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Abstract: In the intensive care unit (ICU), infection-related mortality is high. Although adequate
antibiotic treatment is essential in infections, beta-lactam target non-attainment occurs in up to 45%
of ICU patients, which is associated with a lower likelihood of clinical success. To optimize antibiotic
treatment, we aimed to develop beta-lactam target non-attainment prediction models in ICU patients.
Patients from two multicenter studies were included, with intravenous intermittent beta-lactam
antibiotics administered and blood samples drawn within 12–36 h after antibiotic initiation. Beta-
lactam target non-attainment models were developed and validated using random forest (RF), logistic
regression (LR), and naïve Bayes (NB) models from 376 patients. External validation was performed
on 150 ICU patients. We assessed performance by measuring discrimination, calibration, and net
benefit at the default threshold probability of 0.20. Age, sex, serum creatinine, and type of beta-lactam
antibiotic were found to be predictive of beta-lactam target non-attainment. In the external validation,
the RF, LR, and NB models confirmed good discrimination with an area under the curve of 0.79 [95%
CI 0.72–0.86], 0.80 [95% CI 0.73–0.87], and 0.75 [95% CI 0.67–0.82], respectively, and net benefit in the
RF and LR models. We developed prediction models for beta-lactam target non-attainment within
12–36 h after antibiotic initiation in ICU patients. These online-accessible models use readily available
patient variables and help optimize antibiotic treatment. The RF and LR models showed the best
performance among the three models tested.

Keywords: target attainment; risk model; beta-lactams; penicillin; cephalosporin; carbapenem;
critical illness; intensive care unit
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1. Introduction
Background

The use of antibiotics in intensive care units (ICUs) is ten times higher than in other
wards [1]. Despite this high use of antibiotics, infection-related mortality remains high in
ICU patients at 30% [1,2]. To adequately prevent and treat severe infections in critically
ill patients, it is important that patients are treated with an appropriate dosing regimen
of antibiotics [2]. However, the dosing regimens used in ICU patients are designed for
non-severely ill patients or derived from studies in healthy volunteers and might result
in suboptimal antibiotic exposure [3]. Furthermore, ICU patients are a highly heterogenic
group of patients that undergo extensive physiological alterations (i.e., renal or hepatic
dysfunction, altered fluid status, changes in albumin concentration), which have a potential
impact on antibiotic pharmacokinetics (PK) and thereby the exposure of antibiotics [2–5].

Achievement of unbound plasma concentrations above the minimal inhibitory con-
centration (MIC) for a certain fraction of the dosing interval (f T > MIC) is associated with
a higher likelihood of clinical cure and bacteriological eradication with a decrease in the
potential for antimicrobial resistance against beta-lactam antibiotics [6–11]. Different phar-
macodynamic targets (PDTs) have been identified, from one up to four times the MIC for
100% of the dosing interval (100%ƒT > 1–4 × MIC) [6–10]. Currently, achieving the 100% f T
> MIC target is recommended for beta-lactam antibiotics in ICU patients [2]. However, a
significant percentage of ICU patients (37–45%) fail to achieve this PDT [2,6,10].

Adequate target attainment can be anticipated in ICU patients before initiation of
beta-lactam antibiotic therapy based on demographic and clinical factors such as sex, age,
and renal clearance [12]. In addition, the routine use of therapeutic drug monitoring (TDM)
for beta-lactam antibiotics has the potential to maximize therapeutic success and is therefore
recommended in ICU patients [2,6,7].

To maximize the efficient use of limited hospital resources, TDM should ideally be
performed only in ICU patients at risk of target non-attainment or toxicity. A prediction
model could aid in identifying patients who are at risk of target non-attainment or toxicity
and would benefit from TDM. To date, there is still a lack of prediction models for beta-
lactam target non-attainment in the ICU setting.

Therefore, this study aimed to develop and externally validate broadly applicable
diagnostic multivariable prediction models that are able to predict the probability of target
non-attainment in ICU patients at the initiation of beta-lactam therapy.

2. Results
2.1. Model Building and Internal Validation
2.1.1. Model Development

A total of 376 patients were included in the development and internal validation of
the three models (see Appendix A). The descriptive statistics of the variables of interest
are shown in Table 1. More descriptive statistics of the variables of interest between
patients reaching the PDT or not are shown in Appendix B. The prescribed dosages of
the antibiotics are available in Appendix C. The predefined PDT is a trough level (Ctrough)
> MIC epidemiologic cut-off value (MICECOFF) and this was not attained in 115 patients
(30.6%), as shown in Table 1.

The Boruta algorithm identified the variables age, sex, serum creatinine, and type of
antibiotic. No other relevant variables were found after the manual addition and removal
of potential variables. Random forest (RF), logistic regression (LR), and naïve Bayes (NB)
models were built using these four variables. For the RF model, the relative importance
of the four variables was calculated, and serum creatinine and the type of antibiotic were
found to have the largest contribution to target non-attainment (see Appendix D).

The LR model was used to calculate the odds ratios of the different variables (Table 2).
Among the beta-lactam antibiotics, patients who received cefotaxime had the highest
likelihood of not attaining the target (Table 2).
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Table 1. Descriptive statistics of the patients used for model development and internal validation.

Variables Overall
(N = 376)

Age (years) 64.0 [56.0, 71.0]

Height (cm) 175 [167, 182]

Actual body weight (kg) 80.0 [69.9, 90.0]

Sex (male) 232 (61.7)

BMI (kg/m2) 25.8 [22.9, 29.3]

SOFA score d0 8.00 [5.00, 11.0]
(N = 375)

APACHE IV score 50.0 [24.0, 78.0]
(N = 375)

Cardiac surgery (No) 367 (97.6)
(N = 370)

Trauma (No) 344 (91.5)
(N = 370)

Study antibiotic

Amoxicillin 15 (4.0)

Cefotaxime 77 (20.5)

Ceftazidime 15 (4.0)

Ceftriaxone 112 (29.8)

Cefuroxime 72 (19.1)

Flucloxacillin 17 (4.5)

Meropenem 54 (14.4)

Piperacillin–tazobactam 14 (3.7)

Serum creatinine d0 (mg/dL) 0.995 [0.690, 1.56]

Urea d0 (mmol/L) 9.00 [6.40, 14.7]
(N = 365)

CRP d0 (mg/L) 136 [44.5, 251]
(N = 367)

WBC d0
(
×109 /L)

13.2 [8.40, 17.9]
(N = 373)

Albumin (g/L) 28.0 [22.0, 33.0]
(N = 346)

The number of ICU days before start of the antibiotic 2.00 [2.00, 4.00]

Fluid balance d0 1240 [139, 2780]
(N = 372)

Defined daily dosage 1.00 [1.00, 1.50]
(N = 375)

Normalized dosing 1.00 [1.00, 1.50]
Values are presented as number (%) of patients or the median (IQR). Only when data are missing is the number of
patients included in the analysis mentioned (N = X). Body mass index (BMI), Sequential Organ Failure Assessment
score (SOFA), Acute Physiology and Chronic Health Evaluation score (APACHE IV), day of starting antibiotic
therapy in the ICU (d0), white blood cells (WBCs), C-reactive protein (CRP), intensive care unit (ICU), the assumed
average maintenance dose per day for a drug used for its main indication in adults (defined daily dosage), and
dose of antibiotic divided by the defined daily dosage (normalized dosing).
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Table 2. Odds ratios for the relevant variables on beta-lactam target non-attainment with the logistic
regression model.

Variables Odds Ratios CI p Value

(Intercept) 3.16 0.78–12.95 0.106

Serum creatinine 0.24 0.12–0.42 <0.001

Age 0.96 0.94–0.98 <0.001

Sex (male) 2.21 1.18–4.23 0.015

Amoxicillin 12.58 2.44–74.70 0.003

Cefotaxime 13.84 5.49–38.35 <0.001

Ceftazidime 0.47 0.02–3.22 0.510

Cefuroxime 6.25 2.47–16.97 <0.001

Flucloxacillin 10.86 2.84–46.90 0.001

Meropenem 2.64 0.92–7.69 0.072

Piperacillin–
tazobactam 13.20 3.04–60.38 0.001

95% confidence interval (CI). For the type of antibiotic, ceftriaxone, as the most prescribed beta-lactam antibiotic,
was used as reference.

2.1.2. Internal Validation

The ideal threshold probability for the RF, LR, and NB models was 0.20, 0.21, and
0.17, respectively, with comparable results with the 0.20 threshold probability. The NB,
LR, and RF models showed an area under the receiver operating characteristic (AUROC)
curve of 0.82 [95% CI 0.74–0.91], 0.81 [95% CI 0.76–0.91], and 0.81 [95% CI 0.75–0.91],
respectively (Figure 1A). For the specific values with 95% CI of all metrics with the ideal
and 0.20 threshold, see Appendix E.
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Figure 1. Performance metrics for the target non-attainment models in the internal validation data
set (A) and the external validation data set (B) for the 0.20 threshold with 95% confidence intervals.
NB: naïve Bayes; LR: logistic regression; RF: random forest; AUROC: area under the receiver operator
curve.
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Decision curve analysis (DCA) showed that the three models presented had a net
benefit for the RF, LR, and NB models over the “Treat all patients” and “Treat none”
over a broad range of threshold probabilities targeted: 0.06–0.60, 0.10–0.68, and 0.10–0.59,
respectively (Figure 2A).
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Figure 2. Decision curves for the target non-attainment models in the internal validation set (A) and
the external validation set (B). Black line: “Treat all patients”. Brown line: “Treat none”. Blue line: net
benefit of the logistic regression (LR) model. Green line: net benefit of the naïve Bayes (NB) model.
Purple line: net benefit of the random forest (RF) model.

Classifying a patient as showing target non-attainment within 12–36 h will trigger the
physician to consider therapeutic drug monitoring. Accordingly, lower or higher threshold
probabilities are used when harm associated with a positive prediction is rather low or
high, respectively. Considering antimicrobial therapy, the harm associated with a positive
prediction for beta-lactam target non-attainment within 12–36 h is relatively low; hence,
lower threshold probabilities are adequate. The threshold probability is an interpretation
of the harm-to-benefit ratio between false positives and true positives. A prediction model
is clinically useful if its net benefit is higher than for the alternative strategies (i.e., the
line of the model has to be above the “Treat all patients” and “Treat none” lines at the
chosen threshold probability) [13]. As shown in this figure, our target non-attainment
models show net benefit above the alternative strategies over a broad range of threshold
probabilities both in the internal validation set (all models) and external validation set
(the LR and RF models) and, as a result, show clinical utility in those ranges. The ideal
threshold probability for the models was ~0.20, which is an adequate threshold for many
clinical decisions concerning antimicrobial dosing in the ICU. Depending on the clinical
context, the threshold probability can be shifted upwards or downwards.

The calibration plots demonstrate excellent calibration of the RF and NB models over a
broad range of threshold probabilities with a slope of 1, intercept of 0.0 for both models, and
an expected calibration error (ECE) of 0.02 and 0.09, respectively. The LR model also shows
good calibration with a slope of 1.1, intercept of 0.0, and an ECE of 0.06 (see Appendix F).

2.2. External Validation

A validation cohort of 150 patients was used after excluding 3 patients undergoing re-
nal replacement therapy (RRT). The target was not attained in 72 patients (48.0%). For more
information on the descriptive statistics of the variables of interest, refer to Appendix G.
The prescribed dosages of the antibiotics are shown in Appendix H.

The median serum creatinine concentration was significantly lower in the external
validation set compared with the internal validation set, at 0.77 mg/dL [0.57–1.04] and
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0.995 mg/dL [0.69–1.56] (p < 0.001), respectively. Significant differences between the type of
antibiotic used were also found between the validation datasets (p < 0.001) (see Appendix I).

DCA showed that the RF, LR, and NB models had a net benefit over the “Treat all patients”
and “Treat none” strategies over a wide range of threshold probabilities: 0.06–0.80, 0.15–0.93,
and 0.38–0.88, respectively (see Figure 2B). However, the NB model showed a negative net
benefit compared with “Treat all patients” below the threshold probability of 0.38.

At the 0.20 threshold probability, the RF, LR, and NB models showed an AUROC
of 0.75 [95% CI 0.67–0.82], 0.80 [95% CI 0.73–0.87], and 0.79 [95% CI 0.72–0.86], respec-
tively (Figure 1B). For the specific values with 95% CI of all metrics with the ideal and
0.20 threshold, see Appendix E.

The calibration plots showed that the RF, LR, and NB models had acceptable calibration
over a wide range of threshold probabilities, with a slope of 1.3, 1.1, and 0.8, respectively,
and an intercept of 0.0 in all models. For the RF, LR, and NB models the ECE was 0.12, 0.13,
and 0.15 respectively (for a detailed description, Appendix F).

2.3. Online Beta-Lactam Target Non-Attainment Predictor

The online beta-lactam target non-attainment predictor is available at: https://cator0
10.nl/betalactampredictor (accessed on 26 September 2023).

3. Discussion

This study aimed to develop and externally validate multivariable prediction models
to identify critically ill patients at risk for beta-lactam target non-attainment within 12–36 h
of beta-lactam therapy. To our knowledge, these models are the first of their kind. Using
these models, we developed a broadly applicable online dose-optimization tool. This
tool can be used by physicians and pharmacists to maximize the potential for therapeutic
success with beta-lactam therapy in ICU patients.

In terms of overall performance for the internal and external validation, the RF and LR
models both show good discrimination, calibration, and net benefit for predicting of beta-
lactam target non-attainment. The NB model demonstrated lower performance compared
with the RF and LR models in terms of negative net benefit for predicting beta-lactam target
non-attainment in the external validation cohort. As a result, the NB model is less suitable
for this purpose.

We found that serum creatinine had the largest contribution to beta-lactam target
non-attainment, followed by the type of antibiotic used, age, and sex (male); these findings
are in line with the conclusions of Abdulla et al. [12]. Other potential risk factors have
been proposed, but all showed non-significant impact in the current study, such as the risk
factor lower daily dose, which is likely to be due to low variations in prescribed dosages.
Furthermore, the risk factor high BMI has been proposed, potentially resulting in a larger
volume of distribution and enhanced renal function due to increased kidney size and renal
blood flow [12,14]. Finally, a low SOFA score has also been suggested, but this factor is
correlated with renal function, which is already accounted for in the models [12].

In our cohort, ceftriaxone was the most prescribed antibiotic and was used as the
reference beta-lactam antibiotic for the variable type of antibiotic. Compared with cef-
triaxone, most of the other antibiotics had a higher probability of target non-attainment.
The difference in selected MICECOFF values for the beta-lactam antibiotics is one of the
factors having an impact on attaining beta-lactam target non-attainment. All beta-lactam
antibiotics undergo renal elimination, but other factors such as changes in protein binding
and volume of distribution can also play a role in target non-attainment, especially for
antibiotics with high plasma protein binding such as ceftriaxone and flucloxacillin.

With clinical chemistry data used from multiple hospitals, there is a risk of differ-
ences in reported concentrations of chemistry analytes. However, the risk is minimal
because commonly used chemistry analyzers show similar concentrations when comparing
chemistry analytes, such as serum creatinine, urea, and albumin [15].

https://cator010.nl/betalactampredictor
https://cator010.nl/betalactampredictor
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Our beta-lactam target non-attainment models are readily available online. By default,
these models have a threshold probability of 0.20, which is appropriate for many clinical
decisions regarding antimicrobial dosing in the ICU. Moreover, this threshold closely
matches the ideal threshold for the best performance metrics of both the RF and LR models.
In our models, the clinician can choose a lower threshold probability when critically ill
patients are on the ward. The threshold reflects the trade-off between harm associated
with a false positive and benefit associated with a true positive outcome. Hence, the
threshold of 0.20 reflects that benefit is four times greater than harm ([1–0.20]/0.20). When
the calculated probability for beta-lactam target non-attainment within the first 12–36 h is
higher than the threshold probability, the models will flag this patient as being at risk for
target non-attainment. This may be a trigger for the clinician to consider beta-lactam TDM.

The manual selection of a threshold within our online beta-lactam target non-attainment
models enables users to consider other threshold probabilities. The decision to choose
a different threshold probability within the clinical context might be challenging for the
clinician what is the most suitable. It is essential to choose a threshold that provides a
net benefit. To assist clinicians in making an informed decision, Figure 1 and Appendix J
provide the rationale behind selecting an appropriate threshold. In short, our beta-lactam
target non-attainment models show net benefit above the alternative strategies over a broad
range of threshold probabilities in both validation sets for the RF and LR models (Figure 1),
confirming their clinical usefulness when used within this range.

When evaluating the three models tested for beta-lactam target non-attainment, the
NB algorithm operates under the assumption that the variables are independent risk factors
contributing to the same outcome value. However, this assumption does not hold for our
model since certain variables, such as age and renally eliminated antibiotics, are correlated
with renal function. This may explain why the NB model performs less favorably than the
other models [16].

Our study did not demonstrate a performance advantage of RF over LR in developing
clinical prediction models, which is in line with the conclusions of Christadoulou et al. [17].
The RF algorithm consists of many decision trees and has the advantage that any interaction
or correlation between variables does not adversely affect classification. The LR algorithm
can be prone to overfitting and can negatively impact the diagnostic accuracy of the LR
algorithm in the general population [18].

This study has several strengths. First, we included patients from a variety of academic
and peripheral hospitals, originating from high-quality prospectively collected databases.
Second, we studied the performance of three different models in predicting beta-lactam target
non-attainment in a heterogenous group of critically ill patients. This was carried out in
the internal and external validation sets, allowing selection of the best-performing models
suitable for usage in a broad ICU population and therefore increasing its generalizability.
Third, the four variables required as input for the models are readily available to the clinician
during the ICU stay, especially at ICU admission. Fourth, the models were validated within
12–36 h after initiation of beta-lactam therapy, allowing quick monitoring of patients at risk of
target non-attainment. Lastly, the models are accessible online, making them easily applicable
in daily clinical practice in the ICU. This can provide valuable support for clinicians and
pharmacists in improving the treatment of severe infections in critically ill patients.

This study also has some limitations. First, it should be noted that in the external
validation a selection bias may have occurred, because only the patients were included
that met the inclusion criteria as used in the internal validation set. The external validation
cohort differed somewhat from the internal validation cohort of patients, where the overall
renal function was also significantly higher in the external validation cohort, mainly due
to one study by Gijsen et al. including patients with sepsis with preserved or increased
renal function [19]. This probably explains the higher rate of target non-attainment in
the external validation set (i.e., 48 versus 31%). Consequently, the overall performance
dropped slightly in the external validation set. However, the RF and LR models still
performed well, demonstrating the robustness and generalizability of these prediction
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models. Second, not all the beta-lactam antibiotics were present in the external validation
set or in the same proportions compared with the internal validation set. There were no
patients with cefotaxime, cefuroxime, or flucloxacillin included in the external validation set.
Additionally, the proportion of patients receiving meropenem or piperacillin–tazobactam
was larger in the external validation set and some patients had a higher dose regimen
of amoxicillin–clavulanic acid. Third, the models have been specifically developed and
validated to accurately predict exposure using intermittent dose regimens and within the
range of doses that have been investigated. Consequently, using the models outside the
stated intermittent dose ranges or for dose regimens involving continuous or extended
beta-lactam infusion may lead to inaccurate predictions. Nevertheless, the models can be
used to identify patients who may be at risk of underexposure at the start of treatment,
regardless of the infusion method used.

Fourth, to optimize treatment for worst-case infections, the highest MICECOFF values
of presumed pathogens per beta-lactam antibiotic were used to calculate target attain-
ment. Although the MICECOFF is in many situations similar to the clinical breakpoint,
this approach may not be suitable for patients infected with pathogens that have higher
susceptibility and require lower antibiotic concentrations. However, since the actual MIC
of the microorganism is often unknown in clinical practice, using MICECOFF values is
justifiable to initiate treatment. Furthermore, it is important to note that MICECOFF values
can change over time. For example, recently (March 2023), the MICECOFF for ceftriaxone
susceptibility of Enterobacteriaceae was lowered from 1 mg/L to 0.125 mg/L, a change
which could affect beta-lactam target non-attainment predictions. However, we regularly
monitor the MICECOFF values and adjust our models as needed to ensure the best possible
prediction for beta-lactam target non-attainment.

Fifth, beta-lactam antibiotics have a short half-life of 1–2 h for all studied antibiotics in
patients with normal renal function, except for ceftazidime and ceftriaxone with half-lives
of 4–6 h and 8–10 h, respectively [20]. Because renal function has the largest contribution
to target non-attainment, patients with normal or better renal function are at risk for beta-
lactam target non-attainment. In those patients, steady-state concentrations after three–five
half-lives are presumed within 12 h after the start of beta-lactam antibiotics with a short
half-life, but this was not investigated. For the beta-lactam antibiotics ceftriaxone and to
a lesser extent ceftazidime, steady-state concentrations are not reached when measuring
early in the 12–36 h window. Therefore, there is a risk that dosages of ceftriaxone and
ceftazidime will unnecessarily be raised with a greater risk of side effects that may occur. In
our opinion, plasma concentrations of antibiotics need to be above the target MICECOFF as
soon as possible after the start of the antibiotic for optimal treatment in critically ill patients
and this outweighs the small risk of side effects of antibiotics. Measuring a second plasma
concentration is considered in those patients when steady-state concentrations are reached.

Sixth, we measured total drug concentrations with correction for protein binding
based on the literature. Measuring unbound concentrations is desirable in critically ill
patients since the ratio of bound and unbound drugs can be subjected to changes because
of the disease characteristics of these patients. Seventh, serum creatinine was selected as a
marker for renal function, but this may not reflect the actual renal function in a critically
ill patient. Rapid changes in renal function may occur and a lag time in changes of serum
creatinine values exist, resulting in under- or overestimating the actual renal function
and leading to inadequate predictions from our models. Finally, the models have not yet
been validated in a prospective clinical trial to confirm their ability to reliably identify
patients with beta-lactam target non-attainment. However, we are planning to conduct
such research in the near future.

4. Patients and Methods

Appropriate reporting of our beta-lactam target non-attainment models was per-
formed according to the guidelines for the transparent reporting of a multivariable predic-
tion model for individual prognosis or diagnosis (TRIPOD) [21].
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4.1. Model Building and Internal Validation
4.1.1. Development Cohort

Patient data were assembled from two prospective trials, which were conducted in a total
of 11 academic and peripheral hospitals between 2016 and 2021 [3,10]. All patients who met
the following criteria were included in the model-building phase to maximize the power and
generalizability of the results: (1) admitted to the ICU, (2) aged ≥ 18 years, (3) treated with
intravenous intermittent beta-lactam antibiotic therapy, and (4) availability of a Ctrough within
12–36 h of starting antibiotic treatment with no dose adjustment or cessation of therapy during
this time. The antibiotics included in the study were cefotaxime, ceftazidime, ceftriaxone,
cefuroxime, amoxicillin, amoxicillin–clavulanic acid, flucloxacillin, piperacillin–tazobactam,
and meropenem. Patients were excluded in case of pregnancy, receiving studied antibiotics
only as prophylaxis within the context of selective digestive tract decontamination, or when
admitted to medium care. Burnwound patients as well as patients receiving RRT were also
excluded, because of the significantly altered PK of beta-lactam antibiotics.

4.1.2. Pharmacodynamic Target Attainment

The ECOFF of the presumed pathogens, as defined by the European Committee
on Antimicrobial Susceptibility Testing, was used for each of the study antibiotics (see
Appendix K) [22]. Beta-lactam pharmacodynamic target attainment is defined as 100%ƒT >
MICECOFF. The Ctrough concentration was directly compared against the highest MICECOFF
of the presumed pathogens to determine whether target attainment was achieved. The
unbound concentration of the beta-lactam antibiotics was calculated with correction for
protein binding based on the literature [3,10]. Plasma concentrations were determined by
multi-analyte liquid chromatography with tandem mass spectrometry (LC-MS-MS) methods
in accordance with quality standards as described in the published articles [23–26].

4.1.3. Variable Selection

The beta-lactam target non-attainment models were developed using variables selected
from the current literature [12], expert consensus, and data availability. Given that we
aimed to develop broadly applicable prediction models, all variables needed to be available
in the patient files or able to be calculated at the initiation of antibiotic therapy. The variables
included for testing were: (i) at ICU admission: age, height, body weight, sex, body mass
index (BMI), Acute Physiology and Chronic Health Evaluation IV score, admission for
cardiac surgery, admission for trauma, type of antibiotic, frequency of dosing, dose of
antibiotic, dose of antibiotic divided by the defined daily dosage (normalized dosing), the
number of days in the ICU before start of the antibiotic; and (ii) on the day of the start of
the antibiotic therapy: Sequential Organ Failure Assessment score (SOFA), fluid balance,
white blood cell count, C-reactive protein, serum creatinine, urea, and albumin. A detailed
description of the tested variables can be found in Appendix L.

4.1.4. Model Development

We used three different statistical methods, RF, LR, and NB, to analyze beta-lactam
target non-attainment. These methods use different mathematical and computational
techniques to learn patterns and make predictions or classifications, but differ in key ways.
RF is a machine learning algorithm that combines the outputs of multiple decision trees,
while LR is a statistical model that models the probability of a binary outcome. Naïve Bayes
is a probabilistic model based on Bayes’ theorem, which assumes independence between
the risk factors.

We randomly divided the development cohort into a training set (80%) and an internal
validation set (20%). Patients were stratified evenly between both sets for beta-lactam target
attainment and type of antibiotic. In the RF model, weights were added to correct for the
imbalance in the percentage of patients attaining the target. In the RF model’s training
set, we used the Boruta algorithm for variable selection, which is highly sensitive (nearly
100%) and selective in selecting relevant variables for model building [27–29]. To ensure a
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robust model, we ran the RF model with 2500 decision trees for each run [29,30]. For the
LR and NB models, the same predictor variables were used as those resulting from the
Boruta algorithm. The relative contribution of the variables (variable importance) to target
non-attainment was determined with the RF model by calculating the average Gini index
decrease with the 2500 trees used.

4.1.5. Internal Validation

The performance of the models was subsequently assessed on the model building set
using 1000-times repeated 5-fold cross-validation [31].

• The AUROC curve was used. AUROC curves were calculated for each cross-validation
to evaluate discrimination. The 95% CI for the AUROC curves was calculated using
DeLong’s test [32]. In the ICU setting, an adequate threshold probability for many
clinical decisions concerning antimicrobial dosing is 0.20 [33,34]. This means that TDM
should be applied if there is a 20% or higher chance that the target is not achieved, in
which case the clinician should be willing to perform TDM in four patients who do not
actually show beta-lactam target non-attainment in the next 12–36 h (false positives)
to treat one patient who truly shows beta-lactam target non-attainment in the next
12–36 h (true positive). For more information regarding the threshold probability, see
Appendix J. We manually selected the ideal threshold probability for each prediction
model, based on optimal sensitivity and specificity, using Youden’s J statistic [35]. We
calculated sensitivity, specificity, negative predictive value, positive predictive value,
and misclassification for beta-lactam target non-attainment within the next 12–36 h
after therapy initiation, both for the 0.20 and ideal threshold probability. For our
beta-lactam target non-attainment models, we prioritized sensitivity over specificity,
to avoid missing patients with target non-attainment.

• DCA was performed to evaluate the net benefit [36–38].
• Platt scaling was used to calibrate the RF model and NB model [39]. Calibration was

assessed using calibration plots for all three models (intercept, calibration slope, and
ECE) [13].

4.2. External Validation

Patient data were assembled from five observational ICU studies conducted between
2013 and 2018: one study is unpublished (Ethics Committee Research UZ/KU Leuven, S58397)
and four have been published [19,24–26]. The same inclusion and exclusion criteria were
applied as described above for the development cohort. Model performance was assessed as
described above for the internal validation set at the same threshold probabilities.

4.3. Statistical Analysis

All statistical analyses were performed in R (version 4.1.1) [40]. For the stratification,
the R package splitstackshape (version 1.4.8) was used. For performing RF, LR, and NB,
the packages h2o (version 3.36.0.4), caret (version 6.0-92), and naivebayes (version 0.9.7)
were used, respectively. Discrimination of the prediction models was considered adequate
with mean target values for AUROC, sensitivity, and specificity of ≥0.75, ≥0.80, and ≥0.60,
respectively. The ideal threshold probability for each prediction model was manually
selected to achieve an optimal combination of mean sensitivity ≥0.80 and specificity ≥0.60.

Pairwise deletion was performed when data were missing. For patient characteristics,
continuous data were presented as median and interquartile range and categorical data
were presented as count and percentage. The Wilcoxon sum rank test was used for con-
tinuous variables, the chi-squared test for the categorical variables with categories with
more than five observations, and the Fisher exact test for categories with fewer than five
observations. A two-sided significance level of 0.05 was set.
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5. Conclusions

We have developed and externally validated broadly applicable prediction models
that accurately estimate the likelihood of beta-lactam target non-attainment in ICU patients
within the first 12–36 h of therapy. These models are based on four readily available patient
variables (age, sex, serum creatinine, and type of antibiotic) and help optimize the treatment
of ICU patients with severe infections and can promote the efficient use of limited hospital
resources. The RF and LR models showed the best performance among the three models tested.
User-friendly online versions of the models have been developed to facilitate their bedside
application (https://cator010.nl/betalactampredictor, accessed on 26 September 2023).
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Appendix B. Results: Descriptive Statistics of Included Patients for Model
Development and Internal Validation

Table A1. Descriptive statistics of the patients used for model development and internal validation.
Values are presented as number (%) of patients or the median (IQR). Only when data is missing the
number of patients included in the analysis is mentioned (N = X). Body mass index (BMI), Sequential
Organ Failure Assessment score (SOFA), Acute Physiology and Chronic Health Evaluation score
(APACHE IV), day of start antibiotic therapy on the ICU (d0), white blood cells (WBC), C reactive
protein (CRP), intensive care unit (ICU), the assumed average maintenance dose per day for a drug
used for its main indication in adults (defined daily dosage), and dose of antibiotic divided by the
defined daily dosage (normalised dosing).

Variables Target Attainment
(N = 261)

Target Non-Attainment
(N = 115)

Overall
(N = 376)

Age (years) 65.0 [58.0, 72.0] 61.0 [50.5, 67.0] 64.0 [56.0, 71.0]
Height (cm) 173 [165, 180] 176 [170, 183] 175 [167, 182]

Actual body weight (kg) 80.0 [68.0, 92.0] 80.0 [70.0, 90.0] 80.0 [69.9, 90.0]
Sex (male) 155 (59.4) 77 (67.0) 232 (61.7)

BMI (kg/m2) 26.0 [23.2, 29.7] 25.3 [22.4, 29.0] 25.8 [22.9, 29.3]

SOFA Score d0 9.00 [5.00, 12.0]
(N = 260) 7.00 [4.00, 9.00] 8.00 [5.00, 11.0]

(N = 375)

APACHE IV Score 59.0 [26.0, 81.5]
(N = 260) 33.0 [21.5, 61.0] 50.0 [24.0, 78.0]

(N = 375)
Sepsis (No) 126 (48.3) 86 (74.8) 212 (56.4)

Cardiac Surgery (No) 253 (96.9)
(N = 256)

114 (99.1)
(N = 114)

367 (97.6)
(N = 370)

Trauma (No) 243 (93.1)
(N = 256)

101 (87.8)
(N = 114)

344 (91.5)
(N = 370)

Study antibiotic
Amoxicillin 7 (2.7) 8 (7.0) 15 (4.0)
Cefotaxime 40 (15.3) 37 (32.2) 77 (20.5)
Ceftazidime 14 (5.4) 1 (0.9) 15 (4.0)
Ceftriaxone 100 (38.3) 12 (10.4) 112 (29.8)
Cefuroxime 47 (18.0) 25 (21.7) 72 (19.1)

Flucloxacillin 6 (2.3) 11 (9.6) 17 (4.5)
Meropenem 40 (15.3) 14 (12.2) 54 (14.4)

Piperacillin/tazobactam 7 (2.7) 7 (6.1) 14 (3.7)
Serum creatinine d0 (mg/dL) 1.24 [0.769, 1.87] 0.735 [0.577, 1.07] 0.995 [0.690, 1.56]

Urea d0 (mmol/L) 10.7 [6.80, 16.8]
(N = 253)

7.20 [4.90, 9.93]
(N = 112)

9.00 [6.40, 14.7]
(N = 365)

CRP d0 (mg/L) 151 [51.5, 260]
(N = 256)

119 [28.0, 188]
(N = 111)

136 [44.5, 251]
(N = 367)

WBC d0 (×109/L)
13.1 [8.18, 17.6]

(N = 260)
13.5 [9.60, 18.2]

(N = 113)
13.2 [8.40, 17.9]

(N = 373)

Albumin (g/L) 27.0 [21.0, 32.0]
(N = 239)

30.0 [24.5, 35.0]
(N = 107)

28.0 [22.0, 33.0]
(N = 346)

Number of ICU days before start of
the antibiotic 2.00 [2.00, 4.00] 2.00 [2.00, 5.00] 2.00 [2.00, 4.00]

Fluid balance d0 1390 [111, 3050]
(N = 260)

873 [191, 1960]
(N = 112)

1240 [139, 2780]
(N = 372)

Defined daily dosage 1.00 [1.00, 1.50]
(N = 260)

1.00 [1.00, 1.50] 1.00 [1.00, 1.50]
(N = 375)

Normalized dosing 1.00 [1.00, 1.50] 1.00 [1.00, 1.50] 1.00 [1.00, 1.50]
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Appendix C. Results: Dose Regimens of the Antibiotics Used for Model Development
and Internal Validation

Table A2. Dose regimens of the antibiotics used for model development and internal validation.
The dose regimens are based on the transcription of the defined daily dosages of the beta-lactam
antibiotics, into the prescribed dosages on the ICUs in the participating hospitals to establish the dose
ranges in which the models are able to predict target non-attainment.

Study Antibiotic Median Dosage Lower 95% CI Median
Dosage

Upper 95% CI Median
Dosage

Amoxicillin 1000 mg q6h 1000 mg q6h 2000 mg q8h
Amoxicillin/clavulanic acid 1000/200 mg q6h 1000/200 mg q8h 1000/200 mg q6h

Cefotaxime 1000 mg q6h 1000 mg q8h 1000 mg q6h
Ceftazidime 2000 mg q8h 2000 mg q12h 2000 mg q8h
Ceftriaxone 2000 mg q24h 2000 mg q24h 2000 mg q24h
Cefuroxime 1500 mg q8h 1500 mg q8h 1500 mg q8h

Flucloxacillin 1000 mg q4h 500 mg q.6.h 2000 mg q4h
Meropenem 1000 mg q8h 1000 mg q8h 1000 mg q8h

Piperacillin/tazobactam 4000/500 mg q8h 4000/500 mg q8h 4000/500 mg q6h
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Figure A2. Relative variable importance on beta-lactam target non-attainment with the RF model. The
relative contribution of the variables (variable importance) to target non-attainment was determined
with the Random Forest (RF) model by calculating the average Gini index decrease of the 2500 trees
used. Serum creatinine had the largest contribution to beta-lactam target non-attainment and the
variable importance was set at 100%. The relative importance values of the variables Type of antibiotic,
Age, and Sex are relative to Serum creatinine.
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Appendix E. Results: Metrics of the Three Models

Table A3. Metrics of the three models at the ideal and 0.20 thresholds for the in- and external validation.
Metrics of the three models with 95% CI at the ideal (calculated with the Youden’s J statistic) and 0.20
threshold probability, for both the internal validation (5A–B) and external validation (5C–D). Random
Forest (RF); Logistic Regression (LR); Naïve Bayes (NB); negative predictive value (NPV); Positive
predictive value (PPV); Area under the receiver operating characteristics curve (AUROC).

5A

Model AUROC Sensitivity Specificity NPV PPV Misclassification Ideal Threshold

RF model 0.81 [0.75–0.91] 0.83 [0.73–0.91] 0.65 [0.49–0.80] 0.90 [0.83–0.95] 0.51 [0.40–0.65] 0.30 [0.18–0.42] 0.20
LR model 0.81 [0.76–0.91] 0.85 [0.73–0.95] 0.60 [0.51–0.71] 0.91 [0.84–0.97] 0.48 [0.42–0.55] 0.32 [0.25–0.38] 0.21
NB model 0.82 [0.74–0.91] 0.85 [0.77–0.95] 0.62 [0.43–0.75] 0.90 [0.83–0.97] 0.50 [0.39–0.61] 0.31 [0.21–0.44] 0.17

5B

Model AUROC Sensitivity Specificity NPV PPV Misclassification Threshold

RF model 0.81 [0.75–0.91] 0.83 [0.73–0.91] 0.65 [0.49–0.80] 0.90 [0.83–0.95] 0.51 [0.40–0.65] 0.30 [0.18–0.42] 0.20
LR model 0.81 [0.76–0.91] 0.86 [0.73–0.95] 0.59 [0.49–0.69] 0.91 [0.84–0.97] 0.48 [0.42–0.54] 0.33 [0.26–0.40] 0.20
NB model 0.82 [0.74–0.91] 0.83 [0.73–0.91] 0.67 [0.53–0.78] 0.90 [0.84–0.95] 0.53 [0.41–0.64] 0.28 [0.18–0.40] 0.20

5C

Model AUROC Sensitivity Specificity NPV PPV Misclassification Threshold

RF model 0.79 [0.72–0.86] 0.90 [0.81–0.96] 0.50 [0.38–0.62] 0.85 [0.71–0.94] 0.62 [0.52–0.72] 0.31 [0.23–0.39] 0.20
LR model 0.80 [0.73–0.87] 0.90 [0.81–0.96] 0.50 [0.38–0.62] 0.85 [0.71–0.94] 0.62 [0.52–0.72] 0.31 [0.23–0.39] 0.21
NB model 0.75 [0.67–0.82] 0.89 [0.79–0.95] 0.47 [0.36–0.59] 0.82 [0.68–0.92] 0.61 [0.51–0.70] 0.33 [0.25–0.41] 0.17

5D
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set (A) and the external validation set (B). In the internal validation set for the RF, LR, and NB models,
the slope is 1.0, 1.1, 1.0, respectively and the intercept is 0.0 for all models. The expected calibration error
(ECE) is for the RF, LR, and NB models 0.02, 0.06, and 0.09, respectively. In the external validation set for
the RF, LR, and NB models, the slope is 1.3, 1.1, 0.8, respectively and the intercept is 0.0 for all models.
The ECE is for the RF, LR, and NB models 0.12, 0.13, and 0.15, respectively.

Appendix G. Results: Descriptive Statistics of Included Patients for External Validation

Table A4. Descriptive statistics of the patients used for the external validation. Values are presented
as number (%) of patients or the median (IQR). day of start antibiotic therapy on the ICU (d0).

Variables Target Attained
(N = 78)

Target Not Attained
(N = 72)

Overall
(N = 150) p-Value

Sex (male) 47 (60.3%) 50 (69.4%) 97 (64.7%) 0.315
Age (years) 64.0 [56.3, 73.0] 59.0 [49.8, 68.3] 62.0 [54.0, 70.0] 0.013

Study antibiotic
Amoxicillin 0 (0%) 9 (12.5%) 9 (6.0%) 0.001
Ceftazidime 4 (5.1%) 2 (2.8%) 6 (4.0%)
Ceftriaxone 17 (21.8%) 4 (5.6%) 21 (14.0%)
Meropenem 39 (50.0%) 38 (52.8%) 77 (51.3%)

Piperacillin/tazobactam 18 (23.1%) 19 (26.4%) 37 (24.7%)
Serum creatinine d0 (mg/dL) 0.940 [0.663, 1.26] 0.680 [0.500, 0.845] 0.770 [0.570, 1.04] <0.001

Appendix H. Results: Dose Regimens of the Antibiotics Used for External Validation

Table A5. Dose regimens of the antibiotics used for the external validation. The dose regimens
are based on the transcription of the defined daily dosages of the beta-lactam antibiotics, into the
prescribed dosages on the ICUs in the participating hospitals to establish the dose ranges in which
the models are able to predict target non-attainment.

Type of Antibiotic Median Dosage Lower 95% CI Median
Dosage

Upper 95% CI Median
Dosage

Amoxicillin/clavulanic acid 1000/200 mg q6h 1000/200 mg q6h 1000/200 mg q4h
Ceftazidime 1000 mg q8h 1000 mg q8h 2000 mg q8h
Ceftriaxone 2000 mg q24h 2000 mg q24h 2000 mg q24h
Meropenem 1000 mg q8h 1000 mg q8h 1000 mg q8h

Piperacillin/tazobactam 4000/500 mg q8h 4000/500 mg q8h 4000/500 mg q8h

Appendix I. Results: Comparison of the Internal and External Data

Table A6. Comparison of the internal and external data for the identified predictor variables. Values are
presented as number (%) of patients or the median (IQR), day of start antibiotic therapy on the ICU (d0).

Variables External Data
(N = 150)

Internal Data
(N = 376) p-Value

Sex (male) 97 (64.7%) 232 (61.7%) 0.59
Age (years) 62.0 [54.0, 70.0] 64.0 [56.0, 71.0] 0.36

Serum creatinine d0 (mg/dL) 0.77 [0.57, 1.04] 0.995 [0.69, 1.56] <0.001
Type of antibiotic <0.001

Amoxicillin 9 (6.0%) 15 (4.0 %)
Cefotaxime 0 77 (20.5 %)
Ceftazidime 6 (4.0%) 15 (4.0 %)
Ceftriaxone 21 (14.0%) 112 (29.8 %)
Cefuroxime 0 72 (19.1 %)

Flucloxacillin 0 17 (4.5 %)
Meropenem 77 (51.3%) 54 (14.4 %)

Piperacillin/tazobactam 37 (24.7%) 14 (3.7 %)
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Appendix J. Choosing a Threshold Probability (Illustration)

The choice of an appropriate threshold probability in function of the clinical context
can be illustrated by an example of a clinical situation. Consider a 60-year-old female patient
transferred from the pulmonology ward to the ICU because of deteriorating respiratory
function after initial treatment for pneumonia with amoxicillin-clavulanate for two days.
A positive blood sample with Pseudomonas aeruginosa was cultured. She is admitted to
the ICU with acute respiratory distress syndrome and is presenting with clinical features
compatible with sepsis. The clinician decides to switch from amoxicillin-clavulanate to
ceftazidime. As the patient shows early signs of sepsis and an urgent need for mechanically
assisted ventilation, reaching therapeutic concentrations as soon as possible can be life-
saving. The patient’s serum creatinine was in the morning and past days around 0.8 mg/dL.
In this patient, there is a 19% chance of target non-attainment when using the Logistic
Regression model.

When looking at the harm-to-benefit ratio a positive prediction for beta-lactam tar-
get non-attainment would trigger the clinician to initiate beta-lactam therapeutic drug
monitoring, with subsequent dose optimization if needed. The benefit of this is clear, i.e.,
attainment of therapeutic concentrations. There is a relatively low risk for harm in the
patient with the withdrawal of extra blood. The default threshold probability is 0.20 and
that means that the clinician is willing to perform TDM in 4 patients who actually do not
show beta-lactam target non-attainment in the next 12–36 h (false positives) to treat one
patient who truly shows beta-lactam target non-attainment the next 12–36 h (true positive).
Hence, the benefit of treating one true positive is four times greater ((1–0.20)/0.20) than the
harm of treating one false positive.

Having set the threshold probability, the clinician now enters the required predictors
into the online calculator. The calculated probability for beta-lactam target non-attainment
in the next 12–36 h is 0.19, meaning that in this patient the model recommends not perform-
ing TDM. The clinician can choose a lower threshold probability when critically ill patients
are on the ward. Choosing a lower threshold probability leads to increased sensitivity
(i.e., decrease in false negatives) at the cost of decreased specificity (i.e., increase in false
positives).

Appendix K. Methods: EUCAST MICECOFF

Table A7. EUCAST MICECOFF for the target drugs. MICECOFF: Minimal inhibitory concentration,
epidemiological cut-off value; EUCAST European Committee on Antimicrobial Susceptibility [22];
Data from the EUCAST MIC distribution website, last accessed on 26 September 2023 (http://www.
eucast.org, accessed on 26 September 2023).

Study antibiotic MICECOFF
17 (mg/L)

Presumed Micro-Organism
(s)

Cefotaxime 4 Staphylococcus aureus
Ceftazidime 8 Pseudomonas aeruginosa
Ceftriaxone 1 Enterobacteriaceae
Cefuroxime 8 Escherichia coli
Amoxicillin 8 Enterobacteriaceae

Amoxicillin/clavulanic acid 8 Enterobacteriaceae
Flucloxacillin 1 Staphylococcus aureus

Piperacillin/tazobactam 16 Pseudomonas aeruginosa
Meropenem 2 Pseudomonas aeruginosa

http://www.eucast.org
http://www.eucast.org
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Appendix L. Methods: Detailed Description of Variables Used for the Models

Table A8. Detailed description of variables used for the development of the beta-lactam target
non-attainment models. Body Mass index (BMI); intensive care unit (ICU); day of start antibiotic
therapy on the ICU (d0); C reactive protein (CRP); white blood cells (WBC).

Variables

Age On admission; in years
Height On admission; in cm

Body weight On admission; in kg
Sex Male or female
BMI On admission; weight/height2 in kg/cm2

Cardiac surgery Cardiac surgery related diagnosis on admission; yes
or no

Trauma Surgery related diagnosis on admission; yes or no

Type of antibiotic

ceftriaxone was used as reference drug in
comparison with the other beta-lactam antibiotics for

target attainment because this was the most used
antibiotic drug

The number of days in the ICU before
start of the antibiotic The number of days in the ICU from admission to d0

Fluid balance The amount of volume administered to the patient
minus the excreted volume on d0

Creatinine Serum creatinine on d0; in mg/dL
Urea Serum urea on d0; in mmol/L
CRP Serum CRP on d0; in mg/L
WBC Blood WBC on d0; in 109/L

Albumin Serum albumin on d0; in mg/dL
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