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Abstract: Autism Spectrum Disorder (ASD) is a diverse neurodevelopmental condition. Gene–

environmental interactions in early stages of life might alter metabolic pathways, possibly contribut-

ing to ASD pathophysiology. Metabolomics may serve as a tool to identify underlying metabolic

mechanisms contributing to ASD phenotype and could help to unravel its complex etiology. In a

population-based, prospective cohort study among 783 mother–child pairs, cord blood serum concen-

trations of amino acids, non-esterified fatty acids, phospholipids, and carnitines were obtained using

liquid chromatography coupled with tandem mass spectrometry. Autistic traits were measured at the

children’s ages of 6 (n = 716) and 13 (n = 648) years using the parent-reported Social Responsiveness

Scale. Lower cord blood concentrations of SM.C.39.2 and NEFA16:1/16:0 were associated with higher

autistic traits among 6-year-old children, adjusted for sex and age at outcome. After more stringent

adjustment for confounders, no significant associations of cord blood metabolites and autistic traits

at ages 6 and 13 were detected. Differences in lipid metabolism (SM and NEFA) might be involved in

ASD-related pathways and are worth further investigation.

Keywords: metabolomics; cord blood metabolomics; ASD; autism spectrum disorder; sphingomyelines;

non-esterified fatty acids; carnitines

1. Introduction

Autism Spectrum Disorder (ASD) is a diverse neurodevelopmental condition charac-
terized by difficulties in social communication and interaction as well as restrictive and
repetitive behavior, interests or activities [1]. Increasing evidence indicates that ASD rep-
resents the extreme end of a continuum of autistic traits that are present in the general
population [2,3]. The biological mechanisms underlying ASD remain unclear. However, a
growing body of evidence suggests that the interplay of genetic and environmental factors
may trigger immune and inflammatory responses in early stages of life, which could play
a key role in pathophysiological processes leading to ASD [4,5]. These processes might
result in metabolic dysregulations that can be observed in cord blood, detectable through
metabolomics prior to the manifestation of autistic traits in early childhood. Multiple
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cross-sectional metabolomics studies among pre-school children with an ASD diagnosis
and typically developing children have been conducted and suggested that mitochondrial
dysfunction, immune dysregulation, as well as altered amino acid, lipid, and neurotrans-
mitter metabolism could be associated with ASD [6–18]. Only one previous study assessed
the prospective associations of stored dried blood spot metabolites in a small group of
37 newborns that received an ASD diagnosis in childhood and in healthy controls. They
did not detect significant differences in metabolite concentrations [19]. The majority of
previous studies have been based on small, selected clinical samples using a cross-sectional
design, which precluded the possibility of assessing the temporality of associations. In
addition, given that social impairments related to ASD exist on a spectrum that extends
into the typical range of physiological variations, differences in metabolic composition
might also be detectable in fetuses that develop sub-clinical autistic traits in childhood.

We hypothesize that changes in the blood metabolite composition due to early-life
metabolic adaptations may be associated with autistic traits in the general population.
We tested this hypothesis on 783 children participating in a population-based prospective
cohort study from early fetal life onwards. We used a targeted metabolomics approach for
amino acids (AA), non-esterified fatty acids (NEFA), phospholipids (PL), sphingomyelins
(SM), and carnitines (Carn) from cord blood. These metabolites play an important role
in lipid metabolism, signal transduction, oxidative stress, inflammatory responses, and
mitochondrial as well as neurotransmitter metabolism and might therefore be involved in
ASD pathophysiology [20–23]. Autistic traits were measured dimensionally at the ages 6
and 13 with the Social Responsiveness Scale.

2. Methods

2.1. Study Design

This study was embedded in the Generation R Study, a prospective population-based
cohort from fetal life onwards, designed to identify early environmental and genetic deter-
minants of growth and development. Pregnant women who resided in the Rotterdam area
and delivered between April 2002 and January 2006 were eligible for participation. Study
approval was obtained by the Medical Ethical Committee of the Erasmus University Medical
Center, Rotterdam (MEC 198.782/2001/31). Written informed consent was obtained from all
mothers. Umbilical cord blood metabolites were assessed in a subgroup of 921 mother–infant
pairs. Of those, 716 and 648 had information on autistic traits at 6 and 13 years, respectively,
and 581 had information at both 6 and 13 years (see Flowchart in Figure S1).

2.2. Metabolomics Measurements

Umbilical venous cord blood samples were collected by a midwife or an obstetrician
(median gestational age at birth: 40.3 weeks; (95% range: 36.9, 42.4)) after birth [24]. Blood
samples were transported to the regional laboratory (STAR-MDC), spun, and stored at
−80 ◦C within a maximum of 4 h after collection. For metabolite measurements, the sam-
ples were transported on dry ice to the Division of Metabolic and Nutritional Medicine,
Dr. von Hauner Children’s Hospital, LMU Munich. There, a targeted metabolomics
approach was performed in order to determine the serum concentrations of 193 metabo-
lites (µmol/L), AA, NEFA, PL (including diacyl-lysophosphatidylcholines (PC.aa), acyl-
alkyl-lysophosphatidylcholines (PC.ae), acyl-lysophosphatidylcholines (Lyso.PC.a), alkyl-
lysophosphatidylcholines (Lyso.PC.e)), SM, and Carn (including free carnitine (Free Carn)
and acylcarnitines (Carn.a)). The metabolomics analysis is described in detail elsewhere [24].
In brief, a 1100 high-performance liquid chromatography (HPLC) system (Agilent, Wald-
bronn, Germany) coupled with a API2000 tandem mass spectrometer (AB Sciex, Darmstadt,
Germany) analyzed AA [25]. For the amino acid notation, IUPAC-IUB nomenclature was
used [26]. The measurement of PL, NEFA, and Carn was conducted with a 1200 SL HPLC
system (Agilent, Waldbronn, Germany) coupled to a 4000QTRAP tandem mass spectrom-
eter from AB Sciex (Darmstadt, Germany) [27,28]. The analytical measurements enable
the distinguishment of the total number of double bonds, however, not their position or
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the distribution of the C-atoms between the fatty acid side chains. For NEFA, PL, and
Carn.a, the following notation was used: ‘X:Y’, ‘X’ designates the number of C-atoms of
the carbon chains, and ‘Y’ is the total number of double bonds. The ‘a’ is a synonym
for acyl chain bound to the backbone via an ester bond (‘acyl-’), whereas ‘e’ stands for
an ether bond (‘alkyl’), respectively. For precise measurements, six quality control (QC)
samples per batch were consistently measured between study samples. Outliers were
excluded, and the coefficients of variation (CV; standard deviation/mean) for each batch
(intra-batch) and for all batches (inter-batch) of the QC samples were calculated for each
metabolite. We excluded batches with an intra-batch CV higher than 25%, which is in line
with previous studies [29–31]. Complete metabolite data was excluded for metabolites that
had an inter-batch CV higher than 35% or if less than 50% of the batches had passed the
QC. The correction of batch effects was carried out by dividing metabolite concentrations
by the ratio of intra-batch median and the inter-batch median of the QC samples [31]. If
metabolites or participants missed more than 50% of the values, they were excluded [30].
Missing metabolite values of the remaining metabolites and participants were imputed
using the Random Forest algorithm (R package missForest) [32]. Further information on
the parameters for mass-spectrometry detection and identification of the metabolites can
be found in Supplementary Text S1 and Supplementary Table S10.

For the data analysis, individual metabolites were clustered in metabolite groups (AA,
NEFA, PC.aa, PC.ae, Lyso.PC.a, Lyso.PC.e, SM, Free Carn, and Carn.a), as well as in metabolite
subgroups based on chemical structure and biological relevance (AA: branched-chain amino
acids (BCAA), aromatic amino acids (AAA), essential amino acids (EAA), non-essential amino
acids (NEAA); NEFA; PC.aa; PC.ae; Lyso.PC.a; Lyso.PC.e; SM: saturated, mono-unsaturated,
poly-unsaturated; Carn.a: short-chain, medium-chain, long-chain) [24]. The sum of individual
metabolite concentrations per metabolite group was calculated. Moreover, we computed the
following ratios: AA ratios, asparagine/aspartic acid (Asn/Asp), and glutamine/glutamic
acid (Gln/Glu) as indicators for anaplerosis or replenishing of citric acid cycle metabolites;
NEFA.18:1/NEFA.18:0 and NEFA.16:1/NEFA.16:0 ratios as markers of stearoyl-CoA desaturase-
1 activity, which is associated with increased fat accumulation and reduced fatty acid oxidation;
ΣPC.aa/ΣPC.ae, reflecting oxidative stress, ΣLyso.PC.a/ΣPC.aa as a lipid biomarker of in-
flammation; (lyso.PC.a.C16:0 + lsyo.PC.a.C18:0)/ΣPC.aa as a proinflammatory biomarker;
(lyso.PC.a.C18:1 + lyso.PC.a.C18:2)/ΣPC.aa as an anti-inflammatory biomarker; Carn.a ratios,
Carn.a.C16.0/free Carn and Carn.a.C2:0/Carn.a.C16:0 as markers of Carn palmitoyl transferase-
1 activity and fatty acid ß-oxidation [33–38]. Individual metabolite concentrations, sums, and
ratios were square root transformed to obtain normally distributed metabolite concentrations.
In order to enable comparison of the effect estimates, individual metabolite concentrations and
sums were standardized by calculating standard deviation scores.

2.3. Autistic Traits

At the ages of 6 and 13 years, the primary caregiver of the participating children filled
out a short version of the Social Responsiveness Scale (SRS). The SRS is a validated instru-
ment for assessing autistic traits on a continuous scale [39]. It represents the caregiver’s
observation of the child’s social behavior during the previous 6 months. The SRS is a useful
screening tool to identify children who need further ASD-specific diagnostics [40]. The
abridged, 18-item version of the SRS has been shown to be an effective tool for generating
results consistent with the full version of the SRS [41]. It is designed for children between
the ages of 4 and 18. Each item on the SRS is rated from 0 (never true) to 3 (almost always
true), covering social, language, and repetitive behavior, with higher scores indicating
greater social impairment [39]. Individual item scores for the SRS were summed and
weighted by the number of items completed. We used the SRS as a continuous measure of
autistic traits in our analyses.
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2.4. Covariates

During pregnancy, data on maternal age at enrollment, educational level (higher
education yes/no), smoking (non-smoking, smoked until pregnancy was known, contin-
ued smoking during pregnancy), alcohol intake (no intake, until pregnancy was known,
continued during pregnancy), and folic acid supplement (yes/no) during pregnancy was
gathered using questionnaires. A start of folic acid supplementation during the first
10 weeks of pregnancy or preconceptionally was considered positive. Maternal weight and
height at enrollment were measured without shoes, and BMI was calculated. Maternal
psychopathology during pregnancy was assessed using the Brief Symptom Inventory (BSI).
Maternal vitamin D levels were obtained from serum in pregnancy. Vitamin D levels below
50 nmol/L were considered deficient. Information on sex, gestational age at birth, and
birth weight according to European growth charts was obtained from medical records.
We calculated gestational age and sex-adjusted birth weight standard deviation scores
according to growth charts of Niklasson [42]. Data on the children’s age at outcome was
obtained when the primary caregiver filled out the SRS.

2.5. Statistical Analysis

First, we conducted a non-response analysis. We compared mother–child pairs of
our subsample with all mother–child pairs with metabolomics data available to identify
and take into account possible biases caused by loss to follow-up or exclusion criteria
(Supplementary Table S1). We used a Chi-squared test for categorical variables and a
Student’s t-test or Mann–Whitney-U test for normally distributed or skewed continuous
variables. We explored the correlation between the SRS scores at 6 and 13 years using
Spearman’s correlation. Then, we examined the associations of neonatal metabolite ratios,
groups, and individual metabolites with the continuous SRS scores at the ages of 6 and 13
using linear regression models. We chose this approach over data reduction or variable
selection analysis methods like Principal Component Analysis because our primary goal
was to assess the associations of the individual metabolites using regression models on
the outcome autistic traits rather than identifying clusters of metabolites that were jointly
associated with the outcome. Analyses were only adjusted for child sex and age at outcome
in the basic model and additionally adjusted for our preselected confounders in the main
model. Confounders were selected based on previous studies and included maternal age,
pre-pregnancy BMI, maternal education level, maternal psychopathology, smoking during
pregnancy, alcohol consumption during pregnancy, gestational age at birth, and birth
weight [13,18,19,43,44]. Several sensitivity analyses were performed. First, we repeated our
main analysis, additionally adjusting for vitamin D levels and folic acid supplementation
as previous studies suggested associations of folic acid as well as vitamin D deficiency with
autistic traits [4]. Second, we explored the influence of individual confounding variables
by separately adjusting for each confounder.

As an exploratory analysis, we ran a linear mixed-effects model to investigate whether
changes in autistic traits over time are associated with certain metabolites. Models were
fit using the lme4 package [45]. Linear mixed-effects models contain numerous positive
features, including modeling of random effects and handling of missing time points.

To account for multiple testing, we applied Benjamini–Hochberg correction separately
for each model, using an overall false discovery rate (FDR) adjusted p-value of <0.05. To
account for missing values of covariates, we performed multiple imputations using the
fully conditional specification method, and pooled results from 25 imputed datasets were
reported [46]. The proportion of missing values ranged from 6% (vitamin D deficiency)
to 17% (folic acid supplement). All statistical tests were 2-sided. Statistical analyses were
conducted using R statistical software version 4.2.2 (R Foundation for Statistical Computing,
Vienna, Austria).
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3. Results

3.1. Population Characteristics

The mean maternal age at enrollment was 31.8 (±3.9) years, and the median body
mass index was 22.4 (kg/m2) (Table 1). Most women were nulliparous (62%), highly ed-
ucated (66%), did not smoke (79%), and continued drinking alcohol (56%) in pregnancy.
A non-response analysis showed that mothers of children included in our analysis were
older, had a higher education level, smoked less, drank less alcohol, and used more folic
acid supplements during pregnancy as compared to mother–child pairs with metabolomics
data available who did not answer the SRS questionnaire (Table S1). Spearman correlation
between SRS scores at age 6 and at age 13 suggested a moderate (intercept of 0.58) correla-
tion. Median concentrations of cord blood metabolite groups, individual metabolites, and
metabolite ratios are shown in Table S2.

Table 1. General characteristics of the study population.

Characteristics Total Sample n = 783

Maternal characteristics

Age at enrolment mean (±SD), years 31.8 (3.9)

Education level, high, n (%) 510 (65.1%)

Pre-pregnancy body mass index, median (95% range), kg/m2 22.4 (18.5, 34.0)

Smoking, n (%)

Never smoked during pregnancy 555 (79.1%)

Smoked until pregnancy was known 63 (9.0%)

Continued smoking during pregnancy 84 (11.9%)

Alcohol use, n (%)

No alcohol consumption during pregnancy 207 (29.6%)

Alcohol consumption until pregnancy was known 103 (14.7%)

Alcohol consumption continued during pregnancy 389 (55.7%)

Psychopathology, median (95% range) 0.1 (0, 1)

Folic acid supplements use, yes, n (%) * 600 (92.9%)

Vitamin D deficiency, yes, n (%) ** 221 (30.2%)

Fetal characteristics

Fetal sex, female, n (%) 372 (47.5%)

Gestational age at birth in weeks, median (95% range) 40.3 (36.9, 42.4)

Birthweight in grams, mean (±SD) 3541 (494.0)

Birthweight < 2500 g, n (%) 16 (2.0%)

Birthweight 2500 to 4500 g, n (%) 744 (95.0%)

Birthweight > 4500 g, n (%) 23 (3.0%)

Child characteristics

6 years visit

Age at visit in years, median (95% range) 5.9 (5.7, 6.8)

SRS autistic traits score, median (95% range) 3.0 (0, 12)

13 years visit

Age at visit in years, median (95% range) 13.5 (13, 14.4)

SRS autistic traits score, median (95% range) 4.0 (0, 15)

SRS: Social Responsiveness Scale. Values presented as mean (±standard deviation (SD), median (interquartile
range (95% range)), or number of participants (valid%). Psychopathology: GSI score; Number of missing per
covariate: smoking, n = 81 (10%); alcohol use, n = 84 (11%); psychopathology, n = 51 (7%); education, n = 7 (1%);
folic acid supplement n = 137 (17%), vitamin D, n = 50 (6%). * Start of folic acid supplementation preconception or
in first 10 weeks of pregnancy = “yes”. ** Vitamin D deficiency: <50 nmol/L.
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3.2. Neonatal Cord Blood Metabolomics and Autistic Traits at the Ages of 6 and 13

Higher cord blood SM.a.C39.2 concentrations were significantly associated with a 0.6
lower SRS score at 6 years (95% CI (−0.9, −0.31) per SDS increase in SM.a.39.2, FDR-adjusted
p-value 0.01) in the basic model (Figure 1A, Table 2), but not in the main model (0.58 lower
SRS score (95% CI (−0.84, −0.24) per SDS increase, FDR-adjusted p-value 0.08) (Figure 1B,
Table 2). The NEFA.16:1/16:0 ratio was inversely associated with SRS scores in the basic
model (0.58 lower SRS score (95% CI (−0.83, −0.26)) per SDS increase in NEFA.16:1/16:0 ratio,
FDR-adjusted p-value: 0.02) (Figure 1A, Table 2) but did not remain significant in the main
model after multiple testing correction (0.48 lower SRS score (95% CI (−0.77, −0.19)) per SDS
increase in NEFA.16:1/16:0 ratio, FDR-adjusted p-value: 0.08) (Table 2). We observed that
higher Carn.a.C18.2 concentrations were associated with higher SRS scores at age 6 in the basic
(0.48 higher SRS score (95% CI (0.19, 0.77)) per SDS increase in Carn.a.C18.2, FDR-adjusted
p-value 0.06) and main model (0.51 higher SRS score (95% CI (0.22, 0.8)) per SDS increase in
Carn.a.C18.2, FDR-adjusted p-value 0.08), although it did not survive multiple testing (Table 2).
No significant associations between total metabolite ratios, groups, individual concentrations,
and autistic traits at 13 years were observed (Figure S1A,B, Tables S3, S4, S6 and S7)). Linear
mixed-effects analyses did not yield significant associations between changes in autistic traits
over time and metabolites (Table S9).

Table 2. Association of cord-blood metabolites and SRS scores at age 6 and 13.

SRS Age 6 SRS Age 13

Basic Model Main Model Basic Model Main Model

Beta p-Value * Beta p-Value * Beta p-Value * Beta p-Value *

Sphingomyelines
SM.a.C.39.2

−0.60 0.01 −0.54 0.08 −0.05 0.88 0.02 0.99

Carnitines
Carn.a.C.18.2

0.48 0.06 0.51 0.08 0.28 0.51 0.31 0.69

NEFA Ratio
NEFA 16:1/16:0

−0.55 0.02 −0.48 0.08 −0.38 0.40 −0.32 0.69

* FDR-corrected p-value. Basic model: adjusted for gender and age at outcome; main model: adjusted for gender,
age at outcome, maternal BMI, maternal psychopathologies, education level, smoking during pregnancy, alcohol
intake during pregnancy, gestational age at birth, and birthweight.

Figure 1. Cont.
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Figure 1. Associations of individual cord-blood metabolites with SRS scores at the age of 6 years. (A) basic

model, (B) main model. Values represent the estimated change in the SRS score associated per SDS increase

of a single cord blood metabolite (µmol/L) from linear regression models. (A) is adjusted for sex and age

at outcome; (B) is adjusted for sex, age at outcome, maternal BMI, maternal psychopathologies, education

level, smoking during pregnancy, alcohol intake during pregnancy, gestational age at birth, and birth-

weight. Labeled values represent significant associations (FDR-adjusted p-values < 0.05). Corresponding

numerical values are shown in Table S4. AA amino acids, NEFA non-esterified fatty acids, PC.aa diacyl-

phosphatidylcholines, PC.ae acyl-alkyl-phosphatidylcholines, lyso.PC.a. acyl-lysophosphatidylcholines,

lyso.PC.e alkyl-lysophosphatidylcholines, Carn.a acylcarnitines, SM sphingomyelines. Each color repre-

sents a different metabolite group, e.g., red represents “AA”.

3.3. Sensitivity Analysis

The additional adjustment for vitamin D deficiency and folic acid supplementation
did not influence the associations between cord blood metabolites and SRS scores at age
6 or 13 years (Tables S5 and S8). Adjusting for every confounder separately showed
that gestational age had the strongest influence on the association between cord-blood
metabolites and autistic traits.

4. Discussion

In this prospective cohort study, we observed some suggestive evidence for associ-
ations between SM, NEFA ratio, and autistic traits at age 6 years, but these associations
did not remain significant after multiple testing correction and more rigorous covariate
adjustment. No significant associations between cord blood metabolites and autistic traits at
the ages of 6 and 13 were observed in our main model. Moreover, no effect modification by
vitamin D deficiency or folic acid deficiency was observed. Controlling for gestational age
at birth showed the biggest effect modification. Finally, no associations between changes in
autistic traits over time and metabolites were detected.

4.1. Interpretation of Main Findings

The etiology of ASD is complex and poorly understood, but various metabolic path-
way disturbances as a result of gene–environment interactions already occurring during
the fetal period are believed to contribute to this heterogeneous condition. Cord blood
metabolomics is able to capture the metabolic phenotype as a result of the interplay be-
tween genetics and environment. Moreover, it presents combined information on both
maternal metabolism transferred via the placenta and fetal metabolism [30]. Thus, it may



Metabolites 2023, 13, 1140 8 of 14

contribute to elucidating the complex etiology of ASD. A review from 2020 that included
10 case–control studies reported repeatedly identified differences in amino acid concen-
trations (tryptophan, BCAA), pathways of oxidative damage (taurine level elevations),
abnormalities in the nitric oxide pathway, and disturbed lipid metabolism (decreased
levels of lysolipids, free- and short-/long-chain Carn.a, docosahexaenoic acid, increased
levels of sphingosine-1-phosphate), as well as disruptions of the Krebs cycle, oxidative
phosphorylation, and respiratory chain among pre-school children with an ASD diagnosis
compared to non-ASD-diagnosed controls [9]. Moreover, some studies explored the associa-
tions between metabolomics and autistic traits prospectively. An untargeted metabolomics
case–control study that analyzed the blood of 30 mothers whose children received an ASD
diagnosis and of 30 controls detected, amongst others, differences in histidylglutamate,
cinnamoglycine, proline, and adrenoylcarnitine concentrations [43]. Another case–control
study analyzed stored mid-pregnancy blood of 52 women whose children later received
an ASD diagnosis and of 62 controls [13]. They reported differences in several glycosphin-
golipid, n-glycan, and pyrimidine metabolism pathways. Together, those studies suggest
that alterations in the metabolic composition of the blood might be present in children
diagnosed with ASD from early life onwards. However, the metabolites that showed
differential abundance varied across the studies. Possible explanations could be the lack of
uniformity in the collection and storage of serum samples as well as different methods in
obtaining the metabolite concentrations (Nuclear Magnetic Resonance (NMR) vs. liquid
chromatography–mass spectrometry/mass spectrometry (LC-MS/MS)). Moreover, some
studies, such as ours, used a targeted metabolomics approach with a predefined set of
metabolites, whereas other studies used an untargeted approach. Finally, varying ethnicity,
age of the study population, and different dietary habits could have influenced the results
and, therefore, contributed to its heterogeneity.

We are the first study to examine the prospective associations of cord blood metabolites
and autistic traits in childhood dimensionally. No associations between metabolites at
birth and autistic traits at ages 6 and 13 were observed in our main model. Autism is a
heterogeneous condition with a complex etiology that is only partly elucidated, and not
all pathophysiological mechanisms may be detectable through changes in the metabolic
composition of the blood. Furthermore, the neurodevelopment of the brain extends after
birth, and processes that contributed to an autistic condition in childhood might not have
been present at birth. Moreover, the blood metabolome is influenced by contemporary
environmental factors such as diet and stress level and may therefore derive stronger
associations in cross-sectional settings. A prior study conducted within the Generation R
Study revealed that correlations between metabolite measurements at various time points
(early pregnancy, cord blood, and at 10 years) were low, ranging between r = −0.10 and
r = 0.35 [24]. Observed associations in our study attenuated from 6 to 13 years, and the
linear mixed-effects model did not yield associations on changes in autistic traits over time
with metabolites. As the SRS is parent-reported, puberty could have caused difficulties
in assessing children’s behavior correctly compared to age 6. Further, after the age of 6,
other environmental influences could have caused the presence of autistic traits at age
13 and thus weakened its association with metabolites. Our results are in line with a
Danish case–control study that investigated the association of dried blood spot metabolites
obtained 6 days after the birth of 37 ASD cases and 37 healthy controls [19]. They did not
detect significant differences in metabolite concentrations among children with an ASD
diagnosis as compared to healthy controls. Corroborating our results, the Danish study
also reported that gestational age at birth has a strong confounding effect on the association
between metabolomics and ASD. A study that analyzed weekly blood samples from
30 pregnant women was able to predict the gestational age of fetuses from blood metabolite
measurements [47]. Therefore, future studies involving cord blood metabolomics should
consider gestational age as a confounding variable.

However, our results provide suggestive evidence for an inverse association between
the concentration of SM.a.C39.2 at birth and autistic traits at age 6 years. This association
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was observed after multiple testing correction in our basic model but did not survive
correction after adjusting for a wider set of confounders, even though effect sizes were
comparable. While this finding should be interpreted with caution, it is noteworthy that
SM has previously been implicated in neurodevelopmental outcomes and ASD [17,48,49].
SM is highly abundant in the brain as part of the myelin isolating oligodendrocytes [50]. It
comprises cellular membranes and is involved in proliferation, migration, inflammation,
and cell survival [51]. A small randomized controlled trial among 24 very-low-birth-
weight infants reported improvements in neurodevelopmental tests after feeding them
SM-fortified milk [52]. Moreover, an intervention study of 15 ASD-diagnosed children
reported correlations between increased urinary levels of SM and improvement of autistic
traits after treatment with sulforaphane [53]. However, SM.a.C39.2 is an unusual SM
in relation to brain myelination, as most SM-forming myelin has between 18 and 24 C-
atoms [54]. Moreover, SM.a.C39.2 contributes only about 0.2% to the total SM in our
samples. Therefore, a potential deviation of early-life sphingomyelin formation during
brain development could be a target for further exploration in relation to the risk of ASD.

Numerous studies have reported differences in fatty acid concentration, Carn.a, and PL,
which are linked to mitochondrial dysfunction, in ASD [43,49,55–57]. Carn.a transport acyl
groups into the mitochondrial matrix for ß-oxidation. Thus, it is crucial crucial for mitochon-
drial energy production [20]. Previous studies suggest that the accumulation of Carn.a could
be a result of incomplete oxidation of fatty acids due to mitochondrial dysfunction [58]. In
our models, although non-significant, a trend between elevated Carn.a.C.18.2 concentrations
and higher autistic traits at age 6 was observed in the main model.

This is the first autism-related study to report a decreased NEFA16:1/16:0 ratio as-
sociated with higher severity of autistic traits, albeit not significant after multiple testing
correction in the main model. The ratio represents a proxy of the stearoyl-CoA desaturase-1
(SCD-1) activity. This enzyme breaks down saturated fatty acids, and decreased levels of
SCD-1 have been previously linked to inflammation in, e.g., macrophages and endothelial
cells [33,59]. Inflammatory processes have been previously linked to ASD pathophysi-
ology [60]. Moreover, SCD-1 functions to form mono-unsaturated fatty acids, of which
relatively large amounts are deposited in brain lipids during early brain growth [54]. There-
fore, it is required for normal brain development. Reduced levels of NEFA16:1/16:0 ratio
could reflect neurodevelopmental abnormalities occurring during pregnancy, possibly
leading to a higher abundance of autistic traits in childhood.

In our population-based study, we did not identify certain metabolites at birth associ-
ated with autistic traits in childhood. Although we found some suggestive evidence that
decreased SM, NEFA16:1/16:0 concentrations and increased Carn.a concentrations at birth
might be predictive of more severe autistic traits in childhood, associations attenuated
after adjusting for a wider set of confounders and disappeared at the age of 13. Thus, we
conclude that the measured metabolites within our study are not suitable for the prediction
of autistic traits in childhood. For future studies, it might be beneficial to explore associa-
tions with a wider set of metabolites or even consider an untargeted approach. Moreover,
repeated measurements on both metabolomics and autistic traits would enable us to study
their association over time.

4.2. Methodological Considerations

Among the strengths of this study is the dimensional measure of autistic traits with
the SRS score. Although our dimensional approach does not provide a clinical diagnosis,
it allows us to account for children with fewer symptoms and model the full range of
symptoms in the general population. It also reduces the risk of outcome misclassification
and increases power. Moreover, obtaining measurements of SRS scores at two time points
is another strength. It allowed us to study the association of longitudinal trajectories of
autistic traits with metabolites. Finally, the availability of sociodemographic and lifestyle
information of our participants allowed us to control for a broad range of confounders.
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Some limitations in the current study need to be considered. Unlike previous studies
that used a case–control design, our study was embedded in a population-based cohort.
Although the percentage of participants above the recommended SRS cutoff value (0.9%)
corresponds to the ASD prevalence (0.6–2.2%), it is noteworthy that our participant’s
autistic traits primarily fall within a subclinical range [4]. Consequently, the identified
associations may not be as distinct as in case–control designs. Metabolomics data of the
Generation R cohort was available for a subgroup of individuals of Dutch ethnicity, with
highly educated, normal-weight mothers who were less likely to drink or smoke during
pregnancy. This circumstance might have resulted in a selection bias, causing less severe
autistic traits among children. We used a targeted metabolomics approach and analyzed
193 metabolites. By limiting our analyses to a predefined set of metabolites, we might
have missed associations of other metabolites with autistic traits. Finally, despite adjusting
for many potential confounders, due to the observational nature of our study, we cannot
completely rule out the effect of residual confounding.

5. Conclusions

We did not find significant associations between cord blood metabolite profiles and
autistic traits at the ages of 6 and 13 in our main model. Our results did provide suggestive
evidence for associations between SM and NEFA16:1/16:0 abundance at birth and subclini-
cal autistic traits at age 6. These findings should be regarded as hypothesis-generating and
require further investigations.
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Abbreviations

AA Amino acids

AAA Aromatic amino acids

BCAA Branched-chain amino acids

Carn Carnitines

Carn.a Acyl-carnitines

CV Coefficient of variation

EAA Essential amino acids

FDR False discovery rate

HPLC High-performance liquid chromatography

IUPAC-IUB International Union of Pure and Applied Chemistry—International Union

of Biochemistry

Lyso.PC.a Acyl-lysophosphatidylcholines

Lyso.PC.e Alkyl-lysophosphatidylcholines

LC/MS-MS Liquid chromatography–mass spectrometry

NEFA Non-esterified fatty acids

NEAA Non-essential amino acids

NMR Nuclear Magnetic Resonance

PC Phosphatidylcholines

PC.aa Diacyl-phosphatidylcholines

PC.ae Acyl-alkyl-phosphatidylcholines

PL Phospholipids

QC Quality control

SD Standard deviation

SDS Standard deviation scores

SGA Small size for gestational age

SM Sphingomyelines

SRS Social Responsiveness Scale
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