oversampling with random forest and 
a target IR of 1 showed the largest drop in test AUROC. The impact on the AUROC 
appeared to vary more for datasets with a lower number of outcome events. Inspec-
tion of the calibration plots allowed us to investigate the impact of random sampling 
on model calibration. When random oversampling or random undersampling is 
applied, the outcome proportion in the data used to train the classifier is modified, 
and we therefore expected miscalibration. In line with our expectations, both ran-
dom oversampling and random undersampling resulted in overestimated risks. We 
found that this miscalibration could largely be corrected by recalibrating the mod-
els towards the original IRs; after recalibration, the calibration plots resembled those 
of the original data models, although for random oversampling with random forest 
the recalibrated models appeared to underestimate risks instead. This highlights that 
it is important to be aware of the impact of random sampling on model calibration. 
In our previous systematic review, we found that calibration was often not evaluated 
at all [3]; we consider it likely that many researchers applying random sampling are 
not aware of the impact on model calibration and the consequent need for recalibra-
tion. For example, several recently published papers on clinical prediction modelling 
applied random sampling to balance the data used for model development without 
assessing calibration [23–25].

Most previous studies that investigated the impact of class imbalance methods on 
the performance of clinical prediction models only evaluated model discrimination 
using threshold-specific measures such as sensitivity, specificity, and positive predic-
tive value. Thresholds are typically carefully selected within the specific clinical context, 
which makes it difficult to compare models based on threshold-specific measures. We 
were interested in investigating the impact of random oversampling and random under-
sampling on model performance across various outcomes of interest and therefore 
evaluated model discrimination using the AUROC, which provides a summary measure 
across all possible thresholds; this makes it difficult for us to directly compare our find-
ings with previous literature. We are not aware of any previous study that has system-
atically identified a positive impact of random oversampling and random undersampling 
on the performance of prediction models developed in large observational health data-
bases. One previous study investigated various class imbalance methods using data of 
cancer patients and suggests that a higher test AUROC could be found amongst these 
class imbalance methods compared to when no class imbalance method was applied [5]. 
However, the authors did not consistently identify the same method that would result 
in a higher AUROC, and it is unclear from this study whether the best class imbalance 
method could be identified prior to evaluating the performance on the test set. Addi-
tionally, calibration was not assessed. We investigated whether the best sampling strat-
egy in terms of AUROC could be identified prior to evaluating the internal validation 
performance by selecting the sampling strategy with the highest AUROC during CV, and 
we generally found no improvement in the test AUROC.
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Our findings were in line with a recent study focusing on logistic regression that found 
that completely balancing the data did not result in models with better performance [6]. 
More specifically, the authors found in a simulation study and a case study that random 
oversampling, random undersampling, and SMOTE did not improve model discrimi-
nation in terms of AUROC. Different from this previous study, our study investigated 
the impact of random oversampling and random undersampling on model performance 
for multiple imbalance ratios and multiple classifiers, using large and high-dimensional 
datasets from multiple observational health databases, and evaluated both internal and 
external validation. Our findings therefore allow us to extend the findings for random 
oversampling and random undersampling from this previous study to models developed 
using lasso logistic regression, random forest and XGBoost in large observational health 
databases. The authors similarly highlighted the miscalibration resulting from random 
sampling. SMOTE was proposed for continuous features and our datasets only con-
tained binary features as candidate predictors; we were therefore not able to investigate 
SMOTE using our data [26].

Finally, we investigated the impact of random oversampling and random undersam-
pling on external validation performance. To the best of our knowledge, no previous 
study has investigated whether random sampling would result in models with better 
generalizability and robustness by assessing external validation performance across vari-
ous databases. We found that consistent with internal validation, on external validation 
the models for random oversampling with random forest showed more variation in 
AUROC difference and generally a substantial decrease in the AUROC. Otherwise, the 
AUROC differences were relatively small. Overall, the results suggest that random over-
sampling and random undersampling do not result in models with better generalizability 
and robustness.

A potential limitation of our study is that our results were based on outcomes of inter-
est within a target population of people with pharmaceutically treated depression; we 
cannot guarantee that these findings will generalize across all prediction problems. 
Furthermore, a potential limitation of our study is that our results did not account for 
AUROC uncertainty that may occur due to a low outcome event count in the test set. 
Nevertheless, to the best of our knowledge, this is the first study that has empirically 
investigated the impact of random oversampling and random undersampling on the 
internal and external validation performance of prediction models developed in large 
observational health databases. By developing and validating models using data mapped 
to the OMOP CDM, we were able to develop a total of 1,566 prediction models and 
empirically investigate the impact of random oversampling and random undersampling 
on internal and external validation performance across four databases. Based on our 
findings, we do not recommend applying random oversampling or random undersam-
pling when developing prediction models in large observational health databases. Future 
research could extend our research to other class imbalance methods.

Conclusions
In this study, we empirically investigated the impact of random oversampling and ran-
dom undersampling on the performance of prediction models developed using obser-
vational health data. We developed models for various outcomes of interest within a 
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target population of people with pharmaceutically treated depression across four large 
observational health databases. Overall, we found that random oversampling or ran-
dom undersampling towards different imbalance ratios generally does not improve the 
performance of prediction models developed in large observational health databases. 
Based on our findings, we do not recommend applying random oversampling or ran-
dom undersampling when developing prediction models in large observational health 
databases.
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